mirror of
https://github.com/openssl/openssl.git
synced 2024-11-27 05:21:51 +08:00
309 lines
8.5 KiB
C
309 lines
8.5 KiB
C
/* crypto/x509/x509_cmp.c */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "cryptlib.h"
|
|
#include <openssl/asn1.h>
|
|
#include <openssl/objects.h>
|
|
#include <openssl/x509.h>
|
|
#include <openssl/x509v3.h>
|
|
|
|
int X509_issuer_and_serial_cmp(X509 *a, X509 *b)
|
|
{
|
|
int i;
|
|
X509_CINF *ai,*bi;
|
|
|
|
ai=a->cert_info;
|
|
bi=b->cert_info;
|
|
i=M_ASN1_INTEGER_cmp(ai->serialNumber,bi->serialNumber);
|
|
if (i) return(i);
|
|
return(X509_NAME_cmp(ai->issuer,bi->issuer));
|
|
}
|
|
|
|
#ifndef NO_MD5
|
|
unsigned long X509_issuer_and_serial_hash(X509 *a)
|
|
{
|
|
unsigned long ret=0;
|
|
MD5_CTX ctx;
|
|
unsigned char md[16];
|
|
char str[256];
|
|
|
|
X509_NAME_oneline(a->cert_info->issuer,str,256);
|
|
ret=strlen(str);
|
|
MD5_Init(&ctx);
|
|
MD5_Update(&ctx,(unsigned char *)str,ret);
|
|
MD5_Update(&ctx,(unsigned char *)a->cert_info->serialNumber->data,
|
|
(unsigned long)a->cert_info->serialNumber->length);
|
|
MD5_Final(&(md[0]),&ctx);
|
|
ret=( ((unsigned long)md[0] )|((unsigned long)md[1]<<8L)|
|
|
((unsigned long)md[2]<<16L)|((unsigned long)md[3]<<24L)
|
|
)&0xffffffffL;
|
|
return(ret);
|
|
}
|
|
#endif
|
|
|
|
int X509_issuer_name_cmp(X509 *a, X509 *b)
|
|
{
|
|
return(X509_NAME_cmp(a->cert_info->issuer,b->cert_info->issuer));
|
|
}
|
|
|
|
int X509_subject_name_cmp(X509 *a, X509 *b)
|
|
{
|
|
return(X509_NAME_cmp(a->cert_info->subject,b->cert_info->subject));
|
|
}
|
|
|
|
int X509_CRL_cmp(X509_CRL *a, X509_CRL *b)
|
|
{
|
|
return(X509_NAME_cmp(a->crl->issuer,b->crl->issuer));
|
|
}
|
|
|
|
X509_NAME *X509_get_issuer_name(X509 *a)
|
|
{
|
|
return(a->cert_info->issuer);
|
|
}
|
|
|
|
unsigned long X509_issuer_name_hash(X509 *x)
|
|
{
|
|
return(X509_NAME_hash(x->cert_info->issuer));
|
|
}
|
|
|
|
X509_NAME *X509_get_subject_name(X509 *a)
|
|
{
|
|
return(a->cert_info->subject);
|
|
}
|
|
|
|
ASN1_INTEGER *X509_get_serialNumber(X509 *a)
|
|
{
|
|
return(a->cert_info->serialNumber);
|
|
}
|
|
|
|
unsigned long X509_subject_name_hash(X509 *x)
|
|
{
|
|
return(X509_NAME_hash(x->cert_info->subject));
|
|
}
|
|
|
|
#ifndef NO_SHA
|
|
/* Compare two certificates: they must be identical for
|
|
* this to work.
|
|
*/
|
|
int X509_cmp(X509 *a, X509 *b)
|
|
{
|
|
/* ensure hash is valid */
|
|
X509_check_purpose(a, -1, 0);
|
|
X509_check_purpose(b, -1, 0);
|
|
|
|
return memcmp(a->sha1_hash, b->sha1_hash, SHA_DIGEST_LENGTH);
|
|
}
|
|
#endif
|
|
|
|
int X509_NAME_cmp(X509_NAME *a, X509_NAME *b)
|
|
{
|
|
int i,j;
|
|
X509_NAME_ENTRY *na,*nb;
|
|
|
|
if (sk_X509_NAME_ENTRY_num(a->entries)
|
|
!= sk_X509_NAME_ENTRY_num(b->entries))
|
|
return sk_X509_NAME_ENTRY_num(a->entries)
|
|
-sk_X509_NAME_ENTRY_num(b->entries);
|
|
for (i=sk_X509_NAME_ENTRY_num(a->entries)-1; i>=0; i--)
|
|
{
|
|
na=sk_X509_NAME_ENTRY_value(a->entries,i);
|
|
nb=sk_X509_NAME_ENTRY_value(b->entries,i);
|
|
j=na->value->length-nb->value->length;
|
|
if (j) return(j);
|
|
j=memcmp(na->value->data,nb->value->data,
|
|
na->value->length);
|
|
if (j) return(j);
|
|
j=na->set-nb->set;
|
|
if (j) return(j);
|
|
}
|
|
|
|
/* We will check the object types after checking the values
|
|
* since the values will more often be different than the object
|
|
* types. */
|
|
for (i=sk_X509_NAME_ENTRY_num(a->entries)-1; i>=0; i--)
|
|
{
|
|
na=sk_X509_NAME_ENTRY_value(a->entries,i);
|
|
nb=sk_X509_NAME_ENTRY_value(b->entries,i);
|
|
j=OBJ_cmp(na->object,nb->object);
|
|
if (j) return(j);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
#ifndef NO_MD5
|
|
/* I now DER encode the name and hash it. Since I cache the DER encoding,
|
|
* this is reasonably effiecent. */
|
|
unsigned long X509_NAME_hash(X509_NAME *x)
|
|
{
|
|
unsigned long ret=0;
|
|
unsigned char md[16];
|
|
unsigned char str[256],*p,*pp;
|
|
int i;
|
|
|
|
i=i2d_X509_NAME(x,NULL);
|
|
if (i > sizeof(str))
|
|
p=Malloc(i);
|
|
else
|
|
p=str;
|
|
|
|
pp=p;
|
|
i2d_X509_NAME(x,&pp);
|
|
MD5((unsigned char *)p,i,&(md[0]));
|
|
if (p != str) Free(p);
|
|
|
|
ret=( ((unsigned long)md[0] )|((unsigned long)md[1]<<8L)|
|
|
((unsigned long)md[2]<<16L)|((unsigned long)md[3]<<24L)
|
|
)&0xffffffffL;
|
|
return(ret);
|
|
}
|
|
#endif
|
|
|
|
/* Search a stack of X509 for a match */
|
|
X509 *X509_find_by_issuer_and_serial(STACK_OF(X509) *sk, X509_NAME *name,
|
|
ASN1_INTEGER *serial)
|
|
{
|
|
int i;
|
|
X509_CINF cinf;
|
|
X509 x,*x509=NULL;
|
|
|
|
if(!sk) return NULL;
|
|
|
|
x.cert_info= &cinf;
|
|
cinf.serialNumber=serial;
|
|
cinf.issuer=name;
|
|
|
|
for (i=0; i<sk_X509_num(sk); i++)
|
|
{
|
|
x509=sk_X509_value(sk,i);
|
|
if (X509_issuer_and_serial_cmp(x509,&x) == 0)
|
|
return(x509);
|
|
}
|
|
return(NULL);
|
|
}
|
|
|
|
X509 *X509_find_by_subject(STACK_OF(X509) *sk, X509_NAME *name)
|
|
{
|
|
X509 *x509;
|
|
int i;
|
|
|
|
for (i=0; i<sk_X509_num(sk); i++)
|
|
{
|
|
x509=sk_X509_value(sk,i);
|
|
if (X509_NAME_cmp(X509_get_subject_name(x509),name) == 0)
|
|
return(x509);
|
|
}
|
|
return(NULL);
|
|
}
|
|
|
|
EVP_PKEY *X509_get_pubkey(X509 *x)
|
|
{
|
|
if ((x == NULL) || (x->cert_info == NULL))
|
|
return(NULL);
|
|
return(X509_PUBKEY_get(x->cert_info->key));
|
|
}
|
|
|
|
int X509_check_private_key(X509 *x, EVP_PKEY *k)
|
|
{
|
|
EVP_PKEY *xk=NULL;
|
|
int ok=0;
|
|
|
|
xk=X509_get_pubkey(x);
|
|
if (xk->type != k->type)
|
|
{
|
|
X509err(X509_F_X509_CHECK_PRIVATE_KEY,X509_R_KEY_TYPE_MISMATCH);
|
|
goto err;
|
|
}
|
|
switch (k->type)
|
|
{
|
|
#ifndef NO_RSA
|
|
case EVP_PKEY_RSA:
|
|
if (BN_cmp(xk->pkey.rsa->n,k->pkey.rsa->n) != 0
|
|
|| BN_cmp(xk->pkey.rsa->e,k->pkey.rsa->e) != 0)
|
|
{
|
|
X509err(X509_F_X509_CHECK_PRIVATE_KEY,X509_R_KEY_VALUES_MISMATCH);
|
|
goto err;
|
|
}
|
|
break;
|
|
#endif
|
|
#ifndef NO_DSA
|
|
case EVP_PKEY_DSA:
|
|
if (BN_cmp(xk->pkey.dsa->pub_key,k->pkey.dsa->pub_key) != 0)
|
|
{
|
|
X509err(X509_F_X509_CHECK_PRIVATE_KEY,X509_R_KEY_VALUES_MISMATCH);
|
|
goto err;
|
|
}
|
|
break;
|
|
#endif
|
|
#ifndef NO_DH
|
|
case EVP_PKEY_DH:
|
|
/* No idea */
|
|
X509err(X509_F_X509_CHECK_PRIVATE_KEY,X509_R_CANT_CHECK_DH_KEY);
|
|
goto err;
|
|
#endif
|
|
default:
|
|
X509err(X509_F_X509_CHECK_PRIVATE_KEY,X509_R_UNKNOWN_KEY_TYPE);
|
|
goto err;
|
|
}
|
|
|
|
ok=1;
|
|
err:
|
|
EVP_PKEY_free(xk);
|
|
return(ok);
|
|
}
|