openssl/crypto/bio/bss_dgram.c
Dr. Stephen Henson dafce90ae5 PR: 2559
Submitted by: Robin Seggelmann <seggelmann@fh-muenster.de>
Reviewed by: steve

Fix DTLS socket error bug
2011-07-20 15:22:11 +00:00

836 lines
18 KiB
C

/* crypto/bio/bio_dgram.c */
/*
* DTLS implementation written by Nagendra Modadugu
* (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
*/
/* ====================================================================
* Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#ifndef OPENSSL_NO_DGRAM
#include <stdio.h>
#include <errno.h>
#define USE_SOCKETS
#include "cryptlib.h"
#include <openssl/bio.h>
#if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VMS)
#include <sys/timeb.h>
#endif
#ifdef OPENSSL_SYS_LINUX
#define IP_MTU 14 /* linux is lame */
#endif
#ifdef WATT32
#define sock_write SockWrite /* Watt-32 uses same names */
#define sock_read SockRead
#define sock_puts SockPuts
#endif
static int dgram_write(BIO *h, const char *buf, int num);
static int dgram_read(BIO *h, char *buf, int size);
static int dgram_puts(BIO *h, const char *str);
static long dgram_ctrl(BIO *h, int cmd, long arg1, void *arg2);
static int dgram_new(BIO *h);
static int dgram_free(BIO *data);
static int dgram_clear(BIO *bio);
static int BIO_dgram_should_retry(int s);
static void get_current_time(struct timeval *t);
static BIO_METHOD methods_dgramp=
{
BIO_TYPE_DGRAM,
"datagram socket",
dgram_write,
dgram_read,
dgram_puts,
NULL, /* dgram_gets, */
dgram_ctrl,
dgram_new,
dgram_free,
NULL,
};
typedef struct bio_dgram_data_st
{
union {
struct sockaddr sa;
struct sockaddr_in sa_in;
#if OPENSSL_USE_IPV6
struct sockaddr_in6 sa_in6;
#endif
} peer;
unsigned int connected;
unsigned int _errno;
unsigned int mtu;
struct timeval next_timeout;
struct timeval socket_timeout;
} bio_dgram_data;
BIO_METHOD *BIO_s_datagram(void)
{
return(&methods_dgramp);
}
BIO *BIO_new_dgram(int fd, int close_flag)
{
BIO *ret;
ret=BIO_new(BIO_s_datagram());
if (ret == NULL) return(NULL);
BIO_set_fd(ret,fd,close_flag);
return(ret);
}
static int dgram_new(BIO *bi)
{
bio_dgram_data *data = NULL;
bi->init=0;
bi->num=0;
data = OPENSSL_malloc(sizeof(bio_dgram_data));
if (data == NULL)
return 0;
memset(data, 0x00, sizeof(bio_dgram_data));
bi->ptr = data;
bi->flags=0;
return(1);
}
static int dgram_free(BIO *a)
{
bio_dgram_data *data;
if (a == NULL) return(0);
if ( ! dgram_clear(a))
return 0;
data = (bio_dgram_data *)a->ptr;
if(data != NULL) OPENSSL_free(data);
return(1);
}
static int dgram_clear(BIO *a)
{
if (a == NULL) return(0);
if (a->shutdown)
{
if (a->init)
{
SHUTDOWN2(a->num);
}
a->init=0;
a->flags=0;
}
return(1);
}
static void dgram_adjust_rcv_timeout(BIO *b)
{
#if defined(SO_RCVTIMEO)
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
int sz = sizeof(int);
/* Is a timer active? */
if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0)
{
struct timeval timenow, timeleft;
/* Read current socket timeout */
#ifdef OPENSSL_SYS_WINDOWS
int timeout;
if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void*)&timeout, &sz) < 0)
{ perror("getsockopt"); }
else
{
data->socket_timeout.tv_sec = timeout / 1000;
data->socket_timeout.tv_usec = (timeout % 1000) * 1000;
}
#else
if ( getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
&(data->socket_timeout), (void *)&sz) < 0)
{ perror("getsockopt"); }
#endif
/* Get current time */
get_current_time(&timenow);
/* Calculate time left until timer expires */
memcpy(&timeleft, &(data->next_timeout), sizeof(struct timeval));
timeleft.tv_sec -= timenow.tv_sec;
timeleft.tv_usec -= timenow.tv_usec;
if (timeleft.tv_usec < 0)
{
timeleft.tv_sec--;
timeleft.tv_usec += 1000000;
}
if (timeleft.tv_sec < 0)
{
timeleft.tv_sec = 0;
timeleft.tv_usec = 1;
}
/* Adjust socket timeout if next handhake message timer
* will expire earlier.
*/
if ((data->socket_timeout.tv_sec == 0 && data->socket_timeout.tv_usec == 0) ||
(data->socket_timeout.tv_sec > timeleft.tv_sec) ||
(data->socket_timeout.tv_sec == timeleft.tv_sec &&
data->socket_timeout.tv_usec >= timeleft.tv_usec))
{
#ifdef OPENSSL_SYS_WINDOWS
timeout = timeleft.tv_sec * 1000 + timeleft.tv_usec / 1000;
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void*)&timeout, sizeof(timeout)) < 0)
{ perror("setsockopt"); }
#else
if ( setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &timeleft,
sizeof(struct timeval)) < 0)
{ perror("setsockopt"); }
#endif
}
}
#endif
}
static void dgram_reset_rcv_timeout(BIO *b)
{
#if defined(SO_RCVTIMEO)
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
/* Is a timer active? */
if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0)
{
#ifdef OPENSSL_SYS_WINDOWS
int timeout = data->socket_timeout.tv_sec * 1000 +
data->socket_timeout.tv_usec / 1000;
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void*)&timeout, sizeof(timeout)) < 0)
{ perror("setsockopt"); }
#else
if ( setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &(data->socket_timeout),
sizeof(struct timeval)) < 0)
{ perror("setsockopt"); }
#endif
}
#endif
}
static int dgram_read(BIO *b, char *out, int outl)
{
int ret=0;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
struct {
/*
* See commentary in b_sock.c. <appro>
*/
union { size_t s; int i; } len;
union {
struct sockaddr sa;
struct sockaddr_in sa_in;
#if OPENSSL_USE_IPV6
struct sockaddr_in6 sa_in6;
#endif
} peer;
} sa;
sa.len.s=0;
sa.len.i=sizeof(sa.peer);
if (out != NULL)
{
clear_socket_error();
memset(&sa.peer, 0x00, sizeof(sa.peer));
dgram_adjust_rcv_timeout(b);
ret=recvfrom(b->num,out,outl,0,&sa.peer.sa,(void *)&sa.len);
if (sizeof(sa.len.i)!=sizeof(sa.len.s) && sa.len.i==0)
{
OPENSSL_assert(sa.len.s<=sizeof(sa.peer));
sa.len.i = (int)sa.len.s;
}
if ( ! data->connected && ret >= 0)
BIO_ctrl(b, BIO_CTRL_DGRAM_SET_PEER, 0, &sa.peer);
BIO_clear_retry_flags(b);
if (ret < 0)
{
if (BIO_dgram_should_retry(ret))
{
BIO_set_retry_read(b);
data->_errno = get_last_socket_error();
}
}
dgram_reset_rcv_timeout(b);
}
return(ret);
}
static int dgram_write(BIO *b, const char *in, int inl)
{
int ret;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
clear_socket_error();
if ( data->connected )
ret=writesocket(b->num,in,inl);
else
{
int peerlen = sizeof(data->peer);
if (data->peer.sa.sa_family == AF_INET)
peerlen = sizeof(data->peer.sa_in);
#if OPENSSL_USE_IPV6
else if (data->peer.sa.sa_family == AF_INET6)
peerlen = sizeof(data->peer.sa_in6);
#endif
#if defined(NETWARE_CLIB) && defined(NETWARE_BSDSOCK)
ret=sendto(b->num, (char *)in, inl, 0, &data->peer.sa, peerlen);
#else
ret=sendto(b->num, in, inl, 0, &data->peer.sa, peerlen);
#endif
}
BIO_clear_retry_flags(b);
if (ret <= 0)
{
if (BIO_dgram_should_retry(ret))
{
BIO_set_retry_write(b);
data->_errno = get_last_socket_error();
#if 0 /* higher layers are responsible for querying MTU, if necessary */
if ( data->_errno == EMSGSIZE)
/* retrieve the new MTU */
BIO_ctrl(b, BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
#endif
}
}
return(ret);
}
static long dgram_ctrl(BIO *b, int cmd, long num, void *ptr)
{
long ret=1;
int *ip;
struct sockaddr *to = NULL;
bio_dgram_data *data = NULL;
#if defined(IP_MTU_DISCOVER) || defined(IP_MTU)
long sockopt_val = 0;
unsigned int sockopt_len = 0;
#endif
#ifdef OPENSSL_SYS_LINUX
socklen_t addr_len;
union {
struct sockaddr sa;
struct sockaddr_in s4;
#if OPENSSL_USE_IPV6
struct sockaddr_in6 s6;
#endif
} addr;
#endif
data = (bio_dgram_data *)b->ptr;
switch (cmd)
{
case BIO_CTRL_RESET:
num=0;
case BIO_C_FILE_SEEK:
ret=0;
break;
case BIO_C_FILE_TELL:
case BIO_CTRL_INFO:
ret=0;
break;
case BIO_C_SET_FD:
dgram_clear(b);
b->num= *((int *)ptr);
b->shutdown=(int)num;
b->init=1;
break;
case BIO_C_GET_FD:
if (b->init)
{
ip=(int *)ptr;
if (ip != NULL) *ip=b->num;
ret=b->num;
}
else
ret= -1;
break;
case BIO_CTRL_GET_CLOSE:
ret=b->shutdown;
break;
case BIO_CTRL_SET_CLOSE:
b->shutdown=(int)num;
break;
case BIO_CTRL_PENDING:
case BIO_CTRL_WPENDING:
ret=0;
break;
case BIO_CTRL_DUP:
case BIO_CTRL_FLUSH:
ret=1;
break;
case BIO_CTRL_DGRAM_CONNECT:
to = (struct sockaddr *)ptr;
#if 0
if (connect(b->num, to, sizeof(struct sockaddr)) < 0)
{ perror("connect"); ret = 0; }
else
{
#endif
switch (to->sa_family)
{
case AF_INET:
memcpy(&data->peer,to,sizeof(data->peer.sa_in));
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
memcpy(&data->peer,to,sizeof(data->peer.sa_in6));
break;
#endif
default:
memcpy(&data->peer,to,sizeof(data->peer.sa));
break;
}
#if 0
}
#endif
break;
/* (Linux)kernel sets DF bit on outgoing IP packets */
case BIO_CTRL_DGRAM_MTU_DISCOVER:
#ifdef OPENSSL_SYS_LINUX
addr_len = (socklen_t)sizeof(addr);
memset((void *)&addr, 0, sizeof(addr));
if (getsockname(b->num, &addr.sa, &addr_len) < 0)
{
ret = 0;
break;
}
sockopt_len = sizeof(sockopt_val);
switch (addr.sa.sa_family)
{
case AF_INET:
sockopt_val = IP_PMTUDISC_DO;
if ((ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER,
&sockopt_val, sizeof(sockopt_val))) < 0)
perror("setsockopt");
break;
#if OPENSSL_USE_IPV6 && defined(IPV6_MTU_DISCOVER)
case AF_INET6:
sockopt_val = IPV6_PMTUDISC_DO;
if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER,
&sockopt_val, sizeof(sockopt_val))) < 0)
perror("setsockopt");
break;
#endif
default:
ret = -1;
break;
}
ret = -1;
#else
break;
#endif
case BIO_CTRL_DGRAM_QUERY_MTU:
#ifdef OPENSSL_SYS_LINUX
addr_len = (socklen_t)sizeof(addr);
memset((void *)&addr, 0, sizeof(addr));
if (getsockname(b->num, &addr.sa, &addr_len) < 0)
{
ret = 0;
break;
}
sockopt_len = sizeof(sockopt_val);
switch (addr.sa.sa_family)
{
case AF_INET:
if ((ret = getsockopt(b->num, IPPROTO_IP, IP_MTU, (void *)&sockopt_val,
&sockopt_len)) < 0 || sockopt_val < 0)
{
ret = 0;
}
else
{
/* we assume that the transport protocol is UDP and no
* IP options are used.
*/
data->mtu = sockopt_val - 8 - 20;
ret = data->mtu;
}
break;
#if OPENSSL_USE_IPV6 && defined(IPV6_MTU)
case AF_INET6:
if ((ret = getsockopt(b->num, IPPROTO_IPV6, IPV6_MTU, (void *)&sockopt_val,
&sockopt_len)) < 0 || sockopt_val < 0)
{
ret = 0;
}
else
{
/* we assume that the transport protocol is UDP and no
* IPV6 options are used.
*/
data->mtu = sockopt_val - 8 - 40;
ret = data->mtu;
}
break;
#endif
default:
ret = 0;
break;
}
#else
ret = 0;
#endif
break;
case BIO_CTRL_DGRAM_GET_MTU:
return data->mtu;
break;
case BIO_CTRL_DGRAM_SET_MTU:
data->mtu = num;
ret = num;
break;
case BIO_CTRL_DGRAM_SET_CONNECTED:
to = (struct sockaddr *)ptr;
if ( to != NULL)
{
data->connected = 1;
switch (to->sa_family)
{
case AF_INET:
memcpy(&data->peer,to,sizeof(data->peer.sa_in));
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
memcpy(&data->peer,to,sizeof(data->peer.sa_in6));
break;
#endif
default:
memcpy(&data->peer,to,sizeof(data->peer.sa));
break;
}
}
else
{
data->connected = 0;
memset(&(data->peer), 0x00, sizeof(data->peer));
}
break;
case BIO_CTRL_DGRAM_GET_PEER:
switch (data->peer.sa.sa_family)
{
case AF_INET:
ret=sizeof(data->peer.sa_in);
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
ret=sizeof(data->peer.sa_in6);
break;
#endif
default:
ret=sizeof(data->peer.sa);
break;
}
if (num==0 || num>ret)
num=ret;
memcpy(ptr,&data->peer,(ret=num));
break;
case BIO_CTRL_DGRAM_SET_PEER:
to = (struct sockaddr *) ptr;
switch (to->sa_family)
{
case AF_INET:
memcpy(&data->peer,to,sizeof(data->peer.sa_in));
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
memcpy(&data->peer,to,sizeof(data->peer.sa_in6));
break;
#endif
default:
memcpy(&data->peer,to,sizeof(data->peer.sa));
break;
}
break;
case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
memcpy(&(data->next_timeout), ptr, sizeof(struct timeval));
break;
#if defined(SO_RCVTIMEO)
case BIO_CTRL_DGRAM_SET_RECV_TIMEOUT:
#ifdef OPENSSL_SYS_WINDOWS
{
struct timeval *tv = (struct timeval *)ptr;
int timeout = tv->tv_sec * 1000 + tv->tv_usec/1000;
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void*)&timeout, sizeof(timeout)) < 0)
{ perror("setsockopt"); ret = -1; }
}
#else
if ( setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr,
sizeof(struct timeval)) < 0)
{ perror("setsockopt"); ret = -1; }
#endif
break;
case BIO_CTRL_DGRAM_GET_RECV_TIMEOUT:
#ifdef OPENSSL_SYS_WINDOWS
{
int timeout, sz = sizeof(timeout);
struct timeval *tv = (struct timeval *)ptr;
if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void*)&timeout, &sz) < 0)
{ perror("getsockopt"); ret = -1; }
else
{
tv->tv_sec = timeout / 1000;
tv->tv_usec = (timeout % 1000) * 1000;
ret = sizeof(*tv);
}
}
#else
if ( getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
ptr, (void *)&ret) < 0)
{ perror("getsockopt"); ret = -1; }
#endif
break;
#endif
#if defined(SO_SNDTIMEO)
case BIO_CTRL_DGRAM_SET_SEND_TIMEOUT:
#ifdef OPENSSL_SYS_WINDOWS
{
struct timeval *tv = (struct timeval *)ptr;
int timeout = tv->tv_sec * 1000 + tv->tv_usec/1000;
if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
(void*)&timeout, sizeof(timeout)) < 0)
{ perror("setsockopt"); ret = -1; }
}
#else
if ( setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr,
sizeof(struct timeval)) < 0)
{ perror("setsockopt"); ret = -1; }
#endif
break;
case BIO_CTRL_DGRAM_GET_SEND_TIMEOUT:
#ifdef OPENSSL_SYS_WINDOWS
{
int timeout, sz = sizeof(timeout);
struct timeval *tv = (struct timeval *)ptr;
if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
(void*)&timeout, &sz) < 0)
{ perror("getsockopt"); ret = -1; }
else
{
tv->tv_sec = timeout / 1000;
tv->tv_usec = (timeout % 1000) * 1000;
ret = sizeof(*tv);
}
}
#else
if ( getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
ptr, (void *)&ret) < 0)
{ perror("getsockopt"); ret = -1; }
#endif
break;
#endif
case BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP:
/* fall-through */
case BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP:
#ifdef OPENSSL_SYS_WINDOWS
if ( data->_errno == WSAETIMEDOUT)
#else
if ( data->_errno == EAGAIN)
#endif
{
ret = 1;
data->_errno = 0;
}
else
ret = 0;
break;
#ifdef EMSGSIZE
case BIO_CTRL_DGRAM_MTU_EXCEEDED:
if ( data->_errno == EMSGSIZE)
{
ret = 1;
data->_errno = 0;
}
else
ret = 0;
break;
#endif
default:
ret=0;
break;
}
return(ret);
}
static int dgram_puts(BIO *bp, const char *str)
{
int n,ret;
n=strlen(str);
ret=dgram_write(bp,str,n);
return(ret);
}
static int BIO_dgram_should_retry(int i)
{
int err;
if ((i == 0) || (i == -1))
{
err=get_last_socket_error();
#if defined(OPENSSL_SYS_WINDOWS)
/* If the socket return value (i) is -1
* and err is unexpectedly 0 at this point,
* the error code was overwritten by
* another system call before this error
* handling is called.
*/
#endif
return(BIO_dgram_non_fatal_error(err));
}
return(0);
}
int BIO_dgram_non_fatal_error(int err)
{
switch (err)
{
#if defined(OPENSSL_SYS_WINDOWS)
# if defined(WSAEWOULDBLOCK)
case WSAEWOULDBLOCK:
# endif
# if 0 /* This appears to always be an error */
# if defined(WSAENOTCONN)
case WSAENOTCONN:
# endif
# endif
#endif
#ifdef EWOULDBLOCK
# ifdef WSAEWOULDBLOCK
# if WSAEWOULDBLOCK != EWOULDBLOCK
case EWOULDBLOCK:
# endif
# else
case EWOULDBLOCK:
# endif
#endif
#ifdef EINTR
case EINTR:
#endif
#ifdef EAGAIN
#if EWOULDBLOCK != EAGAIN
case EAGAIN:
# endif
#endif
#ifdef EPROTO
case EPROTO:
#endif
#ifdef EINPROGRESS
case EINPROGRESS:
#endif
#ifdef EALREADY
case EALREADY:
#endif
return(1);
/* break; */
default:
break;
}
return(0);
}
#endif
static void get_current_time(struct timeval *t)
{
#ifdef OPENSSL_SYS_WIN32
struct _timeb tb;
_ftime(&tb);
t->tv_sec = (long)tb.time;
t->tv_usec = (long)tb.millitm * 1000;
#elif defined(OPENSSL_SYS_VMS)
struct timeb tb;
ftime(&tb);
t->tv_sec = (long)tb.time;
t->tv_usec = (long)tb.millitm * 1000;
#else
gettimeofday(t, NULL);
#endif
}