mirror of
https://github.com/openssl/openssl.git
synced 2024-12-27 06:21:43 +08:00
c8003ad5e9
Reviewed-by: Tomas Mraz <tomas@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/18274)
377 lines
9.2 KiB
C
377 lines
9.2 KiB
C
/*
|
|
* Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/err.h>
|
|
#include <assert.h>
|
|
#include "internal/priority_queue.h"
|
|
#include "internal/safe_math.h"
|
|
|
|
OSSL_SAFE_MATH_UNSIGNED(size_t, size_t)
|
|
|
|
/*
|
|
* Fundamental operations:
|
|
* Binary Heap Fibonacci Heap
|
|
* Get smallest O(1) O(1)
|
|
* Delete any O(log n) O(log n) average but worst O(n)
|
|
* Insert O(log n) O(1)
|
|
*
|
|
* Not supported:
|
|
* Merge two structures O(log n) O(1)
|
|
* Decrease key O(log n) O(1)
|
|
* Increase key O(log n) ?
|
|
*
|
|
* The Fibonacci heap is quite a bit more complicated to implement and has
|
|
* larger overhead in practice. We favour the binary heap here. A multi-way
|
|
* (ternary or quaternary) heap might elicit a performance advantage via better
|
|
* cache access patterns.
|
|
*/
|
|
|
|
struct pq_heap_st {
|
|
void *data; /* User supplied data pointer */
|
|
size_t index; /* Constant index in elements[] */
|
|
};
|
|
|
|
struct pq_elem_st {
|
|
size_t posn; /* Current index in heap[] or link in free list */
|
|
#ifndef NDEBUG
|
|
int used; /* Debug flag indicating that this is in use */
|
|
#endif
|
|
};
|
|
|
|
struct ossl_pqueue_st
|
|
{
|
|
struct pq_heap_st *heap;
|
|
struct pq_elem_st *elements;
|
|
int (*compare)(const void *, const void *);
|
|
size_t htop; /* Highest used heap element */
|
|
size_t hmax; /* Allocated heap & element space */
|
|
size_t freelist; /* Index into elements[], start of free element list */
|
|
};
|
|
|
|
/*
|
|
* The initial and maximum number of elements in the heap.
|
|
*/
|
|
static const size_t min_nodes = 8;
|
|
static const size_t max_nodes =
|
|
SIZE_MAX / (sizeof(struct pq_heap_st) > sizeof(struct pq_elem_st)
|
|
? sizeof(struct pq_heap_st) : sizeof(struct pq_elem_st));
|
|
|
|
#ifndef NDEBUG
|
|
/* Some basic sanity checking of the data structure */
|
|
# define ASSERT_USED(pq, idx) \
|
|
assert(pq->elements[pq->heap[idx].index].used); \
|
|
assert(pq->elements[pq->heap[idx].index].posn == idx)
|
|
# define ASSERT_ELEM_USED(pq, elem) \
|
|
assert(pq->elements[elem].used)
|
|
#else
|
|
# define ASSERT_USED(pq, idx)
|
|
# define ASSERT_ELEM_USED(pq, elem)
|
|
#endif
|
|
|
|
/*
|
|
* Calculate the array growth based on the target size.
|
|
*
|
|
* The growth factor is a rational number and is defined by a numerator
|
|
* and a denominator. According to Andrew Koenig in his paper "Why Are
|
|
* Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
|
|
* than the golden ratio (1.618...).
|
|
*
|
|
* We use an expansion factor of 8 / 5 = 1.6
|
|
*/
|
|
static ossl_inline int compute_pqueue_growth(size_t target, size_t current)
|
|
{
|
|
int err = 0;
|
|
|
|
while (current < target) {
|
|
if (current >= max_nodes)
|
|
return 0;
|
|
|
|
current = safe_muldiv_size_t(current, 8, 5, &err);
|
|
if (err)
|
|
return 0;
|
|
if (current >= max_nodes)
|
|
current = max_nodes;
|
|
}
|
|
return current;
|
|
}
|
|
|
|
static ossl_inline void pqueue_swap_elem(OSSL_PQUEUE *pq, size_t i, size_t j)
|
|
{
|
|
struct pq_heap_st *h = pq->heap, t_h;
|
|
struct pq_elem_st *e = pq->elements;
|
|
|
|
ASSERT_USED(pq, i);
|
|
ASSERT_USED(pq, j);
|
|
|
|
t_h = h[i];
|
|
h[i] = h[j];
|
|
h[j] = t_h;
|
|
|
|
e[h[i].index].posn = i;
|
|
e[h[j].index].posn = j;
|
|
}
|
|
|
|
static ossl_inline void pqueue_move_elem(OSSL_PQUEUE *pq, size_t from, size_t to)
|
|
{
|
|
struct pq_heap_st *h = pq->heap;
|
|
struct pq_elem_st *e = pq->elements;
|
|
|
|
ASSERT_USED(pq, from);
|
|
|
|
h[to] = h[from];
|
|
e[h[to].index].posn = to;
|
|
}
|
|
|
|
/*
|
|
* Force the specified element to the front of the heap. This breaks
|
|
* the heap partial ordering pre-condition.
|
|
*/
|
|
static ossl_inline void pqueue_force_bottom(OSSL_PQUEUE *pq, size_t n)
|
|
{
|
|
ASSERT_USED(pq, n);
|
|
while (n > 0) {
|
|
const size_t p = (n - 1) / 2;
|
|
|
|
ASSERT_USED(pq, p);
|
|
pqueue_swap_elem(pq, n, p);
|
|
n = p;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move an element down to its correct position to restore the partial
|
|
* order pre-condition.
|
|
*/
|
|
static ossl_inline void pqueue_move_down(OSSL_PQUEUE *pq, size_t n)
|
|
{
|
|
struct pq_heap_st *h = pq->heap;
|
|
|
|
ASSERT_USED(pq, n);
|
|
while (n > 0) {
|
|
const size_t p = (n - 1) / 2;
|
|
|
|
ASSERT_USED(pq, p);
|
|
if (pq->compare(h[n].data, h[p].data) >= 0)
|
|
break;
|
|
pqueue_swap_elem(pq, n, p);
|
|
n = p;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move an element up to its correct position to restore the partial
|
|
* order pre-condition.
|
|
*/
|
|
static ossl_inline void pqueue_move_up(OSSL_PQUEUE *pq, size_t n)
|
|
{
|
|
struct pq_heap_st *h = pq->heap;
|
|
size_t p = n * 2 + 1;
|
|
|
|
ASSERT_USED(pq, n);
|
|
if (pq->htop > p + 1) {
|
|
ASSERT_USED(pq, p);
|
|
ASSERT_USED(pq, p + 1);
|
|
if (pq->compare(h[p].data, h[p + 1].data) > 0)
|
|
p++;
|
|
}
|
|
while (pq->htop > p && pq->compare(h[p].data, h[n].data) < 0) {
|
|
ASSERT_USED(pq, p);
|
|
pqueue_swap_elem(pq, n, p);
|
|
n = p;
|
|
p = n * 2 + 1;
|
|
if (pq->htop > p + 1) {
|
|
ASSERT_USED(pq, p + 1);
|
|
if (pq->compare(h[p].data, h[p + 1].data) > 0)
|
|
p++;
|
|
}
|
|
}
|
|
}
|
|
|
|
int ossl_pqueue_push(OSSL_PQUEUE *pq, void *data, size_t *elem)
|
|
{
|
|
size_t n, m;
|
|
|
|
if (!ossl_pqueue_reserve(pq, 1))
|
|
return 0;
|
|
|
|
n = pq->htop++;
|
|
m = pq->freelist;
|
|
pq->freelist = pq->elements[m].posn;
|
|
|
|
pq->heap[n].data = data;
|
|
pq->heap[n].index = m;
|
|
|
|
pq->elements[m].posn = n;
|
|
#ifndef NDEBUG
|
|
pq->elements[m].used = 1;
|
|
#endif
|
|
pqueue_move_down(pq, n);
|
|
if (elem != NULL)
|
|
*elem = m;
|
|
return 1;
|
|
}
|
|
|
|
void *ossl_pqueue_peek(const OSSL_PQUEUE *pq)
|
|
{
|
|
if (pq->htop > 0) {
|
|
ASSERT_USED(pq, 0);
|
|
return pq->heap->data;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void *ossl_pqueue_pop(OSSL_PQUEUE *pq)
|
|
{
|
|
void *res;
|
|
size_t elem;
|
|
|
|
if (pq == NULL || pq->htop == 0)
|
|
return NULL;
|
|
|
|
ASSERT_USED(pq, 0);
|
|
res = pq->heap->data;
|
|
elem = pq->heap->index;
|
|
|
|
if (--pq->htop != 0) {
|
|
pqueue_move_elem(pq, pq->htop, 0);
|
|
pqueue_move_up(pq, 0);
|
|
}
|
|
|
|
pq->elements[elem].posn = pq->freelist;
|
|
pq->freelist = elem;
|
|
#ifndef NDEBUG
|
|
pq->elements[elem].used = 0;
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
void *ossl_pqueue_remove(OSSL_PQUEUE *pq, size_t elem)
|
|
{
|
|
size_t n;
|
|
|
|
if (pq == NULL || elem >= pq->hmax || pq->htop == 0)
|
|
return 0;
|
|
|
|
ASSERT_ELEM_USED(pq, elem);
|
|
n = pq->elements[elem].posn;
|
|
|
|
ASSERT_USED(pq, n);
|
|
|
|
if (n == pq->htop - 1)
|
|
return pq->heap[--pq->htop].data;
|
|
if (n > 0)
|
|
pqueue_force_bottom(pq, n);
|
|
return ossl_pqueue_pop(pq);
|
|
}
|
|
|
|
static void pqueue_add_freelist(OSSL_PQUEUE *pq, size_t from)
|
|
{
|
|
struct pq_elem_st *e = pq->elements;
|
|
size_t i;
|
|
|
|
#ifndef NDEBUG
|
|
for (i = from; i < pq->hmax; i++)
|
|
e[i].used = 0;
|
|
#endif
|
|
e[from].posn = pq->freelist;
|
|
for (i = from + 1; i < pq->hmax; i++)
|
|
e[i].posn = i - 1;
|
|
pq->freelist = pq->hmax - 1;
|
|
}
|
|
|
|
int ossl_pqueue_reserve(OSSL_PQUEUE *pq, size_t n)
|
|
{
|
|
size_t new_max, cur_max;
|
|
struct pq_heap_st *h;
|
|
struct pq_elem_st *e;
|
|
|
|
if (pq == NULL)
|
|
return 0;
|
|
cur_max = pq->hmax;
|
|
if (pq->htop + n < cur_max)
|
|
return 1;
|
|
|
|
new_max = compute_pqueue_growth(n + cur_max, cur_max);
|
|
if (new_max == 0) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
h = OPENSSL_realloc(pq->heap, new_max * sizeof(*pq->heap));
|
|
if (h == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
pq->heap = h;
|
|
|
|
e = OPENSSL_realloc(pq->elements, new_max * sizeof(*pq->elements));
|
|
if (e == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
pq->elements = e;
|
|
|
|
pq->hmax = new_max;
|
|
pqueue_add_freelist(pq, cur_max);
|
|
return 1;
|
|
}
|
|
|
|
OSSL_PQUEUE *ossl_pqueue_new(int (*compare)(const void *, const void *))
|
|
{
|
|
OSSL_PQUEUE *pq;
|
|
|
|
if (compare == NULL)
|
|
return NULL;
|
|
|
|
pq = OPENSSL_malloc(sizeof(*pq));
|
|
if (pq == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
pq->compare = compare;
|
|
pq->hmax = min_nodes;
|
|
pq->htop = 0;
|
|
pq->freelist = 0;
|
|
pq->heap = OPENSSL_malloc(sizeof(*pq->heap) * min_nodes);
|
|
pq->elements = OPENSSL_malloc(sizeof(*pq->elements) * min_nodes);
|
|
if (pq->heap == NULL || pq->elements == NULL) {
|
|
ossl_pqueue_free(pq);
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
pqueue_add_freelist(pq, 0);
|
|
return pq;
|
|
}
|
|
|
|
void ossl_pqueue_free(OSSL_PQUEUE *pq)
|
|
{
|
|
if (pq != NULL) {
|
|
OPENSSL_free(pq->heap);
|
|
OPENSSL_free(pq->elements);
|
|
OPENSSL_free(pq);
|
|
}
|
|
}
|
|
|
|
void ossl_pqueue_pop_free(OSSL_PQUEUE *pq, void (*freefunc)(void *))
|
|
{
|
|
size_t i;
|
|
|
|
if (pq != NULL) {
|
|
for (i = 0; i < pq->htop; i++)
|
|
(*freefunc)(pq->heap[i].data);
|
|
ossl_pqueue_free(pq);
|
|
}
|
|
}
|
|
|
|
size_t ossl_pqueue_num(const OSSL_PQUEUE *pq)
|
|
{
|
|
return pq != NULL ? pq->htop : 0;
|
|
}
|