mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
0e4aa0d2d2
override key-generation implementations by placing handlers in the methods for DSA and DH. Also, parameter generation for DSA and DH is possible by another new handler for each method.
1124 lines
28 KiB
C
1124 lines
28 KiB
C
/* crypto/engine/hw_aep.c */
|
|
/*
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1999 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <openssl/bn.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/e_os2.h>
|
|
#if !defined(OPENSSL_SYS_MSDOS) || defined(__DJGPP__)
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#else
|
|
#include <process.h>
|
|
typedef int pid_t;
|
|
#endif
|
|
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/dso.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/buffer.h>
|
|
|
|
#ifndef OPENSSL_NO_HW
|
|
#ifndef OPENSSL_NO_HW_AEP
|
|
#ifdef FLAT_INC
|
|
#include "aep.h"
|
|
#else
|
|
#include "vendor_defns/aep.h"
|
|
#endif
|
|
|
|
#define AEP_LIB_NAME "aep engine"
|
|
#define FAIL_TO_SW 0x10101010
|
|
|
|
#include "e_aep_err.c"
|
|
|
|
static int aep_init(ENGINE *e);
|
|
static int aep_finish(ENGINE *e);
|
|
static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)());
|
|
static int aep_destroy(ENGINE *e);
|
|
|
|
static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR hConnection);
|
|
static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection);
|
|
static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection);
|
|
static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use);
|
|
|
|
/* BIGNUM stuff */
|
|
static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx);
|
|
|
|
static AEP_RV aep_mod_exp_crt(BIGNUM *r,const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *q, const BIGNUM *dmp1,const BIGNUM *dmq1,
|
|
const BIGNUM *iqmp, BN_CTX *ctx);
|
|
|
|
/* RSA stuff */
|
|
#ifndef OPENSSL_NO_RSA
|
|
static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa);
|
|
#endif
|
|
|
|
/* This function is aliased to mod_exp (with the mont stuff dropped). */
|
|
static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
|
|
|
|
/* DSA stuff */
|
|
#ifndef OPENSSL_NO_DSA
|
|
static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1,
|
|
BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m,
|
|
BN_CTX *ctx, BN_MONT_CTX *in_mont);
|
|
|
|
static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a,
|
|
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
|
|
BN_MONT_CTX *m_ctx);
|
|
#endif
|
|
|
|
/* DH stuff */
|
|
/* This function is aliased to mod_exp (with the DH and mont dropped). */
|
|
#ifndef OPENSSL_NO_DH
|
|
static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
|
|
#endif
|
|
|
|
/* rand stuff */
|
|
#ifdef AEPRAND
|
|
static int aep_rand(unsigned char *buf, int num);
|
|
static int aep_rand_status(void);
|
|
#endif
|
|
|
|
/* Bignum conversion stuff */
|
|
static AEP_RV GetBigNumSize(AEP_VOID_PTR ArbBigNum, AEP_U32* BigNumSize);
|
|
static AEP_RV MakeAEPBigNum(AEP_VOID_PTR ArbBigNum, AEP_U32 BigNumSize,
|
|
unsigned char* AEP_BigNum);
|
|
static AEP_RV ConvertAEPBigNum(void* ArbBigNum, AEP_U32 BigNumSize,
|
|
unsigned char* AEP_BigNum);
|
|
|
|
/* The definitions for control commands specific to this engine */
|
|
#define AEP_CMD_SO_PATH ENGINE_CMD_BASE
|
|
static const ENGINE_CMD_DEFN aep_cmd_defns[] =
|
|
{
|
|
{ AEP_CMD_SO_PATH,
|
|
"SO_PATH",
|
|
"Specifies the path to the 'aep' shared library",
|
|
ENGINE_CMD_FLAG_STRING
|
|
},
|
|
{0, NULL, NULL, 0}
|
|
};
|
|
|
|
#ifndef OPENSSL_NO_RSA
|
|
/* Our internal RSA_METHOD that we provide pointers to */
|
|
static RSA_METHOD aep_rsa =
|
|
{
|
|
"Aep RSA method",
|
|
NULL, /*rsa_pub_encrypt*/
|
|
NULL, /*rsa_pub_decrypt*/
|
|
NULL, /*rsa_priv_encrypt*/
|
|
NULL, /*rsa_priv_encrypt*/
|
|
aep_rsa_mod_exp, /*rsa_mod_exp*/
|
|
aep_mod_exp_mont, /*bn_mod_exp*/
|
|
NULL, /*init*/
|
|
NULL, /*finish*/
|
|
0, /*flags*/
|
|
NULL, /*app_data*/
|
|
NULL, /*rsa_sign*/
|
|
NULL, /*rsa_verify*/
|
|
NULL /*rsa_keygen*/
|
|
};
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_DSA
|
|
/* Our internal DSA_METHOD that we provide pointers to */
|
|
static DSA_METHOD aep_dsa =
|
|
{
|
|
"Aep DSA method",
|
|
NULL, /* dsa_do_sign */
|
|
NULL, /* dsa_sign_setup */
|
|
NULL, /* dsa_do_verify */
|
|
aep_dsa_mod_exp, /* dsa_mod_exp */
|
|
aep_mod_exp_dsa, /* bn_mod_exp */
|
|
NULL, /* init */
|
|
NULL, /* finish */
|
|
0, /* flags */
|
|
NULL, /* app_data */
|
|
NULL, /* dsa_paramgen */
|
|
NULL /* dsa_keygen */
|
|
};
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_DH
|
|
/* Our internal DH_METHOD that we provide pointers to */
|
|
static DH_METHOD aep_dh =
|
|
{
|
|
"Aep DH method",
|
|
NULL,
|
|
NULL,
|
|
aep_mod_exp_dh,
|
|
NULL,
|
|
NULL,
|
|
0,
|
|
NULL,
|
|
NULL
|
|
};
|
|
#endif
|
|
|
|
#ifdef AEPRAND
|
|
/* our internal RAND_method that we provide pointers to */
|
|
static RAND_METHOD aep_random =
|
|
{
|
|
/*"AEP RAND method", */
|
|
NULL,
|
|
aep_rand,
|
|
NULL,
|
|
NULL,
|
|
aep_rand,
|
|
aep_rand_status,
|
|
};
|
|
#endif
|
|
|
|
/*Define an array of structures to hold connections*/
|
|
static AEP_CONNECTION_ENTRY aep_app_conn_table[MAX_PROCESS_CONNECTIONS];
|
|
|
|
/*Used to determine if this is a new process*/
|
|
static pid_t recorded_pid = 0;
|
|
|
|
#ifdef AEPRAND
|
|
static AEP_U8 rand_block[RAND_BLK_SIZE];
|
|
static AEP_U32 rand_block_bytes = 0;
|
|
#endif
|
|
|
|
/* Constants used when creating the ENGINE */
|
|
static const char *engine_aep_id = "aep";
|
|
static const char *engine_aep_name = "Aep hardware engine support";
|
|
|
|
static int max_key_len = 2176;
|
|
|
|
|
|
/* This internal function is used by ENGINE_aep() and possibly by the
|
|
* "dynamic" ENGINE support too */
|
|
static int bind_aep(ENGINE *e)
|
|
{
|
|
#ifndef OPENSSL_NO_RSA
|
|
const RSA_METHOD *meth1;
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
const DSA_METHOD *meth2;
|
|
#endif
|
|
#ifndef OPENSSL_NO_DH
|
|
const DH_METHOD *meth3;
|
|
#endif
|
|
|
|
if(!ENGINE_set_id(e, engine_aep_id) ||
|
|
!ENGINE_set_name(e, engine_aep_name) ||
|
|
#ifndef OPENSSL_NO_RSA
|
|
!ENGINE_set_RSA(e, &aep_rsa) ||
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
!ENGINE_set_DSA(e, &aep_dsa) ||
|
|
#endif
|
|
#ifndef OPENSSL_NO_DH
|
|
!ENGINE_set_DH(e, &aep_dh) ||
|
|
#endif
|
|
#ifdef AEPRAND
|
|
!ENGINE_set_RAND(e, &aep_random) ||
|
|
#endif
|
|
!ENGINE_set_init_function(e, aep_init) ||
|
|
!ENGINE_set_destroy_function(e, aep_destroy) ||
|
|
!ENGINE_set_finish_function(e, aep_finish) ||
|
|
!ENGINE_set_ctrl_function(e, aep_ctrl) ||
|
|
!ENGINE_set_cmd_defns(e, aep_cmd_defns))
|
|
return 0;
|
|
|
|
#ifndef OPENSSL_NO_RSA
|
|
/* We know that the "PKCS1_SSLeay()" functions hook properly
|
|
* to the aep-specific mod_exp and mod_exp_crt so we use
|
|
* those functions. NB: We don't use ENGINE_openssl() or
|
|
* anything "more generic" because something like the RSAref
|
|
* code may not hook properly, and if you own one of these
|
|
* cards then you have the right to do RSA operations on it
|
|
* anyway! */
|
|
meth1 = RSA_PKCS1_SSLeay();
|
|
aep_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
|
|
aep_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
|
|
aep_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
|
|
aep_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
|
|
#endif
|
|
|
|
|
|
#ifndef OPENSSL_NO_DSA
|
|
/* Use the DSA_OpenSSL() method and just hook the mod_exp-ish
|
|
* bits. */
|
|
meth2 = DSA_OpenSSL();
|
|
aep_dsa.dsa_do_sign = meth2->dsa_do_sign;
|
|
aep_dsa.dsa_sign_setup = meth2->dsa_sign_setup;
|
|
aep_dsa.dsa_do_verify = meth2->dsa_do_verify;
|
|
|
|
aep_dsa = *DSA_get_default_method();
|
|
aep_dsa.dsa_mod_exp = aep_dsa_mod_exp;
|
|
aep_dsa.bn_mod_exp = aep_mod_exp_dsa;
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_DH
|
|
/* Much the same for Diffie-Hellman */
|
|
meth3 = DH_OpenSSL();
|
|
aep_dh.generate_key = meth3->generate_key;
|
|
aep_dh.compute_key = meth3->compute_key;
|
|
aep_dh.bn_mod_exp = meth3->bn_mod_exp;
|
|
#endif
|
|
|
|
/* Ensure the aep error handling is set up */
|
|
ERR_load_AEPHK_strings();
|
|
|
|
return 1;
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_DYNAMIC_ENGINE
|
|
static int bind_helper(ENGINE *e, const char *id)
|
|
{
|
|
if(id && (strcmp(id, engine_aep_id) != 0))
|
|
return 0;
|
|
if(!bind_aep(e))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
IMPLEMENT_DYNAMIC_CHECK_FN()
|
|
IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
|
|
#else
|
|
static ENGINE *engine_aep(void)
|
|
{
|
|
ENGINE *ret = ENGINE_new();
|
|
if(!ret)
|
|
return NULL;
|
|
if(!bind_aep(ret))
|
|
{
|
|
ENGINE_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void ENGINE_load_aep(void)
|
|
{
|
|
/* Copied from eng_[openssl|dyn].c */
|
|
ENGINE *toadd = engine_aep();
|
|
if(!toadd) return;
|
|
ENGINE_add(toadd);
|
|
ENGINE_free(toadd);
|
|
ERR_clear_error();
|
|
}
|
|
#endif
|
|
|
|
/* This is a process-global DSO handle used for loading and unloading
|
|
* the Aep library. NB: This is only set (or unset) during an
|
|
* init() or finish() call (reference counts permitting) and they're
|
|
* operating with global locks, so this should be thread-safe
|
|
* implicitly. */
|
|
static DSO *aep_dso = NULL;
|
|
|
|
/* These are the static string constants for the DSO file name and the function
|
|
* symbol names to bind to.
|
|
*/
|
|
static const char *AEP_LIBNAME = NULL;
|
|
static const char *get_AEP_LIBNAME(void)
|
|
{
|
|
if(AEP_LIBNAME)
|
|
return AEP_LIBNAME;
|
|
return "aep";
|
|
}
|
|
static void free_AEP_LIBNAME(void)
|
|
{
|
|
if(AEP_LIBNAME)
|
|
OPENSSL_free((void*)AEP_LIBNAME);
|
|
AEP_LIBNAME = NULL;
|
|
}
|
|
static long set_AEP_LIBNAME(const char *name)
|
|
{
|
|
free_AEP_LIBNAME();
|
|
return ((AEP_LIBNAME = BUF_strdup(name)) != NULL ? 1 : 0);
|
|
}
|
|
|
|
static const char *AEP_F1 = "AEP_ModExp";
|
|
static const char *AEP_F2 = "AEP_ModExpCrt";
|
|
#ifdef AEPRAND
|
|
static const char *AEP_F3 = "AEP_GenRandom";
|
|
#endif
|
|
static const char *AEP_F4 = "AEP_Finalize";
|
|
static const char *AEP_F5 = "AEP_Initialize";
|
|
static const char *AEP_F6 = "AEP_OpenConnection";
|
|
static const char *AEP_F7 = "AEP_SetBNCallBacks";
|
|
static const char *AEP_F8 = "AEP_CloseConnection";
|
|
|
|
/* These are the function pointers that are (un)set when the library has
|
|
* successfully (un)loaded. */
|
|
static t_AEP_OpenConnection *p_AEP_OpenConnection = NULL;
|
|
static t_AEP_CloseConnection *p_AEP_CloseConnection = NULL;
|
|
static t_AEP_ModExp *p_AEP_ModExp = NULL;
|
|
static t_AEP_ModExpCrt *p_AEP_ModExpCrt = NULL;
|
|
#ifdef AEPRAND
|
|
static t_AEP_GenRandom *p_AEP_GenRandom = NULL;
|
|
#endif
|
|
static t_AEP_Initialize *p_AEP_Initialize = NULL;
|
|
static t_AEP_Finalize *p_AEP_Finalize = NULL;
|
|
static t_AEP_SetBNCallBacks *p_AEP_SetBNCallBacks = NULL;
|
|
|
|
/* (de)initialisation functions. */
|
|
static int aep_init(ENGINE *e)
|
|
{
|
|
t_AEP_ModExp *p1;
|
|
t_AEP_ModExpCrt *p2;
|
|
#ifdef AEPRAND
|
|
t_AEP_GenRandom *p3;
|
|
#endif
|
|
t_AEP_Finalize *p4;
|
|
t_AEP_Initialize *p5;
|
|
t_AEP_OpenConnection *p6;
|
|
t_AEP_SetBNCallBacks *p7;
|
|
t_AEP_CloseConnection *p8;
|
|
|
|
int to_return = 0;
|
|
|
|
if(aep_dso != NULL)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_INIT,AEPHK_R_ALREADY_LOADED);
|
|
goto err;
|
|
}
|
|
/* Attempt to load libaep.so. */
|
|
|
|
aep_dso = DSO_load(NULL, get_AEP_LIBNAME(), NULL, 0);
|
|
|
|
if(aep_dso == NULL)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_INIT,AEPHK_R_NOT_LOADED);
|
|
goto err;
|
|
}
|
|
|
|
if( !(p1 = (t_AEP_ModExp *) DSO_bind_func( aep_dso,AEP_F1)) ||
|
|
!(p2 = (t_AEP_ModExpCrt*) DSO_bind_func( aep_dso,AEP_F2)) ||
|
|
#ifdef AEPRAND
|
|
!(p3 = (t_AEP_GenRandom*) DSO_bind_func( aep_dso,AEP_F3)) ||
|
|
#endif
|
|
!(p4 = (t_AEP_Finalize*) DSO_bind_func( aep_dso,AEP_F4)) ||
|
|
!(p5 = (t_AEP_Initialize*) DSO_bind_func( aep_dso,AEP_F5)) ||
|
|
!(p6 = (t_AEP_OpenConnection*) DSO_bind_func( aep_dso,AEP_F6)) ||
|
|
!(p7 = (t_AEP_SetBNCallBacks*) DSO_bind_func( aep_dso,AEP_F7)) ||
|
|
!(p8 = (t_AEP_CloseConnection*) DSO_bind_func( aep_dso,AEP_F8)))
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_INIT,AEPHK_R_NOT_LOADED);
|
|
goto err;
|
|
}
|
|
|
|
/* Copy the pointers */
|
|
|
|
p_AEP_ModExp = p1;
|
|
p_AEP_ModExpCrt = p2;
|
|
#ifdef AEPRAND
|
|
p_AEP_GenRandom = p3;
|
|
#endif
|
|
p_AEP_Finalize = p4;
|
|
p_AEP_Initialize = p5;
|
|
p_AEP_OpenConnection = p6;
|
|
p_AEP_SetBNCallBacks = p7;
|
|
p_AEP_CloseConnection = p8;
|
|
|
|
to_return = 1;
|
|
|
|
return to_return;
|
|
|
|
err:
|
|
|
|
if(aep_dso)
|
|
DSO_free(aep_dso);
|
|
|
|
p_AEP_OpenConnection = NULL;
|
|
p_AEP_ModExp = NULL;
|
|
p_AEP_ModExpCrt = NULL;
|
|
#ifdef AEPRAND
|
|
p_AEP_GenRandom = NULL;
|
|
#endif
|
|
p_AEP_Initialize = NULL;
|
|
p_AEP_Finalize = NULL;
|
|
p_AEP_SetBNCallBacks = NULL;
|
|
p_AEP_CloseConnection = NULL;
|
|
|
|
return to_return;
|
|
}
|
|
|
|
/* Destructor (complements the "ENGINE_aep()" constructor) */
|
|
static int aep_destroy(ENGINE *e)
|
|
{
|
|
free_AEP_LIBNAME();
|
|
ERR_unload_AEPHK_strings();
|
|
return 1;
|
|
}
|
|
|
|
static int aep_finish(ENGINE *e)
|
|
{
|
|
int to_return = 0, in_use;
|
|
AEP_RV rv;
|
|
|
|
if(aep_dso == NULL)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_NOT_LOADED);
|
|
goto err;
|
|
}
|
|
|
|
rv = aep_close_all_connections(0, &in_use);
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_CLOSE_HANDLES_FAILED);
|
|
goto err;
|
|
}
|
|
if (in_use)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_CONNECTIONS_IN_USE);
|
|
goto err;
|
|
}
|
|
|
|
rv = p_AEP_Finalize();
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_FINALIZE_FAILED);
|
|
goto err;
|
|
}
|
|
|
|
if(!DSO_free(aep_dso))
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_UNIT_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
aep_dso = NULL;
|
|
p_AEP_CloseConnection = NULL;
|
|
p_AEP_OpenConnection = NULL;
|
|
p_AEP_ModExp = NULL;
|
|
p_AEP_ModExpCrt = NULL;
|
|
#ifdef AEPRAND
|
|
p_AEP_GenRandom = NULL;
|
|
#endif
|
|
p_AEP_Initialize = NULL;
|
|
p_AEP_Finalize = NULL;
|
|
p_AEP_SetBNCallBacks = NULL;
|
|
|
|
to_return = 1;
|
|
err:
|
|
return to_return;
|
|
}
|
|
|
|
static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)())
|
|
{
|
|
int initialised = ((aep_dso == NULL) ? 0 : 1);
|
|
switch(cmd)
|
|
{
|
|
case AEP_CMD_SO_PATH:
|
|
if(p == NULL)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_CTRL,
|
|
ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
if(initialised)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_CTRL,
|
|
AEPHK_R_ALREADY_LOADED);
|
|
return 0;
|
|
}
|
|
return set_AEP_LIBNAME((const char*)p);
|
|
default:
|
|
break;
|
|
}
|
|
AEPHKerr(AEPHK_F_AEP_CTRL,AEPHK_R_CTRL_COMMAND_NOT_IMPLEMENTED);
|
|
return 0;
|
|
}
|
|
|
|
static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx)
|
|
{
|
|
int to_return = 0;
|
|
int r_len = 0;
|
|
AEP_CONNECTION_HNDL hConnection;
|
|
AEP_RV rv;
|
|
|
|
r_len = BN_num_bits(m);
|
|
|
|
/* Perform in software if modulus is too large for hardware. */
|
|
|
|
if (r_len > max_key_len){
|
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_SIZE_TOO_LARGE_OR_TOO_SMALL);
|
|
return BN_mod_exp(r, a, p, m, ctx);
|
|
}
|
|
|
|
/*Grab a connection from the pool*/
|
|
rv = aep_get_connection(&hConnection);
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP,AEPHK_R_GET_HANDLE_FAILED);
|
|
return BN_mod_exp(r, a, p, m, ctx);
|
|
}
|
|
|
|
/*To the card with the mod exp*/
|
|
rv = p_AEP_ModExp(hConnection,(void*)a, (void*)p,(void*)m, (void*)r,NULL);
|
|
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP,AEPHK_R_MOD_EXP_FAILED);
|
|
rv = aep_close_connection(hConnection);
|
|
return BN_mod_exp(r, a, p, m, ctx);
|
|
}
|
|
|
|
/*Return the connection to the pool*/
|
|
rv = aep_return_connection(hConnection);
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_RETURN_CONNECTION_FAILED);
|
|
goto err;
|
|
}
|
|
|
|
to_return = 1;
|
|
err:
|
|
return to_return;
|
|
}
|
|
|
|
static AEP_RV aep_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *q, const BIGNUM *dmp1,
|
|
const BIGNUM *dmq1,const BIGNUM *iqmp, BN_CTX *ctx)
|
|
{
|
|
AEP_RV rv = AEP_R_OK;
|
|
AEP_CONNECTION_HNDL hConnection;
|
|
|
|
/*Grab a connection from the pool*/
|
|
rv = aep_get_connection(&hConnection);
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT,AEPHK_R_GET_HANDLE_FAILED);
|
|
return FAIL_TO_SW;
|
|
}
|
|
|
|
/*To the card with the mod exp*/
|
|
rv = p_AEP_ModExpCrt(hConnection,(void*)a, (void*)p, (void*)q, (void*)dmp1,(void*)dmq1,
|
|
(void*)iqmp,(void*)r,NULL);
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT,AEPHK_R_MOD_EXP_CRT_FAILED);
|
|
rv = aep_close_connection(hConnection);
|
|
return FAIL_TO_SW;
|
|
}
|
|
|
|
/*Return the connection to the pool*/
|
|
rv = aep_return_connection(hConnection);
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_RETURN_CONNECTION_FAILED);
|
|
goto err;
|
|
}
|
|
|
|
err:
|
|
return rv;
|
|
}
|
|
|
|
|
|
#ifdef AEPRAND
|
|
static int aep_rand(unsigned char *buf,int len )
|
|
{
|
|
AEP_RV rv = AEP_R_OK;
|
|
AEP_CONNECTION_HNDL hConnection;
|
|
|
|
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
|
|
|
/*Can the request be serviced with what's already in the buffer?*/
|
|
if (len <= rand_block_bytes)
|
|
{
|
|
memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len);
|
|
rand_block_bytes -= len;
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
|
}
|
|
else
|
|
/*If not the get another block of random bytes*/
|
|
{
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
|
|
|
rv = aep_get_connection(&hConnection);
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_HANDLE_FAILED);
|
|
goto err_nounlock;
|
|
}
|
|
|
|
if (len > RAND_BLK_SIZE)
|
|
{
|
|
rv = p_AEP_GenRandom(hConnection, len, 2, buf, NULL);
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_RANDOM_FAILED);
|
|
goto err_nounlock;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
|
|
|
rv = p_AEP_GenRandom(hConnection, RAND_BLK_SIZE, 2, &rand_block[0], NULL);
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_RANDOM_FAILED);
|
|
|
|
goto err;
|
|
}
|
|
|
|
rand_block_bytes = RAND_BLK_SIZE;
|
|
|
|
memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len);
|
|
rand_block_bytes -= len;
|
|
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
|
}
|
|
|
|
rv = aep_return_connection(hConnection);
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_RETURN_CONNECTION_FAILED);
|
|
|
|
goto err_nounlock;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
err:
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
|
err_nounlock:
|
|
return 0;
|
|
}
|
|
|
|
static int aep_rand_status(void)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_RSA
|
|
static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa)
|
|
{
|
|
BN_CTX *ctx = NULL;
|
|
int to_return = 0;
|
|
AEP_RV rv = AEP_R_OK;
|
|
|
|
if ((ctx = BN_CTX_new()) == NULL)
|
|
goto err;
|
|
|
|
if (!aep_dso)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP,AEPHK_R_NOT_LOADED);
|
|
goto err;
|
|
}
|
|
|
|
/*See if we have all the necessary bits for a crt*/
|
|
if (rsa->q && rsa->dmp1 && rsa->dmq1 && rsa->iqmp)
|
|
{
|
|
rv = aep_mod_exp_crt(r0,I,rsa->p,rsa->q, rsa->dmp1,rsa->dmq1,rsa->iqmp,ctx);
|
|
|
|
if (rv == FAIL_TO_SW){
|
|
const RSA_METHOD *meth = RSA_PKCS1_SSLeay();
|
|
to_return = (*meth->rsa_mod_exp)(r0, I, rsa);
|
|
goto err;
|
|
}
|
|
else if (rv != AEP_R_OK)
|
|
goto err;
|
|
}
|
|
else
|
|
{
|
|
if (!rsa->d || !rsa->n)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP,AEPHK_R_MISSING_KEY_COMPONENTS);
|
|
goto err;
|
|
}
|
|
|
|
rv = aep_mod_exp(r0,I,rsa->d,rsa->n,ctx);
|
|
if (rv != AEP_R_OK)
|
|
goto err;
|
|
|
|
}
|
|
|
|
to_return = 1;
|
|
|
|
err:
|
|
if(ctx)
|
|
BN_CTX_free(ctx);
|
|
return to_return;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_DSA
|
|
static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1,
|
|
BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m,
|
|
BN_CTX *ctx, BN_MONT_CTX *in_mont)
|
|
{
|
|
BIGNUM t;
|
|
int to_return = 0;
|
|
BN_init(&t);
|
|
|
|
/* let rr = a1 ^ p1 mod m */
|
|
if (!aep_mod_exp(rr,a1,p1,m,ctx)) goto end;
|
|
/* let t = a2 ^ p2 mod m */
|
|
if (!aep_mod_exp(&t,a2,p2,m,ctx)) goto end;
|
|
/* let rr = rr * t mod m */
|
|
if (!BN_mod_mul(rr,rr,&t,m,ctx)) goto end;
|
|
to_return = 1;
|
|
end:
|
|
BN_free(&t);
|
|
return to_return;
|
|
}
|
|
|
|
static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a,
|
|
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
|
|
BN_MONT_CTX *m_ctx)
|
|
{
|
|
return aep_mod_exp(r, a, p, m, ctx);
|
|
}
|
|
#endif
|
|
|
|
/* This function is aliased to mod_exp (with the mont stuff dropped). */
|
|
static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx)
|
|
{
|
|
return aep_mod_exp(r, a, p, m, ctx);
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_DH
|
|
/* This function is aliased to mod_exp (with the dh and mont dropped). */
|
|
static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
|
|
BN_MONT_CTX *m_ctx)
|
|
{
|
|
return aep_mod_exp(r, a, p, m, ctx);
|
|
}
|
|
#endif
|
|
|
|
static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR phConnection)
|
|
{
|
|
int count;
|
|
AEP_RV rv = AEP_R_OK;
|
|
|
|
/*Get the current process id*/
|
|
pid_t curr_pid;
|
|
|
|
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
|
|
|
|
curr_pid = getpid();
|
|
|
|
/*Check if this is the first time this is being called from the current
|
|
process*/
|
|
if (recorded_pid != curr_pid)
|
|
{
|
|
/*Remember our pid so we can check if we're in a new process*/
|
|
recorded_pid = curr_pid;
|
|
|
|
/*Call Finalize to make sure we have not inherited some data
|
|
from a parent process*/
|
|
p_AEP_Finalize();
|
|
|
|
/*Initialise the AEP API*/
|
|
rv = p_AEP_Initialize(NULL);
|
|
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_INIT_FAILURE);
|
|
recorded_pid = 0;
|
|
goto end;
|
|
}
|
|
|
|
/*Set the AEP big num call back functions*/
|
|
rv = p_AEP_SetBNCallBacks(&GetBigNumSize, &MakeAEPBigNum,
|
|
&ConvertAEPBigNum);
|
|
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_SETBNCALLBACK_FAILURE);
|
|
recorded_pid = 0;
|
|
goto end;
|
|
}
|
|
|
|
#ifdef AEPRAND
|
|
/*Reset the rand byte count*/
|
|
rand_block_bytes = 0;
|
|
#endif
|
|
|
|
/*Init the structures*/
|
|
for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
|
|
{
|
|
aep_app_conn_table[count].conn_state = NotConnected;
|
|
aep_app_conn_table[count].conn_hndl = 0;
|
|
}
|
|
|
|
/*Open a connection*/
|
|
rv = p_AEP_OpenConnection(phConnection);
|
|
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_UNIT_FAILURE);
|
|
recorded_pid = 0;
|
|
goto end;
|
|
}
|
|
|
|
aep_app_conn_table[0].conn_state = InUse;
|
|
aep_app_conn_table[0].conn_hndl = *phConnection;
|
|
goto end;
|
|
}
|
|
/*Check the existing connections to see if we can find a free one*/
|
|
for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
|
|
{
|
|
if (aep_app_conn_table[count].conn_state == Connected)
|
|
{
|
|
aep_app_conn_table[count].conn_state = InUse;
|
|
*phConnection = aep_app_conn_table[count].conn_hndl;
|
|
goto end;
|
|
}
|
|
}
|
|
/*If no connections available, we're going to have to try
|
|
to open a new one*/
|
|
for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
|
|
{
|
|
if (aep_app_conn_table[count].conn_state == NotConnected)
|
|
{
|
|
/*Open a connection*/
|
|
rv = p_AEP_OpenConnection(phConnection);
|
|
|
|
if (rv != AEP_R_OK)
|
|
{
|
|
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_UNIT_FAILURE);
|
|
goto end;
|
|
}
|
|
|
|
aep_app_conn_table[count].conn_state = InUse;
|
|
aep_app_conn_table[count].conn_hndl = *phConnection;
|
|
goto end;
|
|
}
|
|
}
|
|
rv = AEP_R_GENERAL_ERROR;
|
|
end:
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
|
|
return rv;
|
|
}
|
|
|
|
|
|
static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection)
|
|
{
|
|
int count;
|
|
|
|
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
|
|
|
|
/*Find the connection item that matches this connection handle*/
|
|
for(count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
|
|
{
|
|
if (aep_app_conn_table[count].conn_hndl == hConnection)
|
|
{
|
|
aep_app_conn_table[count].conn_state = Connected;
|
|
break;
|
|
}
|
|
}
|
|
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
|
|
|
|
return AEP_R_OK;
|
|
}
|
|
|
|
static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection)
|
|
{
|
|
int count;
|
|
AEP_RV rv = AEP_R_OK;
|
|
|
|
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
|
|
|
|
/*Find the connection item that matches this connection handle*/
|
|
for(count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
|
|
{
|
|
if (aep_app_conn_table[count].conn_hndl == hConnection)
|
|
{
|
|
rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl);
|
|
if (rv != AEP_R_OK)
|
|
goto end;
|
|
aep_app_conn_table[count].conn_state = NotConnected;
|
|
aep_app_conn_table[count].conn_hndl = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
end:
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
|
|
return rv;
|
|
}
|
|
|
|
static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use)
|
|
{
|
|
int count;
|
|
AEP_RV rv = AEP_R_OK;
|
|
|
|
*in_use = 0;
|
|
if (use_engine_lock) CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
|
|
for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
|
|
{
|
|
switch (aep_app_conn_table[count].conn_state)
|
|
{
|
|
case Connected:
|
|
rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl);
|
|
if (rv != AEP_R_OK)
|
|
goto end;
|
|
aep_app_conn_table[count].conn_state = NotConnected;
|
|
aep_app_conn_table[count].conn_hndl = 0;
|
|
break;
|
|
case InUse:
|
|
(*in_use)++;
|
|
break;
|
|
case NotConnected:
|
|
break;
|
|
}
|
|
}
|
|
end:
|
|
if (use_engine_lock) CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
|
|
return rv;
|
|
}
|
|
|
|
/*BigNum call back functions, used to convert OpenSSL bignums into AEP bignums.
|
|
Note only 32bit Openssl build support*/
|
|
|
|
static AEP_RV GetBigNumSize(AEP_VOID_PTR ArbBigNum, AEP_U32* BigNumSize)
|
|
{
|
|
BIGNUM* bn;
|
|
|
|
/*Cast the ArbBigNum pointer to our BIGNUM struct*/
|
|
bn = (BIGNUM*) ArbBigNum;
|
|
|
|
#ifdef SIXTY_FOUR_BIT_LONG
|
|
*BigNumSize = bn->top << 3;
|
|
#else
|
|
/*Size of the bignum in bytes is equal to the bn->top (no of 32 bit
|
|
words) multiplies by 4*/
|
|
*BigNumSize = bn->top << 2;
|
|
#endif
|
|
|
|
return AEP_R_OK;
|
|
}
|
|
|
|
static AEP_RV MakeAEPBigNum(AEP_VOID_PTR ArbBigNum, AEP_U32 BigNumSize,
|
|
unsigned char* AEP_BigNum)
|
|
{
|
|
BIGNUM* bn;
|
|
|
|
#ifndef SIXTY_FOUR_BIT_LONG
|
|
unsigned char* buf;
|
|
int i;
|
|
#endif
|
|
|
|
/*Cast the ArbBigNum pointer to our BIGNUM struct*/
|
|
bn = (BIGNUM*) ArbBigNum;
|
|
|
|
#ifdef SIXTY_FOUR_BIT_LONG
|
|
memcpy(AEP_BigNum, bn->d, BigNumSize);
|
|
#else
|
|
/*Must copy data into a (monotone) least significant byte first format
|
|
performing endian conversion if necessary*/
|
|
for(i=0;i<bn->top;i++)
|
|
{
|
|
buf = (unsigned char*)&bn->d[i];
|
|
|
|
*((AEP_U32*)AEP_BigNum) = (AEP_U32)
|
|
((unsigned) buf[1] << 8 | buf[0]) |
|
|
((unsigned) buf[3] << 8 | buf[2]) << 16;
|
|
|
|
AEP_BigNum += 4;
|
|
}
|
|
#endif
|
|
|
|
return AEP_R_OK;
|
|
}
|
|
|
|
/*Turn an AEP Big Num back to a user big num*/
|
|
static AEP_RV ConvertAEPBigNum(void* ArbBigNum, AEP_U32 BigNumSize,
|
|
unsigned char* AEP_BigNum)
|
|
{
|
|
BIGNUM* bn;
|
|
#ifndef SIXTY_FOUR_BIT_LONG
|
|
int i;
|
|
#endif
|
|
|
|
bn = (BIGNUM*)ArbBigNum;
|
|
|
|
/*Expand the result bn so that it can hold our big num.
|
|
Size is in bits*/
|
|
bn_expand(bn, (int)(BigNumSize << 3));
|
|
|
|
#ifdef SIXTY_FOUR_BIT_LONG
|
|
bn->top = BigNumSize >> 3;
|
|
|
|
if((BigNumSize & 7) != 0)
|
|
bn->top++;
|
|
|
|
memset(bn->d, 0, bn->top << 3);
|
|
|
|
memcpy(bn->d, AEP_BigNum, BigNumSize);
|
|
#else
|
|
bn->top = BigNumSize >> 2;
|
|
|
|
for(i=0;i<bn->top;i++)
|
|
{
|
|
bn->d[i] = (AEP_U32)
|
|
((unsigned) AEP_BigNum[3] << 8 | AEP_BigNum[2]) << 16 |
|
|
((unsigned) AEP_BigNum[1] << 8 | AEP_BigNum[0]);
|
|
AEP_BigNum += 4;
|
|
}
|
|
#endif
|
|
|
|
return AEP_R_OK;
|
|
}
|
|
|
|
#endif /* !OPENSSL_NO_HW_AEP */
|
|
#endif /* !OPENSSL_NO_HW */
|