mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
edea42c602
To make it consistent in the code base Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de> (Merged from https://github.com/openssl/openssl/pull/3749)
236 lines
5.4 KiB
C
236 lines
5.4 KiB
C
/*
|
|
* Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include "internal/cryptlib.h"
|
|
#include "bn_lcl.h"
|
|
|
|
/* r must not be a */
|
|
/*
|
|
* I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96
|
|
*/
|
|
int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
|
|
{
|
|
int max, al;
|
|
int ret = 0;
|
|
BIGNUM *tmp, *rr;
|
|
|
|
bn_check_top(a);
|
|
|
|
al = a->top;
|
|
if (al <= 0) {
|
|
r->top = 0;
|
|
r->neg = 0;
|
|
return 1;
|
|
}
|
|
|
|
BN_CTX_start(ctx);
|
|
rr = (a != r) ? r : BN_CTX_get(ctx);
|
|
tmp = BN_CTX_get(ctx);
|
|
if (rr == NULL || tmp == NULL)
|
|
goto err;
|
|
|
|
max = 2 * al; /* Non-zero (from above) */
|
|
if (bn_wexpand(rr, max) == NULL)
|
|
goto err;
|
|
|
|
if (al == 4) {
|
|
#ifndef BN_SQR_COMBA
|
|
BN_ULONG t[8];
|
|
bn_sqr_normal(rr->d, a->d, 4, t);
|
|
#else
|
|
bn_sqr_comba4(rr->d, a->d);
|
|
#endif
|
|
} else if (al == 8) {
|
|
#ifndef BN_SQR_COMBA
|
|
BN_ULONG t[16];
|
|
bn_sqr_normal(rr->d, a->d, 8, t);
|
|
#else
|
|
bn_sqr_comba8(rr->d, a->d);
|
|
#endif
|
|
} else {
|
|
#if defined(BN_RECURSION)
|
|
if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
|
|
BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
|
|
bn_sqr_normal(rr->d, a->d, al, t);
|
|
} else {
|
|
int j, k;
|
|
|
|
j = BN_num_bits_word((BN_ULONG)al);
|
|
j = 1 << (j - 1);
|
|
k = j + j;
|
|
if (al == j) {
|
|
if (bn_wexpand(tmp, k * 2) == NULL)
|
|
goto err;
|
|
bn_sqr_recursive(rr->d, a->d, al, tmp->d);
|
|
} else {
|
|
if (bn_wexpand(tmp, max) == NULL)
|
|
goto err;
|
|
bn_sqr_normal(rr->d, a->d, al, tmp->d);
|
|
}
|
|
}
|
|
#else
|
|
if (bn_wexpand(tmp, max) == NULL)
|
|
goto err;
|
|
bn_sqr_normal(rr->d, a->d, al, tmp->d);
|
|
#endif
|
|
}
|
|
|
|
rr->neg = 0;
|
|
/*
|
|
* If the most-significant half of the top word of 'a' is zero, then the
|
|
* square of 'a' will max-1 words.
|
|
*/
|
|
if (a->d[al - 1] == (a->d[al - 1] & BN_MASK2l))
|
|
rr->top = max - 1;
|
|
else
|
|
rr->top = max;
|
|
if (r != rr && BN_copy(r, rr) == NULL)
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
bn_check_top(rr);
|
|
bn_check_top(tmp);
|
|
BN_CTX_end(ctx);
|
|
return (ret);
|
|
}
|
|
|
|
/* tmp must have 2*n words */
|
|
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp)
|
|
{
|
|
int i, j, max;
|
|
const BN_ULONG *ap;
|
|
BN_ULONG *rp;
|
|
|
|
max = n * 2;
|
|
ap = a;
|
|
rp = r;
|
|
rp[0] = rp[max - 1] = 0;
|
|
rp++;
|
|
j = n;
|
|
|
|
if (--j > 0) {
|
|
ap++;
|
|
rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
|
|
rp += 2;
|
|
}
|
|
|
|
for (i = n - 2; i > 0; i--) {
|
|
j--;
|
|
ap++;
|
|
rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]);
|
|
rp += 2;
|
|
}
|
|
|
|
bn_add_words(r, r, r, max);
|
|
|
|
/* There will not be a carry */
|
|
|
|
bn_sqr_words(tmp, a, n);
|
|
|
|
bn_add_words(r, r, tmp, max);
|
|
}
|
|
|
|
#ifdef BN_RECURSION
|
|
/*-
|
|
* r is 2*n words in size,
|
|
* a and b are both n words in size. (There's not actually a 'b' here ...)
|
|
* n must be a power of 2.
|
|
* We multiply and return the result.
|
|
* t must be 2*n words in size
|
|
* We calculate
|
|
* a[0]*b[0]
|
|
* a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
|
|
* a[1]*b[1]
|
|
*/
|
|
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t)
|
|
{
|
|
int n = n2 / 2;
|
|
int zero, c1;
|
|
BN_ULONG ln, lo, *p;
|
|
|
|
if (n2 == 4) {
|
|
# ifndef BN_SQR_COMBA
|
|
bn_sqr_normal(r, a, 4, t);
|
|
# else
|
|
bn_sqr_comba4(r, a);
|
|
# endif
|
|
return;
|
|
} else if (n2 == 8) {
|
|
# ifndef BN_SQR_COMBA
|
|
bn_sqr_normal(r, a, 8, t);
|
|
# else
|
|
bn_sqr_comba8(r, a);
|
|
# endif
|
|
return;
|
|
}
|
|
if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
|
|
bn_sqr_normal(r, a, n2, t);
|
|
return;
|
|
}
|
|
/* r=(a[0]-a[1])*(a[1]-a[0]) */
|
|
c1 = bn_cmp_words(a, &(a[n]), n);
|
|
zero = 0;
|
|
if (c1 > 0)
|
|
bn_sub_words(t, a, &(a[n]), n);
|
|
else if (c1 < 0)
|
|
bn_sub_words(t, &(a[n]), a, n);
|
|
else
|
|
zero = 1;
|
|
|
|
/* The result will always be negative unless it is zero */
|
|
p = &(t[n2 * 2]);
|
|
|
|
if (!zero)
|
|
bn_sqr_recursive(&(t[n2]), t, n, p);
|
|
else
|
|
memset(&t[n2], 0, sizeof(*t) * n2);
|
|
bn_sqr_recursive(r, a, n, p);
|
|
bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);
|
|
|
|
/*-
|
|
* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
|
|
* r[10] holds (a[0]*b[0])
|
|
* r[32] holds (b[1]*b[1])
|
|
*/
|
|
|
|
c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
|
|
|
|
/* t[32] is negative */
|
|
c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
|
|
|
|
/*-
|
|
* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
|
|
* r[10] holds (a[0]*a[0])
|
|
* r[32] holds (a[1]*a[1])
|
|
* c1 holds the carry bits
|
|
*/
|
|
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
|
|
if (c1) {
|
|
p = &(r[n + n2]);
|
|
lo = *p;
|
|
ln = (lo + c1) & BN_MASK2;
|
|
*p = ln;
|
|
|
|
/*
|
|
* The overflow will stop before we over write words we should not
|
|
* overwrite
|
|
*/
|
|
if (ln < (BN_ULONG)c1) {
|
|
do {
|
|
p++;
|
|
lo = *p;
|
|
ln = (lo + 1) & BN_MASK2;
|
|
*p = ln;
|
|
} while (ln == 0);
|
|
}
|
|
}
|
|
}
|
|
#endif
|