openssl/crypto/bn/bn.h
Geoff Thorpe d870740cd7 Put the first stage of my bignum debugging adventures into CVS. This code
is itself experimental, and in addition may cause execution to break on
existing openssl "bugs" that previously were harmless or at least
invisible.
2003-11-04 22:54:49 +00:00

782 lines
29 KiB
C

/* crypto/bn/bn.h */
/* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the Eric Young open source
* license provided above.
*
* The binary polynomial arithmetic software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories.
*
*/
#ifndef HEADER_BN_H
#define HEADER_BN_H
#include <openssl/e_os2.h>
#ifndef OPENSSL_NO_FP_API
#include <stdio.h> /* FILE */
#endif
#ifdef __cplusplus
extern "C" {
#endif
#ifdef OPENSSL_SYS_VMS
#undef BN_LLONG /* experimental, so far... */
#endif
#define BN_MUL_COMBA
#define BN_SQR_COMBA
#define BN_RECURSION
/* This next option uses the C libraries (2 word)/(1 word) function.
* If it is not defined, I use my C version (which is slower).
* The reason for this flag is that when the particular C compiler
* library routine is used, and the library is linked with a different
* compiler, the library is missing. This mostly happens when the
* library is built with gcc and then linked using normal cc. This would
* be a common occurrence because gcc normally produces code that is
* 2 times faster than system compilers for the big number stuff.
* For machines with only one compiler (or shared libraries), this should
* be on. Again this in only really a problem on machines
* using "long long's", are 32bit, and are not using my assembler code. */
#if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
defined(OPENSSL_SYS_WIN32) || defined(linux)
# ifndef BN_DIV2W
# define BN_DIV2W
# endif
#endif
/* assuming long is 64bit - this is the DEC Alpha
* unsigned long long is only 64 bits :-(, don't define
* BN_LLONG for the DEC Alpha */
#ifdef SIXTY_FOUR_BIT_LONG
#define BN_ULLONG unsigned long long
#define BN_ULONG unsigned long
#define BN_LONG long
#define BN_BITS 128
#define BN_BYTES 8
#define BN_BITS2 64
#define BN_BITS4 32
#define BN_MASK (0xffffffffffffffffffffffffffffffffLL)
#define BN_MASK2 (0xffffffffffffffffL)
#define BN_MASK2l (0xffffffffL)
#define BN_MASK2h (0xffffffff00000000L)
#define BN_MASK2h1 (0xffffffff80000000L)
#define BN_TBIT (0x8000000000000000L)
#define BN_DEC_CONV (10000000000000000000UL)
#define BN_DEC_FMT1 "%lu"
#define BN_DEC_FMT2 "%019lu"
#define BN_DEC_NUM 19
#endif
/* This is where the long long data type is 64 bits, but long is 32.
* For machines where there are 64bit registers, this is the mode to use.
* IRIX, on R4000 and above should use this mode, along with the relevant
* assembler code :-). Do NOT define BN_LLONG.
*/
#ifdef SIXTY_FOUR_BIT
#undef BN_LLONG
#undef BN_ULLONG
#define BN_ULONG unsigned long long
#define BN_LONG long long
#define BN_BITS 128
#define BN_BYTES 8
#define BN_BITS2 64
#define BN_BITS4 32
#define BN_MASK2 (0xffffffffffffffffLL)
#define BN_MASK2l (0xffffffffL)
#define BN_MASK2h (0xffffffff00000000LL)
#define BN_MASK2h1 (0xffffffff80000000LL)
#define BN_TBIT (0x8000000000000000LL)
#define BN_DEC_CONV (10000000000000000000ULL)
#define BN_DEC_FMT1 "%llu"
#define BN_DEC_FMT2 "%019llu"
#define BN_DEC_NUM 19
#endif
#ifdef THIRTY_TWO_BIT
#if defined(OPENSSL_SYS_WIN32) && !defined(__GNUC__)
#define BN_ULLONG unsigned _int64
#else
#define BN_ULLONG unsigned long long
#endif
#define BN_ULONG unsigned long
#define BN_LONG long
#define BN_BITS 64
#define BN_BYTES 4
#define BN_BITS2 32
#define BN_BITS4 16
#ifdef OPENSSL_SYS_WIN32
/* VC++ doesn't like the LL suffix */
#define BN_MASK (0xffffffffffffffffL)
#else
#define BN_MASK (0xffffffffffffffffLL)
#endif
#define BN_MASK2 (0xffffffffL)
#define BN_MASK2l (0xffff)
#define BN_MASK2h1 (0xffff8000L)
#define BN_MASK2h (0xffff0000L)
#define BN_TBIT (0x80000000L)
#define BN_DEC_CONV (1000000000L)
#define BN_DEC_FMT1 "%lu"
#define BN_DEC_FMT2 "%09lu"
#define BN_DEC_NUM 9
#endif
#ifdef SIXTEEN_BIT
#ifndef BN_DIV2W
#define BN_DIV2W
#endif
#define BN_ULLONG unsigned long
#define BN_ULONG unsigned short
#define BN_LONG short
#define BN_BITS 32
#define BN_BYTES 2
#define BN_BITS2 16
#define BN_BITS4 8
#define BN_MASK (0xffffffff)
#define BN_MASK2 (0xffff)
#define BN_MASK2l (0xff)
#define BN_MASK2h1 (0xff80)
#define BN_MASK2h (0xff00)
#define BN_TBIT (0x8000)
#define BN_DEC_CONV (100000)
#define BN_DEC_FMT1 "%u"
#define BN_DEC_FMT2 "%05u"
#define BN_DEC_NUM 5
#endif
#ifdef EIGHT_BIT
#ifndef BN_DIV2W
#define BN_DIV2W
#endif
#define BN_ULLONG unsigned short
#define BN_ULONG unsigned char
#define BN_LONG char
#define BN_BITS 16
#define BN_BYTES 1
#define BN_BITS2 8
#define BN_BITS4 4
#define BN_MASK (0xffff)
#define BN_MASK2 (0xff)
#define BN_MASK2l (0xf)
#define BN_MASK2h1 (0xf8)
#define BN_MASK2h (0xf0)
#define BN_TBIT (0x80)
#define BN_DEC_CONV (100)
#define BN_DEC_FMT1 "%u"
#define BN_DEC_FMT2 "%02u"
#define BN_DEC_NUM 2
#endif
#define BN_DEFAULT_BITS 1280
#ifdef BIGNUM
#undef BIGNUM
#endif
#define BN_FLG_MALLOCED 0x01
#define BN_FLG_STATIC_DATA 0x02
#define BN_FLG_FREE 0x8000 /* used for debuging */
#define BN_set_flags(b,n) ((b)->flags|=(n))
#define BN_get_flags(b,n) ((b)->flags&(n))
typedef struct bignum_st
{
BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */
int top; /* Index of last used d +1. */
/* The next are internal book keeping for bn_expand. */
int dmax; /* Size of the d array. */
int neg; /* one if the number is negative */
int flags;
} BIGNUM;
/* Declaring static BIGNUMs as constant is tricky in C; the 'd' data can't be
* pre-declared const without having to cast away the const when declaring the
* BIGNUM. We use this alternative type for declaring const BIGNUMs. See
* bn_nist.c for examples. */
typedef struct bignum_c_st
{
const BN_ULONG *d;
int top;
int dmax;
int neg;
int flags;
} BIGNUM_C;
#ifdef BN_DEBUG
/* Use a function to do this so that we can type-check the pointer we're
* casting */
const BIGNUM *BIGNUM_CONST(const BIGNUM_C *bn);
#else
/* Use a macro instead */
#define BIGNUM_CONST(bn) ((const BIGNUM *)bn)
#endif
/* Used for temp variables (declaration hidden in bn_lcl.h) */
typedef struct bignum_ctx BN_CTX;
typedef struct bn_blinding_st
{
int init;
BIGNUM *A;
BIGNUM *Ai;
BIGNUM *mod; /* just a reference */
unsigned long thread_id; /* added in OpenSSL 0.9.6j and 0.9.7b;
* used only by crypto/rsa/rsa_eay.c, rsa_lib.c */
} BN_BLINDING;
/* Used for montgomery multiplication */
typedef struct bn_mont_ctx_st
{
int ri; /* number of bits in R */
BIGNUM RR; /* used to convert to montgomery form */
BIGNUM N; /* The modulus */
BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1
* (Ni is only stored for bignum algorithm) */
BN_ULONG n0; /* least significant word of Ni */
int flags;
} BN_MONT_CTX;
/* Used for reciprocal division/mod functions
* It cannot be shared between threads
*/
typedef struct bn_recp_ctx_st
{
BIGNUM N; /* the divisor */
BIGNUM Nr; /* the reciprocal */
int num_bits;
int shift;
int flags;
} BN_RECP_CTX;
/* Used for slow "generation" functions. */
typedef struct bn_gencb_st BN_GENCB;
struct bn_gencb_st
{
unsigned int ver; /* To handle binary (in)compatibility */
void *arg; /* callback-specific data */
union
{
/* if(ver==1) - handles old style callbacks */
void (*cb_1)(int, int, void *);
/* if(ver==2) - new callback style */
int (*cb_2)(int, int, BN_GENCB *);
} cb;
};
/* Wrapper function to make using BN_GENCB easier, */
int BN_GENCB_call(BN_GENCB *cb, int a, int b);
/* Macro to populate a BN_GENCB structure with an "old"-style callback */
#define BN_GENCB_set_old(gencb, callback, cb_arg) { \
BN_GENCB *tmp_gencb = (gencb); \
tmp_gencb->ver = 1; \
tmp_gencb->arg = (cb_arg); \
tmp_gencb->cb.cb_1 = (callback); }
/* Macro to populate a BN_GENCB structure with a "new"-style callback */
#define BN_GENCB_set(gencb, callback, cb_arg) { \
BN_GENCB *tmp_gencb = (gencb); \
tmp_gencb->ver = 2; \
tmp_gencb->arg = (cb_arg); \
tmp_gencb->cb.cb_2 = (callback); }
#define BN_prime_checks 0 /* default: select number of iterations
based on the size of the number */
/* number of Miller-Rabin iterations for an error rate of less than 2^-80
* for random 'b'-bit input, b >= 100 (taken from table 4.4 in the Handbook
* of Applied Cryptography [Menezes, van Oorschot, Vanstone; CRC Press 1996];
* original paper: Damgaard, Landrock, Pomerance: Average case error estimates
* for the strong probable prime test. -- Math. Comp. 61 (1993) 177-194) */
#define BN_prime_checks_for_size(b) ((b) >= 1300 ? 2 : \
(b) >= 850 ? 3 : \
(b) >= 650 ? 4 : \
(b) >= 550 ? 5 : \
(b) >= 450 ? 6 : \
(b) >= 400 ? 7 : \
(b) >= 350 ? 8 : \
(b) >= 300 ? 9 : \
(b) >= 250 ? 12 : \
(b) >= 200 ? 15 : \
(b) >= 150 ? 18 : \
/* b >= 100 */ 27)
#define BN_num_bytes(a) ((BN_num_bits(a)+7)/8)
/* Note that BN_abs_is_word does not work reliably for w == 0 */
#define BN_abs_is_word(a,w) (((a)->top == 1) && ((a)->d[0] == (BN_ULONG)(w)))
#define BN_is_zero(a) (((a)->top == 0) || BN_abs_is_word(a,0))
#define BN_is_one(a) (BN_abs_is_word((a),1) && !(a)->neg)
#define BN_is_word(a,w) ((w) ? BN_abs_is_word((a),(w)) && !(a)->neg : \
BN_is_zero((a)))
#define BN_is_odd(a) (((a)->top > 0) && ((a)->d[0] & 1))
#define BN_one(a) (BN_set_word((a),1))
#define BN_zero(a) (BN_set_word((a),0))
/* BN_set_sign(BIGNUM *, int) sets the sign of a BIGNUM
* (0 for a non-negative value, 1 for negative) */
#define BN_set_sign(a,b) ((a)->neg = (b))
/* BN_get_sign(BIGNUM *) returns the sign of the BIGNUM */
#define BN_get_sign(a) ((a)->neg)
/*#define BN_ascii2bn(a) BN_hex2bn(a) */
/*#define BN_bn2ascii(a) BN_bn2hex(a) */
const BIGNUM *BN_value_one(void);
char * BN_options(void);
BN_CTX *BN_CTX_new(void);
#ifndef OPENSSL_NO_DEPRECATED
void BN_CTX_init(BN_CTX *c);
#endif
void BN_CTX_free(BN_CTX *c);
void BN_CTX_start(BN_CTX *ctx);
BIGNUM *BN_CTX_get(BN_CTX *ctx);
void BN_CTX_end(BN_CTX *ctx);
int BN_rand(BIGNUM *rnd, int bits, int top,int bottom);
int BN_pseudo_rand(BIGNUM *rnd, int bits, int top,int bottom);
int BN_rand_range(BIGNUM *rnd, BIGNUM *range);
int BN_pseudo_rand_range(BIGNUM *rnd, BIGNUM *range);
int BN_num_bits(const BIGNUM *a);
int BN_num_bits_word(BN_ULONG);
BIGNUM *BN_new(void);
void BN_init(BIGNUM *);
void BN_clear_free(BIGNUM *a);
BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
/* BN_ncopy(): like BN_copy() but copies at most the first n BN_ULONGs */
BIGNUM *BN_ncopy(BIGNUM *a, const BIGNUM *b, size_t n);
void BN_swap(BIGNUM *a, BIGNUM *b);
BIGNUM *BN_bin2bn(const unsigned char *s,int len,BIGNUM *ret);
int BN_bn2bin(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_mpi2bn(const unsigned char *s,int len,BIGNUM *ret);
int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
int BN_sqr(BIGNUM *r, const BIGNUM *a,BN_CTX *ctx);
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
BN_CTX *ctx);
#define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx))
int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx);
int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m);
int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m);
int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m, BN_CTX *ctx);
int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m);
int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m);
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
int BN_mul_word(BIGNUM *a, BN_ULONG w);
int BN_add_word(BIGNUM *a, BN_ULONG w);
int BN_sub_word(BIGNUM *a, BN_ULONG w);
int BN_set_word(BIGNUM *a, BN_ULONG w);
BN_ULONG BN_get_word(const BIGNUM *a);
int BN_cmp(const BIGNUM *a, const BIGNUM *b);
void BN_free(BIGNUM *a);
int BN_is_bit_set(const BIGNUM *a, int n);
int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
int BN_lshift1(BIGNUM *r, const BIGNUM *a);
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,BN_CTX *ctx);
int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m,BN_CTX *ctx);
int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1,
const BIGNUM *a2, const BIGNUM *p2,const BIGNUM *m,
BN_CTX *ctx,BN_MONT_CTX *m_ctx);
int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m,BN_CTX *ctx);
int BN_mask_bits(BIGNUM *a,int n);
#ifndef OPENSSL_NO_FP_API
int BN_print_fp(FILE *fp, const BIGNUM *a);
#endif
#ifdef HEADER_BIO_H
int BN_print(BIO *fp, const BIGNUM *a);
#else
int BN_print(void *fp, const BIGNUM *a);
#endif
int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx);
int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
int BN_rshift1(BIGNUM *r, const BIGNUM *a);
void BN_clear(BIGNUM *a);
BIGNUM *BN_dup(const BIGNUM *a);
int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
int BN_set_bit(BIGNUM *a, int n);
int BN_clear_bit(BIGNUM *a, int n);
char * BN_bn2hex(const BIGNUM *a);
char * BN_bn2dec(const BIGNUM *a);
int BN_hex2bn(BIGNUM **a, const char *str);
int BN_dec2bn(BIGNUM **a, const char *str);
int BN_gcd(BIGNUM *r,const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx);
int BN_kronecker(const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx); /* returns -2 for error */
BIGNUM *BN_mod_inverse(BIGNUM *ret,
const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx);
BIGNUM *BN_mod_sqrt(BIGNUM *ret,
const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx);
/* Deprecated versions */
#ifndef OPENSSL_NO_DEPRECATED
BIGNUM *BN_generate_prime(BIGNUM *ret,int bits,int safe,
const BIGNUM *add, const BIGNUM *rem,
void (*callback)(int,int,void *),void *cb_arg);
int BN_is_prime(const BIGNUM *p,int nchecks,
void (*callback)(int,int,void *),
BN_CTX *ctx,void *cb_arg);
int BN_is_prime_fasttest(const BIGNUM *p,int nchecks,
void (*callback)(int,int,void *),BN_CTX *ctx,void *cb_arg,
int do_trial_division);
#endif /* !defined(OPENSSL_NO_DEPRECATED) */
/* Newer versions */
int BN_generate_prime_ex(BIGNUM *ret,int bits,int safe, const BIGNUM *add,
const BIGNUM *rem, BN_GENCB *cb);
int BN_is_prime_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx, BN_GENCB *cb);
int BN_is_prime_fasttest_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb);
BN_MONT_CTX *BN_MONT_CTX_new(void );
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
int BN_mod_mul_montgomery(BIGNUM *r,const BIGNUM *a,const BIGNUM *b,
BN_MONT_CTX *mont, BN_CTX *ctx);
#define BN_to_montgomery(r,a,mont,ctx) BN_mod_mul_montgomery(\
(r),(a),&((mont)->RR),(mont),(ctx))
int BN_from_montgomery(BIGNUM *r,const BIGNUM *a,
BN_MONT_CTX *mont, BN_CTX *ctx);
void BN_MONT_CTX_free(BN_MONT_CTX *mont);
int BN_MONT_CTX_set(BN_MONT_CTX *mont,const BIGNUM *mod,BN_CTX *ctx);
BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to,BN_MONT_CTX *from);
BN_BLINDING *BN_BLINDING_new(BIGNUM *A,BIGNUM *Ai,BIGNUM *mod);
void BN_BLINDING_free(BN_BLINDING *b);
int BN_BLINDING_update(BN_BLINDING *b,BN_CTX *ctx);
int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *r, BN_CTX *ctx);
int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
void BN_set_params(int mul,int high,int low,int mont);
int BN_get_params(int which); /* 0, mul, 1 high, 2 low, 3 mont */
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
BN_RECP_CTX *BN_RECP_CTX_new(void);
void BN_RECP_CTX_free(BN_RECP_CTX *recp);
int BN_RECP_CTX_set(BN_RECP_CTX *recp,const BIGNUM *rdiv,BN_CTX *ctx);
int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
BN_RECP_CTX *recp,BN_CTX *ctx);
int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);
int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
BN_RECP_CTX *recp, BN_CTX *ctx);
/* Functions for arithmetic over binary polynomials represented by BIGNUMs.
*
* The BIGNUM::neg property of BIGNUMs representing binary polynomials is
* ignored.
*
* Note that input arguments are not const so that their bit arrays can
* be expanded to the appropriate size if needed.
*/
int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); /*r = a + b*/
#define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b)
int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); /*r=a mod p*/
int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *p, BN_CTX *ctx); /* r = (a * b) mod p */
int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
BN_CTX *ctx); /* r = (a * a) mod p */
int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p,
BN_CTX *ctx); /* r = (1 / b) mod p */
int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *p, BN_CTX *ctx); /* r = (a / b) mod p */
int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *p, BN_CTX *ctx); /* r = (a ^ b) mod p */
int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
BN_CTX *ctx); /* r = sqrt(a) mod p */
int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
BN_CTX *ctx); /* r^2 + r = a mod p */
#define BN_GF2m_cmp(a, b) BN_ucmp((a), (b))
/* Some functions allow for representation of the irreducible polynomials
* as an unsigned int[], say p. The irreducible f(t) is then of the form:
* t^p[0] + t^p[1] + ... + t^p[k]
* where m = p[0] > p[1] > ... > p[k] = 0.
*/
int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]);
/* r = a mod p */
int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const unsigned int p[], BN_CTX *ctx); /* r = (a * b) mod p */
int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[],
BN_CTX *ctx); /* r = (a * a) mod p */
int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const unsigned int p[],
BN_CTX *ctx); /* r = (1 / b) mod p */
int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const unsigned int p[], BN_CTX *ctx); /* r = (a / b) mod p */
int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const unsigned int p[], BN_CTX *ctx); /* r = (a ^ b) mod p */
int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a,
const unsigned int p[], BN_CTX *ctx); /* r = sqrt(a) mod p */
int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a,
const unsigned int p[], BN_CTX *ctx); /* r^2 + r = a mod p */
int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max);
int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a);
/* faster mod functions for the 'NIST primes'
* 0 <= a < p^2 */
int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
const BIGNUM *BN_get0_nist_prime_192(void);
const BIGNUM *BN_get0_nist_prime_224(void);
const BIGNUM *BN_get0_nist_prime_256(void);
const BIGNUM *BN_get0_nist_prime_384(void);
const BIGNUM *BN_get0_nist_prime_521(void);
/* library internal functions */
#define bn_expand(a,bits) ((((((bits+BN_BITS2-1))/BN_BITS2)) <= (a)->dmax)?\
(a):bn_expand2((a),(bits)/BN_BITS2+1))
#define bn_wexpand(a,words) (((words) <= (a)->dmax)?(a):bn_expand2((a),(words)))
BIGNUM *bn_expand2(BIGNUM *a, int words);
BIGNUM *bn_dup_expand(const BIGNUM *a, int words);
/* Bignum consistency macros
* There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
* bignum data after direct manipulations on the data. There is also an
* "internal" macro, bn_check_top(), for verifying that there are no leading
* zeroes. Unfortunately, some auditing is required due to the fact that
* bn_fix_top() has become an overabused duct-tape because bignum data is
* occasionally passed around in an inconsistent state. So the following
* changes have been made to sort this out;
* - bn_fix_top()s implementation has been moved to bn_correct_top()
* - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
* bn_check_top() is as before.
* - if BN_DEBUG *is* defined;
* - bn_check_top() tries to pollute unused words even if the bignum 'top' is
* consistent. (ed: only if BN_DEBUG_RAND is defined)
* - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
* The idea is to have debug builds flag up inconsistent bignums when they
* occur. If that occurs in a bn_fix_top(), we examine the code in question; if
* the use of bn_fix_top() was appropriate (ie. it follows directly after code
* that manipulates the bignum) it is converted to bn_correct_top(), and if it
* was not appropriate, we convert it permanently to bn_check_top() and track
* down the cause of the bug. Eventually, no internal code should be using the
* bn_fix_top() macro. External applications and libraries should try this with
* their own code too, both in terms of building against the openssl headers
* with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
* defined. This not only improves external code, it provides more test
* coverage for openssl's own code.
*/
#define bn_correct_top(a) \
{ \
BN_ULONG *ftl; \
if ((a)->top > 0) \
{ \
for (ftl= &((a)->d[(a)->top-1]); (a)->top > 0; (a)->top--) \
if (*(ftl--)) break; \
} \
}
/* #define BN_DEBUG_RAND */
#ifdef BN_DEBUG
/* We only need assert() when debugging */
#include <assert.h>
#ifdef BN_DEBUG_RAND
/* To avoid "make update" cvs wars due to BN_DEBUG, use some tricks */
#ifndef RAND_pseudo_bytes
int RAND_pseudo_bytes(unsigned char *buf,int num);
#define BN_DEBUG_TRIX
#endif
#define bn_check_top(a) \
do { \
const BIGNUM *_tbignum = (a); \
assert((_tbignum->top == 0) || \
(_tbignum->d[_tbignum->top - 1] != 0)); \
if(_tbignum->top < _tbignum->dmax) { \
/* We cast away const without the compiler knowing, any \
* *genuinely* constant variables that aren't mutable \
* wouldn't be constructed with top!=dmax. */ \
BN_ULONG *_not_const; \
memcpy(&_not_const, &_tbignum->d, sizeof(BN_ULONG*)); \
RAND_pseudo_bytes((unsigned char *)(_not_const + _tbignum->top), \
(_tbignum->dmax - _tbignum->top) * sizeof(BN_ULONG)); \
} \
} while(0)
#ifdef BN_DEBUG_TRIX
#undef RAND_pseudo_bytes
#endif
#else /* !BN_DEBUG_RAND */
#define bn_check_top(a) \
do { \
const BIGNUM *_tbignum = (a); \
assert((_tbignum->top == 0) || \
(_tbignum->d[_tbignum->top - 1] != 0)); \
} while(0)
#endif
#define bn_fix_top(a) bn_check_top(a)
#else /* !BN_DEBUG */
#define bn_check_top(a) do { ; } while(0)
#define bn_fix_top(a) bn_correct_top(a)
#endif
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int num);
BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int num);
#ifdef BN_DEBUG
void bn_dump1(FILE *o, const char *a, const BN_ULONG *b,int n);
# define bn_print(a) {fprintf(stderr, #a "="); BN_print_fp(stderr,a); \
fprintf(stderr,"\n");}
# define bn_dump(a,n) bn_dump1(stderr,#a,a,n);
#else
# define bn_print(a)
# define bn_dump(a,b)
#endif
int BN_bntest_rand(BIGNUM *rnd, int bits, int top,int bottom);
/* BEGIN ERROR CODES */
/* The following lines are auto generated by the script mkerr.pl. Any changes
* made after this point may be overwritten when the script is next run.
*/
void ERR_load_BN_strings(void);
/* Error codes for the BN functions. */
/* Function codes. */
#define BN_F_BN_BLINDING_CONVERT 100
#define BN_F_BN_BLINDING_INVERT 101
#define BN_F_BN_BLINDING_NEW 102
#define BN_F_BN_BLINDING_UPDATE 103
#define BN_F_BN_BN2DEC 104
#define BN_F_BN_BN2HEX 105
#define BN_F_BN_CTX_GET 116
#define BN_F_BN_CTX_NEW 106
#define BN_F_BN_DIV 107
#define BN_F_BN_EXPAND2 108
#define BN_F_BN_EXPAND_INTERNAL 120
#define BN_F_BN_GF2M_MOD 126
#define BN_F_BN_GF2M_MOD_DIV 123
#define BN_F_BN_GF2M_MOD_EXP 127
#define BN_F_BN_GF2M_MOD_MUL 124
#define BN_F_BN_GF2M_MOD_SOLVE_QUAD 128
#define BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR 129
#define BN_F_BN_GF2M_MOD_SQR 125
#define BN_F_BN_MOD_EXP2_MONT 118
#define BN_F_BN_MOD_EXP_MONT 109
#define BN_F_BN_MOD_EXP_MONT_WORD 117
#define BN_F_BN_MOD_INVERSE 110
#define BN_F_BN_MOD_LSHIFT_QUICK 119
#define BN_F_BN_MOD_MUL_RECIPROCAL 111
#define BN_F_BN_MOD_SQRT 121
#define BN_F_BN_MPI2BN 112
#define BN_F_BN_NEW 113
#define BN_F_BN_RAND 114
#define BN_F_BN_RAND_RANGE 122
#define BN_F_BN_USUB 115
/* Reason codes. */
#define BN_R_ARG2_LT_ARG3 100
#define BN_R_BAD_RECIPROCAL 101
#define BN_R_BIGNUM_TOO_LONG 114
#define BN_R_CALLED_WITH_EVEN_MODULUS 102
#define BN_R_DIV_BY_ZERO 103
#define BN_R_ENCODING_ERROR 104
#define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 105
#define BN_R_INPUT_NOT_REDUCED 110
#define BN_R_INVALID_LENGTH 106
#define BN_R_INVALID_RANGE 115
#define BN_R_NOT_A_SQUARE 111
#define BN_R_NOT_IMPLEMENTED 116
#define BN_R_NOT_INITIALIZED 107
#define BN_R_NO_INVERSE 108
#define BN_R_P_IS_NOT_PRIME 112
#define BN_R_TOO_MANY_ITERATIONS 113
#define BN_R_TOO_MANY_TEMPORARY_VARIABLES 109
#ifdef __cplusplus
}
#endif
#endif