openssl/ssl/t1_enc.c
Matt Caswell b05fbac1fc Fix dtls_get_max_record_overhead()
We fix dtls_get_max_record_overhead() to give a better value for the max
record overhead. We can't realistically handle the compression case so we
just ignore that.

Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19516)
2022-11-07 10:59:20 +00:00

610 lines
20 KiB
C

/*
* Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
* Copyright 2005 Nokia. All rights reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include "ssl_local.h"
#include "record/record_local.h"
#include "internal/ktls.h"
#include "internal/cryptlib.h"
#include <openssl/comp.h>
#include <openssl/evp.h>
#include <openssl/kdf.h>
#include <openssl/rand.h>
#include <openssl/obj_mac.h>
#include <openssl/core_names.h>
#include <openssl/trace.h>
/* seed1 through seed5 are concatenated */
static int tls1_PRF(SSL_CONNECTION *s,
const void *seed1, size_t seed1_len,
const void *seed2, size_t seed2_len,
const void *seed3, size_t seed3_len,
const void *seed4, size_t seed4_len,
const void *seed5, size_t seed5_len,
const unsigned char *sec, size_t slen,
unsigned char *out, size_t olen, int fatal)
{
const EVP_MD *md = ssl_prf_md(s);
EVP_KDF *kdf;
EVP_KDF_CTX *kctx = NULL;
OSSL_PARAM params[8], *p = params;
const char *mdname;
if (md == NULL) {
/* Should never happen */
if (fatal)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
else
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
kdf = EVP_KDF_fetch(SSL_CONNECTION_GET_CTX(s)->libctx,
OSSL_KDF_NAME_TLS1_PRF,
SSL_CONNECTION_GET_CTX(s)->propq);
if (kdf == NULL)
goto err;
kctx = EVP_KDF_CTX_new(kdf);
EVP_KDF_free(kdf);
if (kctx == NULL)
goto err;
mdname = EVP_MD_get0_name(md);
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
(char *)mdname, 0);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SECRET,
(unsigned char *)sec,
(size_t)slen);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed1, (size_t)seed1_len);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed2, (size_t)seed2_len);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed3, (size_t)seed3_len);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed4, (size_t)seed4_len);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed5, (size_t)seed5_len);
*p = OSSL_PARAM_construct_end();
if (EVP_KDF_derive(kctx, out, olen, params)) {
EVP_KDF_CTX_free(kctx);
return 1;
}
err:
if (fatal)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
else
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
EVP_KDF_CTX_free(kctx);
return 0;
}
static int tls1_generate_key_block(SSL_CONNECTION *s, unsigned char *km,
size_t num)
{
int ret;
/* Calls SSLfatal() as required */
ret = tls1_PRF(s,
TLS_MD_KEY_EXPANSION_CONST,
TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3.server_random,
SSL3_RANDOM_SIZE, s->s3.client_random, SSL3_RANDOM_SIZE,
NULL, 0, NULL, 0, s->session->master_key,
s->session->master_key_length, km, num, 1);
return ret;
}
int tls_provider_set_tls_params(SSL_CONNECTION *s, EVP_CIPHER_CTX *ctx,
const EVP_CIPHER *ciph,
const EVP_MD *md)
{
/*
* Provided cipher, the TLS padding/MAC removal is performed provider
* side so we need to tell the ctx about our TLS version and mac size
*/
OSSL_PARAM params[3], *pprm = params;
size_t macsize = 0;
int imacsize = -1;
if ((EVP_CIPHER_get_flags(ciph) & EVP_CIPH_FLAG_AEAD_CIPHER) == 0
/*
* We look at s->ext.use_etm instead of SSL_READ_ETM() or
* SSL_WRITE_ETM() because this test applies to both reading
* and writing.
*/
&& !s->ext.use_etm)
imacsize = EVP_MD_get_size(md);
if (imacsize >= 0)
macsize = (size_t)imacsize;
*pprm++ = OSSL_PARAM_construct_int(OSSL_CIPHER_PARAM_TLS_VERSION,
&s->version);
*pprm++ = OSSL_PARAM_construct_size_t(OSSL_CIPHER_PARAM_TLS_MAC_SIZE,
&macsize);
*pprm = OSSL_PARAM_construct_end();
if (!EVP_CIPHER_CTX_set_params(ctx, params)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
static int tls_iv_length_within_key_block(const EVP_CIPHER *c)
{
/* If GCM/CCM mode only part of IV comes from PRF */
if (EVP_CIPHER_get_mode(c) == EVP_CIPH_GCM_MODE)
return EVP_GCM_TLS_FIXED_IV_LEN;
else if (EVP_CIPHER_get_mode(c) == EVP_CIPH_CCM_MODE)
return EVP_CCM_TLS_FIXED_IV_LEN;
else
return EVP_CIPHER_get_iv_length(c);
}
int tls1_change_cipher_state(SSL_CONNECTION *s, int which)
{
unsigned char *p, *mac_secret;
unsigned char *key, *iv;
const EVP_CIPHER *c;
const SSL_COMP *comp = NULL;
const EVP_MD *m;
int mac_type;
size_t mac_secret_size;
size_t n, i, j, k, cl;
int iivlen;
/*
* Taglen is only relevant for CCM ciphersuites. Other ciphersuites
* ignore this value so we can default it to 0.
*/
size_t taglen = 0;
int direction;
c = s->s3.tmp.new_sym_enc;
m = s->s3.tmp.new_hash;
mac_type = s->s3.tmp.new_mac_pkey_type;
#ifndef OPENSSL_NO_COMP
comp = s->s3.tmp.new_compression;
#endif
p = s->s3.tmp.key_block;
i = mac_secret_size = s->s3.tmp.new_mac_secret_size;
cl = EVP_CIPHER_get_key_length(c);
j = cl;
iivlen = tls_iv_length_within_key_block(c);
if (iivlen < 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
k = iivlen;
if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
(which == SSL3_CHANGE_CIPHER_SERVER_READ)) {
mac_secret = &(p[0]);
n = i + i;
key = &(p[n]);
n += j + j;
iv = &(p[n]);
n += k + k;
} else {
n = i;
mac_secret = &(p[n]);
n += i + j;
key = &(p[n]);
n += j + k;
iv = &(p[n]);
n += k;
}
if (n > s->s3.tmp.key_block_length) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
switch (EVP_CIPHER_get_mode(c)) {
case EVP_CIPH_GCM_MODE:
taglen = EVP_GCM_TLS_TAG_LEN;
break;
case EVP_CIPH_CCM_MODE:
if ((s->s3.tmp.new_cipher->algorithm_enc
& (SSL_AES128CCM8 | SSL_AES256CCM8)) != 0)
taglen = EVP_CCM8_TLS_TAG_LEN;
else
taglen = EVP_CCM_TLS_TAG_LEN;
break;
default:
if (EVP_CIPHER_is_a(c, "CHACHA20-POLY1305")) {
taglen = EVP_CHACHAPOLY_TLS_TAG_LEN;
} else {
/* MAC secret size corresponds to the MAC output size */
taglen = s->s3.tmp.new_mac_secret_size;
}
break;
}
if (which & SSL3_CC_READ) {
if (s->ext.use_etm)
s->s3.flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_READ;
else
s->s3.flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_READ;
if (s->s3.tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM;
else
s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM;
if (s->s3.tmp.new_cipher->algorithm2 & TLS1_TLSTREE)
s->mac_flags |= SSL_MAC_FLAG_READ_MAC_TLSTREE;
else
s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_TLSTREE;
direction = OSSL_RECORD_DIRECTION_READ;
} else {
if (s->ext.use_etm)
s->s3.flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE;
else
s->s3.flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE;
if (s->s3.tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM;
else
s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM;
if (s->s3.tmp.new_cipher->algorithm2 & TLS1_TLSTREE)
s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_TLSTREE;
else
s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_TLSTREE;
direction = OSSL_RECORD_DIRECTION_WRITE;
}
if (!ssl_set_new_record_layer(s, s->version, direction,
OSSL_RECORD_PROTECTION_LEVEL_APPLICATION,
key, cl, iv, (size_t)k, mac_secret,
mac_secret_size, c, taglen, mac_type,
m, comp)) {
/* SSLfatal already called */
goto err;
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "which = %04X, key:\n", which);
BIO_dump_indent(trc_out, key, EVP_CIPHER_get_key_length(c), 4);
BIO_printf(trc_out, "iv:\n");
BIO_dump_indent(trc_out, iv, k, 4);
} OSSL_TRACE_END(TLS);
return 1;
err:
return 0;
}
int tls1_setup_key_block(SSL_CONNECTION *s)
{
unsigned char *p;
const EVP_CIPHER *c;
const EVP_MD *hash;
SSL_COMP *comp;
int mac_type = NID_undef;
size_t num, mac_secret_size = 0;
int ret = 0;
int ivlen;
if (s->s3.tmp.key_block_length != 0)
return 1;
if (!ssl_cipher_get_evp(SSL_CONNECTION_GET_CTX(s), s->session, &c, &hash,
&mac_type, &mac_secret_size, &comp,
s->ext.use_etm)) {
/* Error is already recorded */
SSLfatal_alert(s, SSL_AD_INTERNAL_ERROR);
return 0;
}
ssl_evp_cipher_free(s->s3.tmp.new_sym_enc);
s->s3.tmp.new_sym_enc = c;
ssl_evp_md_free(s->s3.tmp.new_hash);
s->s3.tmp.new_hash = hash;
s->s3.tmp.new_mac_pkey_type = mac_type;
s->s3.tmp.new_mac_secret_size = mac_secret_size;
ivlen = tls_iv_length_within_key_block(c);
if (ivlen < 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
num = mac_secret_size + EVP_CIPHER_get_key_length(c) + ivlen;
num *= 2;
ssl3_cleanup_key_block(s);
if ((p = OPENSSL_malloc(num)) == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB);
goto err;
}
s->s3.tmp.key_block_length = num;
s->s3.tmp.key_block = p;
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "key block length: %zu\n", num);
BIO_printf(trc_out, "client random\n");
BIO_dump_indent(trc_out, s->s3.client_random, SSL3_RANDOM_SIZE, 4);
BIO_printf(trc_out, "server random\n");
BIO_dump_indent(trc_out, s->s3.server_random, SSL3_RANDOM_SIZE, 4);
BIO_printf(trc_out, "master key\n");
BIO_dump_indent(trc_out,
s->session->master_key,
s->session->master_key_length, 4);
} OSSL_TRACE_END(TLS);
if (!tls1_generate_key_block(s, p, num)) {
/* SSLfatal() already called */
goto err;
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "key block\n");
BIO_dump_indent(trc_out, p, num, 4);
} OSSL_TRACE_END(TLS);
ret = 1;
err:
return ret;
}
size_t tls1_final_finish_mac(SSL_CONNECTION *s, const char *str,
size_t slen, unsigned char *out)
{
size_t hashlen;
unsigned char hash[EVP_MAX_MD_SIZE];
size_t finished_size = TLS1_FINISH_MAC_LENGTH;
if (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kGOST18)
finished_size = 32;
if (!ssl3_digest_cached_records(s, 0)) {
/* SSLfatal() already called */
return 0;
}
if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) {
/* SSLfatal() already called */
return 0;
}
if (!tls1_PRF(s, str, slen, hash, hashlen, NULL, 0, NULL, 0, NULL, 0,
s->session->master_key, s->session->master_key_length,
out, finished_size, 1)) {
/* SSLfatal() already called */
return 0;
}
OPENSSL_cleanse(hash, hashlen);
return finished_size;
}
int tls1_generate_master_secret(SSL_CONNECTION *s, unsigned char *out,
unsigned char *p, size_t len,
size_t *secret_size)
{
if (s->session->flags & SSL_SESS_FLAG_EXTMS) {
unsigned char hash[EVP_MAX_MD_SIZE * 2];
size_t hashlen;
/*
* Digest cached records keeping record buffer (if present): this won't
* affect client auth because we're freezing the buffer at the same
* point (after client key exchange and before certificate verify)
*/
if (!ssl3_digest_cached_records(s, 1)
|| !ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) {
/* SSLfatal() already called */
return 0;
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "Handshake hashes:\n");
BIO_dump(trc_out, (char *)hash, hashlen);
} OSSL_TRACE_END(TLS);
if (!tls1_PRF(s,
TLS_MD_EXTENDED_MASTER_SECRET_CONST,
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE,
hash, hashlen,
NULL, 0,
NULL, 0,
NULL, 0, p, len, out,
SSL3_MASTER_SECRET_SIZE, 1)) {
/* SSLfatal() already called */
return 0;
}
OPENSSL_cleanse(hash, hashlen);
} else {
if (!tls1_PRF(s,
TLS_MD_MASTER_SECRET_CONST,
TLS_MD_MASTER_SECRET_CONST_SIZE,
s->s3.client_random, SSL3_RANDOM_SIZE,
NULL, 0,
s->s3.server_random, SSL3_RANDOM_SIZE,
NULL, 0, p, len, out,
SSL3_MASTER_SECRET_SIZE, 1)) {
/* SSLfatal() already called */
return 0;
}
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "Premaster Secret:\n");
BIO_dump_indent(trc_out, p, len, 4);
BIO_printf(trc_out, "Client Random:\n");
BIO_dump_indent(trc_out, s->s3.client_random, SSL3_RANDOM_SIZE, 4);
BIO_printf(trc_out, "Server Random:\n");
BIO_dump_indent(trc_out, s->s3.server_random, SSL3_RANDOM_SIZE, 4);
BIO_printf(trc_out, "Master Secret:\n");
BIO_dump_indent(trc_out,
s->session->master_key,
SSL3_MASTER_SECRET_SIZE, 4);
} OSSL_TRACE_END(TLS);
*secret_size = SSL3_MASTER_SECRET_SIZE;
return 1;
}
int tls1_export_keying_material(SSL_CONNECTION *s, unsigned char *out,
size_t olen, const char *label, size_t llen,
const unsigned char *context,
size_t contextlen, int use_context)
{
unsigned char *val = NULL;
size_t vallen = 0, currentvalpos;
int rv = 0;
/*
* construct PRF arguments we construct the PRF argument ourself rather
* than passing separate values into the TLS PRF to ensure that the
* concatenation of values does not create a prohibited label.
*/
vallen = llen + SSL3_RANDOM_SIZE * 2;
if (use_context) {
vallen += 2 + contextlen;
}
val = OPENSSL_malloc(vallen);
if (val == NULL)
goto ret;
currentvalpos = 0;
memcpy(val + currentvalpos, (unsigned char *)label, llen);
currentvalpos += llen;
memcpy(val + currentvalpos, s->s3.client_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
memcpy(val + currentvalpos, s->s3.server_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
if (use_context) {
val[currentvalpos] = (contextlen >> 8) & 0xff;
currentvalpos++;
val[currentvalpos] = contextlen & 0xff;
currentvalpos++;
if ((contextlen > 0) || (context != NULL)) {
memcpy(val + currentvalpos, context, contextlen);
}
}
/*
* disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited
* label len) = 15, so size of val > max(prohibited label len) = 15 and
* the comparisons won't have buffer overflow
*/
if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
TLS_MD_SERVER_FINISH_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
TLS_MD_MASTER_SECRET_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_EXTENDED_MASTER_SECRET_CONST,
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0)
goto err1;
rv = tls1_PRF(s,
val, vallen,
NULL, 0,
NULL, 0,
NULL, 0,
NULL, 0,
s->session->master_key, s->session->master_key_length,
out, olen, 0);
goto ret;
err1:
ERR_raise(ERR_LIB_SSL, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
ret:
OPENSSL_clear_free(val, vallen);
return rv;
}
int tls1_alert_code(int code)
{
switch (code) {
case SSL_AD_CLOSE_NOTIFY:
return SSL3_AD_CLOSE_NOTIFY;
case SSL_AD_UNEXPECTED_MESSAGE:
return SSL3_AD_UNEXPECTED_MESSAGE;
case SSL_AD_BAD_RECORD_MAC:
return SSL3_AD_BAD_RECORD_MAC;
case SSL_AD_DECRYPTION_FAILED:
return TLS1_AD_DECRYPTION_FAILED;
case SSL_AD_RECORD_OVERFLOW:
return TLS1_AD_RECORD_OVERFLOW;
case SSL_AD_DECOMPRESSION_FAILURE:
return SSL3_AD_DECOMPRESSION_FAILURE;
case SSL_AD_HANDSHAKE_FAILURE:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_NO_CERTIFICATE:
return -1;
case SSL_AD_BAD_CERTIFICATE:
return SSL3_AD_BAD_CERTIFICATE;
case SSL_AD_UNSUPPORTED_CERTIFICATE:
return SSL3_AD_UNSUPPORTED_CERTIFICATE;
case SSL_AD_CERTIFICATE_REVOKED:
return SSL3_AD_CERTIFICATE_REVOKED;
case SSL_AD_CERTIFICATE_EXPIRED:
return SSL3_AD_CERTIFICATE_EXPIRED;
case SSL_AD_CERTIFICATE_UNKNOWN:
return SSL3_AD_CERTIFICATE_UNKNOWN;
case SSL_AD_ILLEGAL_PARAMETER:
return SSL3_AD_ILLEGAL_PARAMETER;
case SSL_AD_UNKNOWN_CA:
return TLS1_AD_UNKNOWN_CA;
case SSL_AD_ACCESS_DENIED:
return TLS1_AD_ACCESS_DENIED;
case SSL_AD_DECODE_ERROR:
return TLS1_AD_DECODE_ERROR;
case SSL_AD_DECRYPT_ERROR:
return TLS1_AD_DECRYPT_ERROR;
case SSL_AD_EXPORT_RESTRICTION:
return TLS1_AD_EXPORT_RESTRICTION;
case SSL_AD_PROTOCOL_VERSION:
return TLS1_AD_PROTOCOL_VERSION;
case SSL_AD_INSUFFICIENT_SECURITY:
return TLS1_AD_INSUFFICIENT_SECURITY;
case SSL_AD_INTERNAL_ERROR:
return TLS1_AD_INTERNAL_ERROR;
case SSL_AD_USER_CANCELLED:
return TLS1_AD_USER_CANCELLED;
case SSL_AD_NO_RENEGOTIATION:
return TLS1_AD_NO_RENEGOTIATION;
case SSL_AD_UNSUPPORTED_EXTENSION:
return TLS1_AD_UNSUPPORTED_EXTENSION;
case SSL_AD_CERTIFICATE_UNOBTAINABLE:
return TLS1_AD_CERTIFICATE_UNOBTAINABLE;
case SSL_AD_UNRECOGNIZED_NAME:
return TLS1_AD_UNRECOGNIZED_NAME;
case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
return TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE;
case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
return TLS1_AD_BAD_CERTIFICATE_HASH_VALUE;
case SSL_AD_UNKNOWN_PSK_IDENTITY:
return TLS1_AD_UNKNOWN_PSK_IDENTITY;
case SSL_AD_INAPPROPRIATE_FALLBACK:
return TLS1_AD_INAPPROPRIATE_FALLBACK;
case SSL_AD_NO_APPLICATION_PROTOCOL:
return TLS1_AD_NO_APPLICATION_PROTOCOL;
case SSL_AD_CERTIFICATE_REQUIRED:
return SSL_AD_HANDSHAKE_FAILURE;
case TLS13_AD_MISSING_EXTENSION:
return SSL_AD_HANDSHAKE_FAILURE;
default:
return -1;
}
}