mirror of
https://github.com/openssl/openssl.git
synced 2024-12-27 06:21:43 +08:00
86db958835
Update makefiles so that consistent patterns are used. Object files are compiled from source using an implicit rule (but using our CFLAGS); for linking, we give an explicit rule. Ensure that "make test" works in each subdirectory (even if it does not actually run any applications). The top-level demo makefile now works. The makefiles are not make-agnostic. e.g. they use the variable $(RM) in "clean" recipes, which is defined in gnu-make but may not be defined in others. Part of #17806 Testing: $ cd demo $ make test Reviewed-by: Paul Dale <pauli@openssl.org> Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/22698)
290 lines
9.0 KiB
C
290 lines
9.0 KiB
C
/*-
|
|
* Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* Example showing how to generate an RSA key pair.
|
|
*
|
|
* When generating an RSA key, you must specify the number of bits in the key. A
|
|
* reasonable value would be 4096. Avoid using values below 2048. These values
|
|
* are reasonable as of 2022.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/core_names.h>
|
|
#include <openssl/pem.h>
|
|
|
|
/* A property query used for selecting algorithm implementations. */
|
|
static const char *propq = NULL;
|
|
|
|
/*
|
|
* Generates an RSA public-private key pair and returns it.
|
|
* The number of bits is specified by the bits argument.
|
|
*
|
|
* This uses the long way of generating an RSA key.
|
|
*/
|
|
static EVP_PKEY *generate_rsa_key_long(OSSL_LIB_CTX *libctx, unsigned int bits)
|
|
{
|
|
EVP_PKEY_CTX *genctx = NULL;
|
|
EVP_PKEY *pkey = NULL;
|
|
unsigned int primes = 2;
|
|
|
|
/* Create context using RSA algorithm. "RSA-PSS" could also be used here. */
|
|
genctx = EVP_PKEY_CTX_new_from_name(libctx, "RSA", propq);
|
|
if (genctx == NULL) {
|
|
fprintf(stderr, "EVP_PKEY_CTX_new_from_name() failed\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Initialize context for key generation purposes. */
|
|
if (EVP_PKEY_keygen_init(genctx) <= 0) {
|
|
fprintf(stderr, "EVP_PKEY_keygen_init() failed\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* Here we set the number of bits to use in the RSA key.
|
|
* See comment at top of file for information on appropriate values.
|
|
*/
|
|
if (EVP_PKEY_CTX_set_rsa_keygen_bits(genctx, bits) <= 0) {
|
|
fprintf(stderr, "EVP_PKEY_CTX_set_rsa_keygen_bits() failed\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* It is possible to create an RSA key using more than two primes.
|
|
* Do not do this unless you know why you need this.
|
|
* You ordinarily do not need to specify this, as the default is two.
|
|
*
|
|
* Both of these parameters can also be set via EVP_PKEY_CTX_set_params, but
|
|
* these functions provide a more concise way to do so.
|
|
*/
|
|
if (EVP_PKEY_CTX_set_rsa_keygen_primes(genctx, primes) <= 0) {
|
|
fprintf(stderr, "EVP_PKEY_CTX_set_rsa_keygen_primes() failed\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* Generating an RSA key with a number of bits large enough to be secure for
|
|
* modern applications can take a fairly substantial amount of time (e.g.
|
|
* one second). If you require fast key generation, consider using an EC key
|
|
* instead.
|
|
*
|
|
* If you require progress information during the key generation process,
|
|
* you can set a progress callback using EVP_PKEY_set_cb; see the example in
|
|
* EVP_PKEY_generate(3).
|
|
*/
|
|
fprintf(stdout, "Generating RSA key, this may take some time...\n");
|
|
if (EVP_PKEY_generate(genctx, &pkey) <= 0) {
|
|
fprintf(stderr, "EVP_PKEY_generate() failed\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/* pkey is now set to an object representing the generated key pair. */
|
|
|
|
cleanup:
|
|
EVP_PKEY_CTX_free(genctx);
|
|
return pkey;
|
|
}
|
|
|
|
/*
|
|
* Generates an RSA public-private key pair and returns it.
|
|
* The number of bits is specified by the bits argument.
|
|
*
|
|
* This uses a more concise way of generating an RSA key, which is suitable for
|
|
* simple cases. It is used if -s is passed on the command line, otherwise the
|
|
* long method above is used. The ability to choose between these two methods is
|
|
* shown here only for demonstration; the results are equivalent.
|
|
*/
|
|
static EVP_PKEY *generate_rsa_key_short(OSSL_LIB_CTX *libctx, unsigned int bits)
|
|
{
|
|
EVP_PKEY *pkey = NULL;
|
|
|
|
fprintf(stdout, "Generating RSA key, this may take some time...\n");
|
|
pkey = EVP_PKEY_Q_keygen(libctx, propq, "RSA", (size_t)bits);
|
|
|
|
if (pkey == NULL)
|
|
fprintf(stderr, "EVP_PKEY_Q_keygen() failed\n");
|
|
|
|
return pkey;
|
|
}
|
|
|
|
/*
|
|
* Prints information on an EVP_PKEY object representing an RSA key pair.
|
|
*/
|
|
static int dump_key(const EVP_PKEY *pkey)
|
|
{
|
|
int ret = 0;
|
|
int bits = 0;
|
|
BIGNUM *n = NULL, *e = NULL, *d = NULL, *p = NULL, *q = NULL;
|
|
|
|
/*
|
|
* Retrieve value of n. This value is not secret and forms part of the
|
|
* public key.
|
|
*
|
|
* Calling EVP_PKEY_get_bn_param with a NULL BIGNUM pointer causes
|
|
* a new BIGNUM to be allocated, so these must be freed subsequently.
|
|
*/
|
|
if (EVP_PKEY_get_bn_param(pkey, OSSL_PKEY_PARAM_RSA_N, &n) == 0) {
|
|
fprintf(stderr, "Failed to retrieve n\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* Retrieve value of e. This value is not secret and forms part of the
|
|
* public key. It is typically 65537 and need not be changed.
|
|
*/
|
|
if (EVP_PKEY_get_bn_param(pkey, OSSL_PKEY_PARAM_RSA_E, &e) == 0) {
|
|
fprintf(stderr, "Failed to retrieve e\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* Retrieve value of d. This value is secret and forms part of the private
|
|
* key. It must not be published.
|
|
*/
|
|
if (EVP_PKEY_get_bn_param(pkey, OSSL_PKEY_PARAM_RSA_D, &d) == 0) {
|
|
fprintf(stderr, "Failed to retrieve d\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* Retrieve value of the first prime factor, commonly known as p. This value
|
|
* is secret and forms part of the private key. It must not be published.
|
|
*/
|
|
if (EVP_PKEY_get_bn_param(pkey, OSSL_PKEY_PARAM_RSA_FACTOR1, &p) == 0) {
|
|
fprintf(stderr, "Failed to retrieve p\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* Retrieve value of the second prime factor, commonly known as q. This value
|
|
* is secret and forms part of the private key. It must not be published.
|
|
*
|
|
* If you are creating an RSA key with more than two primes for special
|
|
* applications, you can retrieve these primes with
|
|
* OSSL_PKEY_PARAM_RSA_FACTOR3, etc.
|
|
*/
|
|
if (EVP_PKEY_get_bn_param(pkey, OSSL_PKEY_PARAM_RSA_FACTOR2, &q) == 0) {
|
|
fprintf(stderr, "Failed to retrieve q\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* We can also retrieve the key size in bits for informational purposes.
|
|
*/
|
|
if (EVP_PKEY_get_int_param(pkey, OSSL_PKEY_PARAM_BITS, &bits) == 0) {
|
|
fprintf(stderr, "Failed to retrieve bits\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Output hexadecimal representations of the BIGNUM objects. */
|
|
fprintf(stdout, "\nNumber of bits: %d\n\n", bits);
|
|
fprintf(stdout, "Public values:\n");
|
|
fprintf(stdout, " n = 0x");
|
|
BN_print_fp(stdout, n);
|
|
fprintf(stdout, "\n");
|
|
|
|
fprintf(stdout, " e = 0x");
|
|
BN_print_fp(stdout, e);
|
|
fprintf(stdout, "\n\n");
|
|
|
|
fprintf(stdout, "Private values:\n");
|
|
fprintf(stdout, " d = 0x");
|
|
BN_print_fp(stdout, d);
|
|
fprintf(stdout, "\n");
|
|
|
|
fprintf(stdout, " p = 0x");
|
|
BN_print_fp(stdout, p);
|
|
fprintf(stdout, "\n");
|
|
|
|
fprintf(stdout, " q = 0x");
|
|
BN_print_fp(stdout, q);
|
|
fprintf(stdout, "\n\n");
|
|
|
|
/* Output a PEM encoding of the public key. */
|
|
if (PEM_write_PUBKEY(stdout, pkey) == 0) {
|
|
fprintf(stderr, "Failed to output PEM-encoded public key\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* Output a PEM encoding of the private key. Please note that this output is
|
|
* not encrypted. You may wish to use the arguments to specify encryption of
|
|
* the key if you are storing it on disk. See PEM_write_PrivateKey(3).
|
|
*/
|
|
if (PEM_write_PrivateKey(stdout, pkey, NULL, NULL, 0, NULL, NULL) == 0) {
|
|
fprintf(stderr, "Failed to output PEM-encoded private key\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
ret = 1;
|
|
cleanup:
|
|
BN_free(n); /* not secret */
|
|
BN_free(e); /* not secret */
|
|
BN_clear_free(d); /* secret - scrub before freeing */
|
|
BN_clear_free(p); /* secret - scrub before freeing */
|
|
BN_clear_free(q); /* secret - scrub before freeing */
|
|
return ret;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
int ret = EXIT_FAILURE;
|
|
OSSL_LIB_CTX *libctx = NULL;
|
|
EVP_PKEY *pkey = NULL;
|
|
unsigned int bits = 4096;
|
|
int bits_i, use_short = 0;
|
|
|
|
/* usage: [-s] [<bits>] */
|
|
if (argc > 1 && strcmp(argv[1], "-s") == 0) {
|
|
--argc;
|
|
++argv;
|
|
use_short = 1;
|
|
}
|
|
|
|
if (argc > 1) {
|
|
bits_i = atoi(argv[1]);
|
|
if (bits < 512) {
|
|
fprintf(stderr, "Invalid RSA key size\n");
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
bits = (unsigned int)bits_i;
|
|
}
|
|
|
|
/* Avoid using key sizes less than 2048 bits; see comment at top of file. */
|
|
if (bits < 2048)
|
|
fprintf(stderr, "Warning: very weak key size\n\n");
|
|
|
|
/* Generate RSA key. */
|
|
if (use_short)
|
|
pkey = generate_rsa_key_short(libctx, bits);
|
|
else
|
|
pkey = generate_rsa_key_long(libctx, bits);
|
|
|
|
if (pkey == NULL)
|
|
goto cleanup;
|
|
|
|
/* Dump the integers comprising the key. */
|
|
if (dump_key(pkey) == 0) {
|
|
fprintf(stderr, "Failed to dump key\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
ret = EXIT_SUCCESS;
|
|
cleanup:
|
|
EVP_PKEY_free(pkey);
|
|
OSSL_LIB_CTX_free(libctx);
|
|
return ret;
|
|
}
|