mirror of
https://github.com/openssl/openssl.git
synced 2024-11-21 01:15:20 +08:00
d8652be06e
Automatically rename all instances of _with_libctx() to _ex() as per our coding style. Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/12970)
768 lines
35 KiB
C
768 lines
35 KiB
C
/*
|
|
* Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <openssl/obj_mac.h>
|
|
#include <openssl/ec.h>
|
|
#include <openssl/bn.h>
|
|
#include "internal/refcount.h"
|
|
#include "crypto/ec.h"
|
|
|
|
#if defined(__SUNPRO_C)
|
|
# if __SUNPRO_C >= 0x520
|
|
# pragma error_messages (off,E_ARRAY_OF_INCOMPLETE_NONAME,E_ARRAY_OF_INCOMPLETE)
|
|
# endif
|
|
#endif
|
|
|
|
/* Use default functions for poin2oct, oct2point and compressed coordinates */
|
|
#define EC_FLAGS_DEFAULT_OCT 0x1
|
|
|
|
/* Use custom formats for EC_GROUP, EC_POINT and EC_KEY */
|
|
#define EC_FLAGS_CUSTOM_CURVE 0x2
|
|
|
|
/* Curve does not support signing operations */
|
|
#define EC_FLAGS_NO_SIGN 0x4
|
|
|
|
#ifdef OPENSSL_NO_DEPRECATED_3_0
|
|
typedef struct ec_method_st EC_METHOD;
|
|
#endif
|
|
|
|
/*
|
|
* Structure details are not part of the exported interface, so all this may
|
|
* change in future versions.
|
|
*/
|
|
|
|
struct ec_method_st {
|
|
/* Various method flags */
|
|
int flags;
|
|
/* used by EC_METHOD_get_field_type: */
|
|
int field_type; /* a NID */
|
|
/*
|
|
* used by EC_GROUP_new, EC_GROUP_free, EC_GROUP_clear_free,
|
|
* EC_GROUP_copy:
|
|
*/
|
|
int (*group_init) (EC_GROUP *);
|
|
void (*group_finish) (EC_GROUP *);
|
|
void (*group_clear_finish) (EC_GROUP *);
|
|
int (*group_copy) (EC_GROUP *, const EC_GROUP *);
|
|
/* used by EC_GROUP_set_curve, EC_GROUP_get_curve: */
|
|
int (*group_set_curve) (EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int (*group_get_curve) (const EC_GROUP *, BIGNUM *p, BIGNUM *a, BIGNUM *b,
|
|
BN_CTX *);
|
|
/* used by EC_GROUP_get_degree: */
|
|
int (*group_get_degree) (const EC_GROUP *);
|
|
int (*group_order_bits) (const EC_GROUP *);
|
|
/* used by EC_GROUP_check: */
|
|
int (*group_check_discriminant) (const EC_GROUP *, BN_CTX *);
|
|
/*
|
|
* used by EC_POINT_new, EC_POINT_free, EC_POINT_clear_free,
|
|
* EC_POINT_copy:
|
|
*/
|
|
int (*point_init) (EC_POINT *);
|
|
void (*point_finish) (EC_POINT *);
|
|
void (*point_clear_finish) (EC_POINT *);
|
|
int (*point_copy) (EC_POINT *, const EC_POINT *);
|
|
/*-
|
|
* used by EC_POINT_set_to_infinity,
|
|
* EC_POINT_set_Jprojective_coordinates_GFp,
|
|
* EC_POINT_get_Jprojective_coordinates_GFp,
|
|
* EC_POINT_set_affine_coordinates,
|
|
* EC_POINT_get_affine_coordinates,
|
|
* EC_POINT_set_compressed_coordinates:
|
|
*/
|
|
int (*point_set_to_infinity) (const EC_GROUP *, EC_POINT *);
|
|
int (*point_set_affine_coordinates) (const EC_GROUP *, EC_POINT *,
|
|
const BIGNUM *x, const BIGNUM *y,
|
|
BN_CTX *);
|
|
int (*point_get_affine_coordinates) (const EC_GROUP *, const EC_POINT *,
|
|
BIGNUM *x, BIGNUM *y, BN_CTX *);
|
|
int (*point_set_compressed_coordinates) (const EC_GROUP *, EC_POINT *,
|
|
const BIGNUM *x, int y_bit,
|
|
BN_CTX *);
|
|
/* used by EC_POINT_point2oct, EC_POINT_oct2point: */
|
|
size_t (*point2oct) (const EC_GROUP *, const EC_POINT *,
|
|
point_conversion_form_t form, unsigned char *buf,
|
|
size_t len, BN_CTX *);
|
|
int (*oct2point) (const EC_GROUP *, EC_POINT *, const unsigned char *buf,
|
|
size_t len, BN_CTX *);
|
|
/* used by EC_POINT_add, EC_POINT_dbl, ECP_POINT_invert: */
|
|
int (*add) (const EC_GROUP *, EC_POINT *r, const EC_POINT *a,
|
|
const EC_POINT *b, BN_CTX *);
|
|
int (*dbl) (const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *);
|
|
int (*invert) (const EC_GROUP *, EC_POINT *, BN_CTX *);
|
|
/*
|
|
* used by EC_POINT_is_at_infinity, EC_POINT_is_on_curve, EC_POINT_cmp:
|
|
*/
|
|
int (*is_at_infinity) (const EC_GROUP *, const EC_POINT *);
|
|
int (*is_on_curve) (const EC_GROUP *, const EC_POINT *, BN_CTX *);
|
|
int (*point_cmp) (const EC_GROUP *, const EC_POINT *a, const EC_POINT *b,
|
|
BN_CTX *);
|
|
/* used by EC_POINT_make_affine, EC_POINTs_make_affine: */
|
|
int (*make_affine) (const EC_GROUP *, EC_POINT *, BN_CTX *);
|
|
int (*points_make_affine) (const EC_GROUP *, size_t num, EC_POINT *[],
|
|
BN_CTX *);
|
|
/*
|
|
* used by EC_POINTs_mul, EC_POINT_mul, EC_POINT_precompute_mult,
|
|
* EC_POINT_have_precompute_mult (default implementations are used if the
|
|
* 'mul' pointer is 0):
|
|
*/
|
|
/*-
|
|
* mul() calculates the value
|
|
*
|
|
* r := generator * scalar
|
|
* + points[0] * scalars[0]
|
|
* + ...
|
|
* + points[num-1] * scalars[num-1].
|
|
*
|
|
* For a fixed point multiplication (scalar != NULL, num == 0)
|
|
* or a variable point multiplication (scalar == NULL, num == 1),
|
|
* mul() must use a constant time algorithm: in both cases callers
|
|
* should provide an input scalar (either scalar or scalars[0])
|
|
* in the range [0, ec_group_order); for robustness, implementers
|
|
* should handle the case when the scalar has not been reduced, but
|
|
* may treat it as an unusual input, without any constant-timeness
|
|
* guarantee.
|
|
*/
|
|
int (*mul) (const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
|
|
size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
|
|
BN_CTX *);
|
|
int (*precompute_mult) (EC_GROUP *group, BN_CTX *);
|
|
int (*have_precompute_mult) (const EC_GROUP *group);
|
|
/* internal functions */
|
|
/*
|
|
* 'field_mul', 'field_sqr', and 'field_div' can be used by 'add' and
|
|
* 'dbl' so that the same implementations of point operations can be used
|
|
* with different optimized implementations of expensive field
|
|
* operations:
|
|
*/
|
|
int (*field_mul) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int (*field_sqr) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *);
|
|
int (*field_div) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
/*-
|
|
* 'field_inv' computes the multiplicative inverse of a in the field,
|
|
* storing the result in r.
|
|
*
|
|
* If 'a' is zero (or equivalent), you'll get an EC_R_CANNOT_INVERT error.
|
|
*/
|
|
int (*field_inv) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *);
|
|
/* e.g. to Montgomery */
|
|
int (*field_encode) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
/* e.g. from Montgomery */
|
|
int (*field_decode) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
int (*field_set_to_one) (const EC_GROUP *, BIGNUM *r, BN_CTX *);
|
|
/* private key operations */
|
|
size_t (*priv2oct)(const EC_KEY *eckey, unsigned char *buf, size_t len);
|
|
int (*oct2priv)(EC_KEY *eckey, const unsigned char *buf, size_t len);
|
|
int (*set_private)(EC_KEY *eckey, const BIGNUM *priv_key);
|
|
int (*keygen)(EC_KEY *eckey);
|
|
int (*keycheck)(const EC_KEY *eckey);
|
|
int (*keygenpub)(EC_KEY *eckey);
|
|
int (*keycopy)(EC_KEY *dst, const EC_KEY *src);
|
|
void (*keyfinish)(EC_KEY *eckey);
|
|
/* custom ECDH operation */
|
|
int (*ecdh_compute_key)(unsigned char **pout, size_t *poutlen,
|
|
const EC_POINT *pub_key, const EC_KEY *ecdh);
|
|
/* custom ECDSA */
|
|
int (*ecdsa_sign_setup)(EC_KEY *eckey, BN_CTX *ctx, BIGNUM **kinvp,
|
|
BIGNUM **rp);
|
|
ECDSA_SIG *(*ecdsa_sign_sig)(const unsigned char *dgst, int dgstlen,
|
|
const BIGNUM *kinv, const BIGNUM *r,
|
|
EC_KEY *eckey);
|
|
int (*ecdsa_verify_sig)(const unsigned char *dgst, int dgstlen,
|
|
const ECDSA_SIG *sig, EC_KEY *eckey);
|
|
/* Inverse modulo order */
|
|
int (*field_inverse_mod_ord)(const EC_GROUP *, BIGNUM *r,
|
|
const BIGNUM *x, BN_CTX *);
|
|
int (*blind_coordinates)(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx);
|
|
int (*ladder_pre)(const EC_GROUP *group,
|
|
EC_POINT *r, EC_POINT *s,
|
|
EC_POINT *p, BN_CTX *ctx);
|
|
int (*ladder_step)(const EC_GROUP *group,
|
|
EC_POINT *r, EC_POINT *s,
|
|
EC_POINT *p, BN_CTX *ctx);
|
|
int (*ladder_post)(const EC_GROUP *group,
|
|
EC_POINT *r, EC_POINT *s,
|
|
EC_POINT *p, BN_CTX *ctx);
|
|
};
|
|
|
|
/*
|
|
* Types and functions to manipulate pre-computed values.
|
|
*/
|
|
typedef struct nistp224_pre_comp_st NISTP224_PRE_COMP;
|
|
typedef struct nistp256_pre_comp_st NISTP256_PRE_COMP;
|
|
typedef struct nistp521_pre_comp_st NISTP521_PRE_COMP;
|
|
typedef struct nistz256_pre_comp_st NISTZ256_PRE_COMP;
|
|
typedef struct ec_pre_comp_st EC_PRE_COMP;
|
|
|
|
struct ec_group_st {
|
|
const EC_METHOD *meth;
|
|
EC_POINT *generator; /* optional */
|
|
BIGNUM *order, *cofactor;
|
|
int curve_name; /* optional NID for named curve */
|
|
int asn1_flag; /* flag to control the asn1 encoding */
|
|
int decoded_from_explicit_params; /* set if decoded from explicit
|
|
* curve parameters encoding */
|
|
point_conversion_form_t asn1_form;
|
|
unsigned char *seed; /* optional seed for parameters (appears in
|
|
* ASN1) */
|
|
size_t seed_len;
|
|
/*
|
|
* The following members are handled by the method functions, even if
|
|
* they appear generic
|
|
*/
|
|
/*
|
|
* Field specification. For curves over GF(p), this is the modulus; for
|
|
* curves over GF(2^m), this is the irreducible polynomial defining the
|
|
* field.
|
|
*/
|
|
BIGNUM *field;
|
|
/*
|
|
* Field specification for curves over GF(2^m). The irreducible f(t) is
|
|
* then of the form: t^poly[0] + t^poly[1] + ... + t^poly[k] where m =
|
|
* poly[0] > poly[1] > ... > poly[k] = 0. The array is terminated with
|
|
* poly[k+1]=-1. All elliptic curve irreducibles have at most 5 non-zero
|
|
* terms.
|
|
*/
|
|
int poly[6];
|
|
/*
|
|
* Curve coefficients. (Here the assumption is that BIGNUMs can be used
|
|
* or abused for all kinds of fields, not just GF(p).) For characteristic
|
|
* > 3, the curve is defined by a Weierstrass equation of the form y^2 =
|
|
* x^3 + a*x + b. For characteristic 2, the curve is defined by an
|
|
* equation of the form y^2 + x*y = x^3 + a*x^2 + b.
|
|
*/
|
|
BIGNUM *a, *b;
|
|
/* enable optimized point arithmetics for special case */
|
|
int a_is_minus3;
|
|
/* method-specific (e.g., Montgomery structure) */
|
|
void *field_data1;
|
|
/* method-specific */
|
|
void *field_data2;
|
|
/* method-specific */
|
|
int (*field_mod_func) (BIGNUM *, const BIGNUM *, const BIGNUM *,
|
|
BN_CTX *);
|
|
/* data for ECDSA inverse */
|
|
BN_MONT_CTX *mont_data;
|
|
|
|
/*
|
|
* Precomputed values for speed. The PCT_xxx names match the
|
|
* pre_comp.xxx union names; see the SETPRECOMP and HAVEPRECOMP
|
|
* macros, below.
|
|
*/
|
|
enum {
|
|
PCT_none,
|
|
PCT_nistp224, PCT_nistp256, PCT_nistp521, PCT_nistz256,
|
|
PCT_ec
|
|
} pre_comp_type;
|
|
union {
|
|
NISTP224_PRE_COMP *nistp224;
|
|
NISTP256_PRE_COMP *nistp256;
|
|
NISTP521_PRE_COMP *nistp521;
|
|
NISTZ256_PRE_COMP *nistz256;
|
|
EC_PRE_COMP *ec;
|
|
} pre_comp;
|
|
|
|
OPENSSL_CTX *libctx;
|
|
char *propq;
|
|
};
|
|
|
|
#define SETPRECOMP(g, type, pre) \
|
|
g->pre_comp_type = PCT_##type, g->pre_comp.type = pre
|
|
#define HAVEPRECOMP(g, type) \
|
|
g->pre_comp_type == PCT_##type && g->pre_comp.type != NULL
|
|
|
|
struct ec_key_st {
|
|
const EC_KEY_METHOD *meth;
|
|
ENGINE *engine;
|
|
int version;
|
|
EC_GROUP *group;
|
|
EC_POINT *pub_key;
|
|
BIGNUM *priv_key;
|
|
unsigned int enc_flag;
|
|
point_conversion_form_t conv_form;
|
|
CRYPTO_REF_COUNT references;
|
|
int flags;
|
|
#ifndef FIPS_MODULE
|
|
CRYPTO_EX_DATA ex_data;
|
|
#endif
|
|
CRYPTO_RWLOCK *lock;
|
|
OPENSSL_CTX *libctx;
|
|
char *propq;
|
|
|
|
/* Provider data */
|
|
size_t dirty_cnt; /* If any key material changes, increment this */
|
|
};
|
|
|
|
struct ec_point_st {
|
|
const EC_METHOD *meth;
|
|
/* NID for the curve if known */
|
|
int curve_name;
|
|
/*
|
|
* All members except 'meth' are handled by the method functions, even if
|
|
* they appear generic
|
|
*/
|
|
BIGNUM *X;
|
|
BIGNUM *Y;
|
|
BIGNUM *Z; /* Jacobian projective coordinates: * (X, Y,
|
|
* Z) represents (X/Z^2, Y/Z^3) if Z != 0 */
|
|
int Z_is_one; /* enable optimized point arithmetics for
|
|
* special case */
|
|
};
|
|
|
|
static ossl_inline int ec_point_is_compat(const EC_POINT *point,
|
|
const EC_GROUP *group)
|
|
{
|
|
return group->meth == point->meth
|
|
&& (group->curve_name == 0
|
|
|| point->curve_name == 0
|
|
|| group->curve_name == point->curve_name);
|
|
}
|
|
|
|
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *);
|
|
NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *);
|
|
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *);
|
|
NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *);
|
|
NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *);
|
|
EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *);
|
|
|
|
void EC_pre_comp_free(EC_GROUP *group);
|
|
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *);
|
|
void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *);
|
|
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *);
|
|
void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *);
|
|
void EC_ec_pre_comp_free(EC_PRE_COMP *);
|
|
|
|
/*
|
|
* method functions in ec_mult.c (ec_lib.c uses these as defaults if
|
|
* group->method->mul is 0)
|
|
*/
|
|
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
|
|
size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
|
|
BN_CTX *);
|
|
int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *);
|
|
int ec_wNAF_have_precompute_mult(const EC_GROUP *group);
|
|
|
|
/* method functions in ecp_smpl.c */
|
|
int ec_GFp_simple_group_init(EC_GROUP *);
|
|
void ec_GFp_simple_group_finish(EC_GROUP *);
|
|
void ec_GFp_simple_group_clear_finish(EC_GROUP *);
|
|
int ec_GFp_simple_group_copy(EC_GROUP *, const EC_GROUP *);
|
|
int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p,
|
|
const BIGNUM *a, const BIGNUM *b, BN_CTX *);
|
|
int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a,
|
|
BIGNUM *b, BN_CTX *);
|
|
int ec_GFp_simple_group_get_degree(const EC_GROUP *);
|
|
int ec_GFp_simple_group_check_discriminant(const EC_GROUP *, BN_CTX *);
|
|
int ec_GFp_simple_point_init(EC_POINT *);
|
|
void ec_GFp_simple_point_finish(EC_POINT *);
|
|
void ec_GFp_simple_point_clear_finish(EC_POINT *);
|
|
int ec_GFp_simple_point_copy(EC_POINT *, const EC_POINT *);
|
|
int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *);
|
|
int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *,
|
|
EC_POINT *, const BIGNUM *x,
|
|
const BIGNUM *y,
|
|
const BIGNUM *z, BN_CTX *);
|
|
int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *,
|
|
const EC_POINT *, BIGNUM *x,
|
|
BIGNUM *y, BIGNUM *z,
|
|
BN_CTX *);
|
|
int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *,
|
|
const BIGNUM *x,
|
|
const BIGNUM *y, BN_CTX *);
|
|
int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *,
|
|
const EC_POINT *, BIGNUM *x,
|
|
BIGNUM *y, BN_CTX *);
|
|
int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *, EC_POINT *,
|
|
const BIGNUM *x, int y_bit,
|
|
BN_CTX *);
|
|
size_t ec_GFp_simple_point2oct(const EC_GROUP *, const EC_POINT *,
|
|
point_conversion_form_t form,
|
|
unsigned char *buf, size_t len, BN_CTX *);
|
|
int ec_GFp_simple_oct2point(const EC_GROUP *, EC_POINT *,
|
|
const unsigned char *buf, size_t len, BN_CTX *);
|
|
int ec_GFp_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a,
|
|
const EC_POINT *b, BN_CTX *);
|
|
int ec_GFp_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a,
|
|
BN_CTX *);
|
|
int ec_GFp_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *);
|
|
int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *);
|
|
int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *);
|
|
int ec_GFp_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b,
|
|
BN_CTX *);
|
|
int ec_GFp_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *);
|
|
int ec_GFp_simple_points_make_affine(const EC_GROUP *, size_t num,
|
|
EC_POINT *[], BN_CTX *);
|
|
int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
int ec_GFp_simple_field_inv(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,
|
|
BN_CTX *ctx);
|
|
int ec_GFp_simple_ladder_pre(const EC_GROUP *group,
|
|
EC_POINT *r, EC_POINT *s,
|
|
EC_POINT *p, BN_CTX *ctx);
|
|
int ec_GFp_simple_ladder_step(const EC_GROUP *group,
|
|
EC_POINT *r, EC_POINT *s,
|
|
EC_POINT *p, BN_CTX *ctx);
|
|
int ec_GFp_simple_ladder_post(const EC_GROUP *group,
|
|
EC_POINT *r, EC_POINT *s,
|
|
EC_POINT *p, BN_CTX *ctx);
|
|
|
|
/* method functions in ecp_mont.c */
|
|
int ec_GFp_mont_group_init(EC_GROUP *);
|
|
int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
void ec_GFp_mont_group_finish(EC_GROUP *);
|
|
void ec_GFp_mont_group_clear_finish(EC_GROUP *);
|
|
int ec_GFp_mont_group_copy(EC_GROUP *, const EC_GROUP *);
|
|
int ec_GFp_mont_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int ec_GFp_mont_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
int ec_GFp_mont_field_inv(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
int ec_GFp_mont_field_encode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
int ec_GFp_mont_field_decode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
int ec_GFp_mont_field_set_to_one(const EC_GROUP *, BIGNUM *r, BN_CTX *);
|
|
|
|
/* method functions in ecp_nist.c */
|
|
int ec_GFp_nist_group_copy(EC_GROUP *dest, const EC_GROUP *src);
|
|
int ec_GFp_nist_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int ec_GFp_nist_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int ec_GFp_nist_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
|
|
/* method functions in ec2_smpl.c */
|
|
int ec_GF2m_simple_group_init(EC_GROUP *);
|
|
void ec_GF2m_simple_group_finish(EC_GROUP *);
|
|
void ec_GF2m_simple_group_clear_finish(EC_GROUP *);
|
|
int ec_GF2m_simple_group_copy(EC_GROUP *, const EC_GROUP *);
|
|
int ec_GF2m_simple_group_set_curve(EC_GROUP *, const BIGNUM *p,
|
|
const BIGNUM *a, const BIGNUM *b,
|
|
BN_CTX *);
|
|
int ec_GF2m_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a,
|
|
BIGNUM *b, BN_CTX *);
|
|
int ec_GF2m_simple_group_get_degree(const EC_GROUP *);
|
|
int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *, BN_CTX *);
|
|
int ec_GF2m_simple_point_init(EC_POINT *);
|
|
void ec_GF2m_simple_point_finish(EC_POINT *);
|
|
void ec_GF2m_simple_point_clear_finish(EC_POINT *);
|
|
int ec_GF2m_simple_point_copy(EC_POINT *, const EC_POINT *);
|
|
int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *);
|
|
int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *,
|
|
const BIGNUM *x,
|
|
const BIGNUM *y, BN_CTX *);
|
|
int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *,
|
|
const EC_POINT *, BIGNUM *x,
|
|
BIGNUM *y, BN_CTX *);
|
|
int ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *, EC_POINT *,
|
|
const BIGNUM *x, int y_bit,
|
|
BN_CTX *);
|
|
size_t ec_GF2m_simple_point2oct(const EC_GROUP *, const EC_POINT *,
|
|
point_conversion_form_t form,
|
|
unsigned char *buf, size_t len, BN_CTX *);
|
|
int ec_GF2m_simple_oct2point(const EC_GROUP *, EC_POINT *,
|
|
const unsigned char *buf, size_t len, BN_CTX *);
|
|
int ec_GF2m_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a,
|
|
const EC_POINT *b, BN_CTX *);
|
|
int ec_GF2m_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a,
|
|
BN_CTX *);
|
|
int ec_GF2m_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *);
|
|
int ec_GF2m_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *);
|
|
int ec_GF2m_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *);
|
|
int ec_GF2m_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b,
|
|
BN_CTX *);
|
|
int ec_GF2m_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *);
|
|
int ec_GF2m_simple_points_make_affine(const EC_GROUP *, size_t num,
|
|
EC_POINT *[], BN_CTX *);
|
|
int ec_GF2m_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int ec_GF2m_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
int ec_GF2m_simple_field_div(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
|
|
#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
|
|
/* method functions in ecp_nistp224.c */
|
|
int ec_GFp_nistp224_group_init(EC_GROUP *group);
|
|
int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
|
|
const BIGNUM *a, const BIGNUM *n,
|
|
BN_CTX *);
|
|
int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
|
|
const EC_POINT *point,
|
|
BIGNUM *x, BIGNUM *y,
|
|
BN_CTX *ctx);
|
|
int ec_GFp_nistp224_mul(const EC_GROUP *group, EC_POINT *r,
|
|
const BIGNUM *scalar, size_t num,
|
|
const EC_POINT *points[], const BIGNUM *scalars[],
|
|
BN_CTX *);
|
|
int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
|
|
const BIGNUM *scalar, size_t num,
|
|
const EC_POINT *points[],
|
|
const BIGNUM *scalars[], BN_CTX *ctx);
|
|
int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx);
|
|
int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group);
|
|
|
|
/* method functions in ecp_nistp256.c */
|
|
int ec_GFp_nistp256_group_init(EC_GROUP *group);
|
|
int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
|
|
const BIGNUM *a, const BIGNUM *n,
|
|
BN_CTX *);
|
|
int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
|
|
const EC_POINT *point,
|
|
BIGNUM *x, BIGNUM *y,
|
|
BN_CTX *ctx);
|
|
int ec_GFp_nistp256_mul(const EC_GROUP *group, EC_POINT *r,
|
|
const BIGNUM *scalar, size_t num,
|
|
const EC_POINT *points[], const BIGNUM *scalars[],
|
|
BN_CTX *);
|
|
int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
|
|
const BIGNUM *scalar, size_t num,
|
|
const EC_POINT *points[],
|
|
const BIGNUM *scalars[], BN_CTX *ctx);
|
|
int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx);
|
|
int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group);
|
|
|
|
/* method functions in ecp_nistp521.c */
|
|
int ec_GFp_nistp521_group_init(EC_GROUP *group);
|
|
int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
|
|
const BIGNUM *a, const BIGNUM *n,
|
|
BN_CTX *);
|
|
int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
|
|
const EC_POINT *point,
|
|
BIGNUM *x, BIGNUM *y,
|
|
BN_CTX *ctx);
|
|
int ec_GFp_nistp521_mul(const EC_GROUP *group, EC_POINT *r,
|
|
const BIGNUM *scalar, size_t num,
|
|
const EC_POINT *points[], const BIGNUM *scalars[],
|
|
BN_CTX *);
|
|
int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
|
|
const BIGNUM *scalar, size_t num,
|
|
const EC_POINT *points[],
|
|
const BIGNUM *scalars[], BN_CTX *ctx);
|
|
int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx);
|
|
int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group);
|
|
|
|
/* utility functions in ecp_nistputil.c */
|
|
void ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array,
|
|
size_t felem_size,
|
|
void *tmp_felems,
|
|
void (*felem_one) (void *out),
|
|
int (*felem_is_zero) (const void
|
|
*in),
|
|
void (*felem_assign) (void *out,
|
|
const void
|
|
*in),
|
|
void (*felem_square) (void *out,
|
|
const void
|
|
*in),
|
|
void (*felem_mul) (void *out,
|
|
const void
|
|
*in1,
|
|
const void
|
|
*in2),
|
|
void (*felem_inv) (void *out,
|
|
const void
|
|
*in),
|
|
void (*felem_contract) (void
|
|
*out,
|
|
const
|
|
void
|
|
*in));
|
|
void ec_GFp_nistp_recode_scalar_bits(unsigned char *sign,
|
|
unsigned char *digit, unsigned char in);
|
|
#endif
|
|
int ec_group_simple_order_bits(const EC_GROUP *group);
|
|
|
|
/**
|
|
* Creates a new EC_GROUP object
|
|
* \param libctx The associated library context or NULL for the default
|
|
* library context
|
|
* \param propq Any property query string
|
|
* \param meth EC_METHOD to use
|
|
* \return newly created EC_GROUP object or NULL in case of an error.
|
|
*/
|
|
EC_GROUP *ec_group_new_ex(OPENSSL_CTX *libctx, const char *propq,
|
|
const EC_METHOD *meth);
|
|
|
|
#ifdef ECP_NISTZ256_ASM
|
|
/** Returns GFp methods using montgomery multiplication, with x86-64 optimized
|
|
* P256. See http://eprint.iacr.org/2013/816.
|
|
* \return EC_METHOD object
|
|
*/
|
|
const EC_METHOD *EC_GFp_nistz256_method(void);
|
|
#endif
|
|
#ifdef S390X_EC_ASM
|
|
const EC_METHOD *EC_GFp_s390x_nistp256_method(void);
|
|
const EC_METHOD *EC_GFp_s390x_nistp384_method(void);
|
|
const EC_METHOD *EC_GFp_s390x_nistp521_method(void);
|
|
#endif
|
|
|
|
size_t ec_key_simple_priv2oct(const EC_KEY *eckey,
|
|
unsigned char *buf, size_t len);
|
|
int ec_key_simple_oct2priv(EC_KEY *eckey, const unsigned char *buf, size_t len);
|
|
int ec_key_simple_generate_key(EC_KEY *eckey);
|
|
int ec_key_simple_generate_public_key(EC_KEY *eckey);
|
|
int ec_key_simple_check_key(const EC_KEY *eckey);
|
|
|
|
int ec_curve_nid_from_params(const EC_GROUP *group, BN_CTX *ctx);
|
|
|
|
/* EC_METHOD definitions */
|
|
|
|
struct ec_key_method_st {
|
|
const char *name;
|
|
int32_t flags;
|
|
int (*init)(EC_KEY *key);
|
|
void (*finish)(EC_KEY *key);
|
|
int (*copy)(EC_KEY *dest, const EC_KEY *src);
|
|
int (*set_group)(EC_KEY *key, const EC_GROUP *grp);
|
|
int (*set_private)(EC_KEY *key, const BIGNUM *priv_key);
|
|
int (*set_public)(EC_KEY *key, const EC_POINT *pub_key);
|
|
int (*keygen)(EC_KEY *key);
|
|
int (*compute_key)(unsigned char **pout, size_t *poutlen,
|
|
const EC_POINT *pub_key, const EC_KEY *ecdh);
|
|
int (*sign)(int type, const unsigned char *dgst, int dlen, unsigned char
|
|
*sig, unsigned int *siglen, const BIGNUM *kinv,
|
|
const BIGNUM *r, EC_KEY *eckey);
|
|
int (*sign_setup)(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp,
|
|
BIGNUM **rp);
|
|
ECDSA_SIG *(*sign_sig)(const unsigned char *dgst, int dgst_len,
|
|
const BIGNUM *in_kinv, const BIGNUM *in_r,
|
|
EC_KEY *eckey);
|
|
|
|
int (*verify)(int type, const unsigned char *dgst, int dgst_len,
|
|
const unsigned char *sigbuf, int sig_len, EC_KEY *eckey);
|
|
int (*verify_sig)(const unsigned char *dgst, int dgst_len,
|
|
const ECDSA_SIG *sig, EC_KEY *eckey);
|
|
};
|
|
|
|
#define EC_KEY_METHOD_DYNAMIC 1
|
|
|
|
EC_KEY *ec_key_new_method_int(OPENSSL_CTX *libctx, const char *propq,
|
|
ENGINE *engine);
|
|
|
|
int ossl_ec_key_gen(EC_KEY *eckey);
|
|
int ossl_ecdh_compute_key(unsigned char **pout, size_t *poutlen,
|
|
const EC_POINT *pub_key, const EC_KEY *ecdh);
|
|
int ecdh_simple_compute_key(unsigned char **pout, size_t *poutlen,
|
|
const EC_POINT *pub_key, const EC_KEY *ecdh);
|
|
|
|
struct ECDSA_SIG_st {
|
|
BIGNUM *r;
|
|
BIGNUM *s;
|
|
};
|
|
|
|
int ossl_ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp,
|
|
BIGNUM **rp);
|
|
int ossl_ecdsa_sign(int type, const unsigned char *dgst, int dlen,
|
|
unsigned char *sig, unsigned int *siglen,
|
|
const BIGNUM *kinv, const BIGNUM *r, EC_KEY *eckey);
|
|
ECDSA_SIG *ossl_ecdsa_sign_sig(const unsigned char *dgst, int dgst_len,
|
|
const BIGNUM *in_kinv, const BIGNUM *in_r,
|
|
EC_KEY *eckey);
|
|
int ossl_ecdsa_verify(int type, const unsigned char *dgst, int dgst_len,
|
|
const unsigned char *sigbuf, int sig_len, EC_KEY *eckey);
|
|
int ossl_ecdsa_verify_sig(const unsigned char *dgst, int dgst_len,
|
|
const ECDSA_SIG *sig, EC_KEY *eckey);
|
|
int ecdsa_simple_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp,
|
|
BIGNUM **rp);
|
|
ECDSA_SIG *ecdsa_simple_sign_sig(const unsigned char *dgst, int dgst_len,
|
|
const BIGNUM *in_kinv, const BIGNUM *in_r,
|
|
EC_KEY *eckey);
|
|
int ecdsa_simple_verify_sig(const unsigned char *dgst, int dgst_len,
|
|
const ECDSA_SIG *sig, EC_KEY *eckey);
|
|
|
|
|
|
/*-
|
|
* This functions computes a single point multiplication over the EC group,
|
|
* using, at a high level, a Montgomery ladder with conditional swaps, with
|
|
* various timing attack defenses.
|
|
*
|
|
* It performs either a fixed point multiplication
|
|
* (scalar * generator)
|
|
* when point is NULL, or a variable point multiplication
|
|
* (scalar * point)
|
|
* when point is not NULL.
|
|
*
|
|
* `scalar` cannot be NULL and should be in the range [0,n) otherwise all
|
|
* constant time bets are off (where n is the cardinality of the EC group).
|
|
*
|
|
* This function expects `group->order` and `group->cardinality` to be well
|
|
* defined and non-zero: it fails with an error code otherwise.
|
|
*
|
|
* NB: This says nothing about the constant-timeness of the ladder step
|
|
* implementation (i.e., the default implementation is based on EC_POINT_add and
|
|
* EC_POINT_dbl, which of course are not constant time themselves) or the
|
|
* underlying multiprecision arithmetic.
|
|
*
|
|
* The product is stored in `r`.
|
|
*
|
|
* This is an internal function: callers are in charge of ensuring that the
|
|
* input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
|
|
*
|
|
* Returns 1 on success, 0 otherwise.
|
|
*/
|
|
int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
|
|
const BIGNUM *scalar, const EC_POINT *point,
|
|
BN_CTX *ctx);
|
|
|
|
int ec_point_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx);
|
|
|
|
static ossl_inline int ec_point_ladder_pre(const EC_GROUP *group,
|
|
EC_POINT *r, EC_POINT *s,
|
|
EC_POINT *p, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->ladder_pre != NULL)
|
|
return group->meth->ladder_pre(group, r, s, p, ctx);
|
|
|
|
if (!EC_POINT_copy(s, p)
|
|
|| !EC_POINT_dbl(group, r, s, ctx))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static ossl_inline int ec_point_ladder_step(const EC_GROUP *group,
|
|
EC_POINT *r, EC_POINT *s,
|
|
EC_POINT *p, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->ladder_step != NULL)
|
|
return group->meth->ladder_step(group, r, s, p, ctx);
|
|
|
|
if (!EC_POINT_add(group, s, r, s, ctx)
|
|
|| !EC_POINT_dbl(group, r, r, ctx))
|
|
return 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
static ossl_inline int ec_point_ladder_post(const EC_GROUP *group,
|
|
EC_POINT *r, EC_POINT *s,
|
|
EC_POINT *p, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->ladder_post != NULL)
|
|
return group->meth->ladder_post(group, r, s, p, ctx);
|
|
|
|
return 1;
|
|
}
|