mirror of
https://github.com/openssl/openssl.git
synced 2025-01-06 13:26:43 +08:00
0f7b5cc9f3
Previously, we enforced the requirement that the DCIDs be the same for all packets in a datagram by keeping a pointer to the first RXE generated from a datagram. This is unsafe and could lead to a UAF if the first packet is malformed, meaning that no RXE ended up being generated from it. Keep track of the DCID directly instead, as we should enforce this correctly even if the first packet in a datagram is malformed (but has an intelligible header with a DCID and length). Reviewed-by: Tomas Mraz <tomas@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19703)
1186 lines
37 KiB
C
1186 lines
37 KiB
C
/*
|
|
* Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include "internal/quic_record_rx.h"
|
|
#include "quic_record_shared.h"
|
|
#include "internal/common.h"
|
|
#include "internal/list.h"
|
|
#include "../ssl_local.h"
|
|
|
|
/*
|
|
* Mark a packet in a bitfield.
|
|
*
|
|
* pkt_idx: index of packet within datagram.
|
|
*/
|
|
static ossl_inline void pkt_mark(uint64_t *bitf, size_t pkt_idx)
|
|
{
|
|
assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
|
|
*bitf |= ((uint64_t)1) << pkt_idx;
|
|
}
|
|
|
|
/* Returns 1 if a packet is in the bitfield. */
|
|
static ossl_inline int pkt_is_marked(const uint64_t *bitf, size_t pkt_idx)
|
|
{
|
|
assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
|
|
return (*bitf & (((uint64_t)1) << pkt_idx)) != 0;
|
|
}
|
|
|
|
/*
|
|
* RXE
|
|
* ===
|
|
*
|
|
* RX Entries (RXEs) store processed (i.e., decrypted) data received from the
|
|
* network. One RXE is used per received QUIC packet.
|
|
*/
|
|
typedef struct rxe_st RXE;
|
|
|
|
struct rxe_st {
|
|
OSSL_QRX_PKT pkt;
|
|
OSSL_LIST_MEMBER(rxe, RXE);
|
|
size_t data_len, alloc_len, refcount;
|
|
|
|
/* Extra fields for per-packet information. */
|
|
QUIC_PKT_HDR hdr; /* data/len are decrypted payload */
|
|
|
|
/* Decoded packet number. */
|
|
QUIC_PN pn;
|
|
|
|
/* Addresses copied from URXE. */
|
|
BIO_ADDR peer, local;
|
|
|
|
/* Time we received the packet (not when we processed it). */
|
|
OSSL_TIME time;
|
|
|
|
/* Total length of the datagram which contained this packet. */
|
|
size_t datagram_len;
|
|
|
|
/*
|
|
* alloc_len allocated bytes (of which data_len bytes are valid) follow this
|
|
* structure.
|
|
*/
|
|
};
|
|
|
|
DEFINE_LIST_OF(rxe, RXE);
|
|
typedef OSSL_LIST(rxe) RXE_LIST;
|
|
|
|
static ossl_inline unsigned char *rxe_data(const RXE *e)
|
|
{
|
|
return (unsigned char *)(e + 1);
|
|
}
|
|
|
|
/*
|
|
* QRL
|
|
* ===
|
|
*/
|
|
struct ossl_qrx_st {
|
|
OSSL_LIB_CTX *libctx;
|
|
const char *propq;
|
|
|
|
/* Demux to receive datagrams from. */
|
|
QUIC_DEMUX *demux;
|
|
|
|
/* Length of connection IDs used in short-header packets in bytes. */
|
|
size_t short_conn_id_len;
|
|
|
|
/* Maximum number of deferred datagrams buffered at any one time. */
|
|
size_t max_deferred;
|
|
|
|
/* Current count of deferred datagrams. */
|
|
size_t num_deferred;
|
|
|
|
/*
|
|
* List of URXEs which are filled with received encrypted data.
|
|
* These are returned to the DEMUX's free list as they are processed.
|
|
*/
|
|
QUIC_URXE_LIST urx_pending;
|
|
|
|
/*
|
|
* List of URXEs which we could not decrypt immediately and which are being
|
|
* kept in case they can be decrypted later.
|
|
*/
|
|
QUIC_URXE_LIST urx_deferred;
|
|
|
|
/*
|
|
* List of RXEs which are not currently in use. These are moved
|
|
* to the pending list as they are filled.
|
|
*/
|
|
RXE_LIST rx_free;
|
|
|
|
/*
|
|
* List of RXEs which are filled with decrypted packets ready to be passed
|
|
* to the user. A RXE is removed from all lists inside the QRL when passed
|
|
* to the user, then returned to the free list when the user returns it.
|
|
*/
|
|
RXE_LIST rx_pending;
|
|
|
|
/* Largest PN we have received and processed in a given PN space. */
|
|
QUIC_PN largest_pn[QUIC_PN_SPACE_NUM];
|
|
|
|
/* Per encryption-level state. */
|
|
OSSL_QRL_ENC_LEVEL_SET el_set;
|
|
|
|
/* Bytes we have received since this counter was last cleared. */
|
|
uint64_t bytes_received;
|
|
|
|
/*
|
|
* Number of forged packets we have received since the QRX was instantiated.
|
|
* Note that as per RFC 9001, this is connection-level state; it is not per
|
|
* EL and is not reset by a key update.
|
|
*/
|
|
uint64_t forged_pkt_count;
|
|
|
|
/* Validation callback. */
|
|
ossl_qrx_early_validation_cb *validation_cb;
|
|
void *validation_cb_arg;
|
|
|
|
/* Key update callback. */
|
|
ossl_qrx_key_update_cb *key_update_cb;
|
|
void *key_update_cb_arg;
|
|
|
|
/* Initial key phase. For debugging use only; always 0 in real use. */
|
|
unsigned char init_key_phase_bit;
|
|
};
|
|
|
|
static void qrx_on_rx(QUIC_URXE *urxe, void *arg);
|
|
|
|
OSSL_QRX *ossl_qrx_new(const OSSL_QRX_ARGS *args)
|
|
{
|
|
OSSL_QRX *qrx;
|
|
size_t i;
|
|
|
|
if (args->demux == NULL || args->max_deferred == 0)
|
|
return 0;
|
|
|
|
qrx = OPENSSL_zalloc(sizeof(OSSL_QRX));
|
|
if (qrx == NULL)
|
|
return 0;
|
|
|
|
for (i = 0; i < OSSL_NELEM(qrx->largest_pn); ++i)
|
|
qrx->largest_pn[i] = args->init_largest_pn[i];
|
|
|
|
qrx->libctx = args->libctx;
|
|
qrx->propq = args->propq;
|
|
qrx->demux = args->demux;
|
|
qrx->short_conn_id_len = args->short_conn_id_len;
|
|
qrx->init_key_phase_bit = args->init_key_phase_bit;
|
|
qrx->max_deferred = args->max_deferred;
|
|
return qrx;
|
|
}
|
|
|
|
static void qrx_cleanup_rxl(RXE_LIST *l)
|
|
{
|
|
RXE *e, *enext;
|
|
|
|
for (e = ossl_list_rxe_head(l); e != NULL; e = enext) {
|
|
enext = ossl_list_rxe_next(e);
|
|
ossl_list_rxe_remove(l, e);
|
|
OPENSSL_free(e);
|
|
}
|
|
}
|
|
|
|
static void qrx_cleanup_urxl(OSSL_QRX *qrx, QUIC_URXE_LIST *l)
|
|
{
|
|
QUIC_URXE *e, *enext;
|
|
|
|
for (e = ossl_list_urxe_head(l); e != NULL; e = enext) {
|
|
enext = ossl_list_urxe_next(e);
|
|
ossl_quic_demux_release_urxe(qrx->demux, e);
|
|
}
|
|
}
|
|
|
|
void ossl_qrx_free(OSSL_QRX *qrx)
|
|
{
|
|
uint32_t i;
|
|
|
|
if (qrx == NULL)
|
|
return;
|
|
|
|
/* Unregister from the RX DEMUX. */
|
|
ossl_quic_demux_unregister_by_cb(qrx->demux, qrx_on_rx, qrx);
|
|
|
|
/* Free RXE queue data. */
|
|
qrx_cleanup_rxl(&qrx->rx_free);
|
|
qrx_cleanup_rxl(&qrx->rx_pending);
|
|
qrx_cleanup_urxl(qrx, &qrx->urx_pending);
|
|
qrx_cleanup_urxl(qrx, &qrx->urx_deferred);
|
|
|
|
/* Drop keying material and crypto resources. */
|
|
for (i = 0; i < QUIC_ENC_LEVEL_NUM; ++i)
|
|
ossl_qrl_enc_level_set_discard(&qrx->el_set, i);
|
|
|
|
OPENSSL_free(qrx);
|
|
}
|
|
|
|
static void qrx_on_rx(QUIC_URXE *urxe, void *arg)
|
|
{
|
|
OSSL_QRX *qrx = arg;
|
|
|
|
/* Initialize our own fields inside the URXE and add to the pending list. */
|
|
urxe->processed = 0;
|
|
urxe->hpr_removed = 0;
|
|
urxe->deferred = 0;
|
|
ossl_list_urxe_insert_tail(&qrx->urx_pending, urxe);
|
|
}
|
|
|
|
int ossl_qrx_add_dst_conn_id(OSSL_QRX *qrx,
|
|
const QUIC_CONN_ID *dst_conn_id)
|
|
{
|
|
return ossl_quic_demux_register(qrx->demux,
|
|
dst_conn_id,
|
|
qrx_on_rx,
|
|
qrx);
|
|
}
|
|
|
|
int ossl_qrx_remove_dst_conn_id(OSSL_QRX *qrx,
|
|
const QUIC_CONN_ID *dst_conn_id)
|
|
{
|
|
return ossl_quic_demux_unregister(qrx->demux, dst_conn_id);
|
|
}
|
|
|
|
static void qrx_requeue_deferred(OSSL_QRX *qrx)
|
|
{
|
|
QUIC_URXE *e;
|
|
|
|
while ((e = ossl_list_urxe_head(&qrx->urx_deferred)) != NULL) {
|
|
ossl_list_urxe_remove(&qrx->urx_deferred, e);
|
|
ossl_list_urxe_insert_head(&qrx->urx_pending, e);
|
|
}
|
|
}
|
|
|
|
int ossl_qrx_provide_secret(OSSL_QRX *qrx, uint32_t enc_level,
|
|
uint32_t suite_id, EVP_MD *md,
|
|
const unsigned char *secret, size_t secret_len)
|
|
{
|
|
if (enc_level >= QUIC_ENC_LEVEL_NUM)
|
|
return 0;
|
|
|
|
if (!ossl_qrl_enc_level_set_provide_secret(&qrx->el_set,
|
|
qrx->libctx,
|
|
qrx->propq,
|
|
enc_level,
|
|
suite_id,
|
|
md,
|
|
secret,
|
|
secret_len,
|
|
qrx->init_key_phase_bit,
|
|
/*is_tx=*/0))
|
|
return 0;
|
|
|
|
/*
|
|
* Any packets we previously could not decrypt, we may now be able to
|
|
* decrypt, so move any datagrams containing deferred packets from the
|
|
* deferred to the pending queue.
|
|
*/
|
|
qrx_requeue_deferred(qrx);
|
|
return 1;
|
|
}
|
|
|
|
int ossl_qrx_discard_enc_level(OSSL_QRX *qrx, uint32_t enc_level)
|
|
{
|
|
if (enc_level >= QUIC_ENC_LEVEL_NUM)
|
|
return 0;
|
|
|
|
ossl_qrl_enc_level_set_discard(&qrx->el_set, enc_level);
|
|
return 1;
|
|
}
|
|
|
|
/* Returns 1 if there are one or more pending RXEs. */
|
|
int ossl_qrx_processed_read_pending(OSSL_QRX *qrx)
|
|
{
|
|
return !ossl_list_rxe_is_empty(&qrx->rx_pending);
|
|
}
|
|
|
|
/* Returns 1 if there are yet-unprocessed packets. */
|
|
int ossl_qrx_unprocessed_read_pending(OSSL_QRX *qrx)
|
|
{
|
|
return !ossl_list_urxe_is_empty(&qrx->urx_pending)
|
|
|| !ossl_list_urxe_is_empty(&qrx->urx_deferred);
|
|
}
|
|
|
|
/* Pop the next pending RXE. Returns NULL if no RXE is pending. */
|
|
static RXE *qrx_pop_pending_rxe(OSSL_QRX *qrx)
|
|
{
|
|
RXE *rxe = ossl_list_rxe_head(&qrx->rx_pending);
|
|
|
|
if (rxe == NULL)
|
|
return NULL;
|
|
|
|
ossl_list_rxe_remove(&qrx->rx_pending, rxe);
|
|
return rxe;
|
|
}
|
|
|
|
/* Allocate a new RXE. */
|
|
static RXE *qrx_alloc_rxe(size_t alloc_len)
|
|
{
|
|
RXE *rxe;
|
|
|
|
if (alloc_len >= SIZE_MAX - sizeof(RXE))
|
|
return NULL;
|
|
|
|
rxe = OPENSSL_malloc(sizeof(RXE) + alloc_len);
|
|
if (rxe == NULL)
|
|
return NULL;
|
|
|
|
ossl_list_rxe_init_elem(rxe);
|
|
rxe->alloc_len = alloc_len;
|
|
rxe->data_len = 0;
|
|
rxe->refcount = 0;
|
|
return rxe;
|
|
}
|
|
|
|
/*
|
|
* Ensures there is at least one RXE in the RX free list, allocating a new entry
|
|
* if necessary. The returned RXE is in the RX free list; it is not popped.
|
|
*
|
|
* alloc_len is a hint which may be used to determine the RXE size if allocation
|
|
* is necessary. Returns NULL on allocation failure.
|
|
*/
|
|
static RXE *qrx_ensure_free_rxe(OSSL_QRX *qrx, size_t alloc_len)
|
|
{
|
|
RXE *rxe;
|
|
|
|
if (ossl_list_rxe_head(&qrx->rx_free) != NULL)
|
|
return ossl_list_rxe_head(&qrx->rx_free);
|
|
|
|
rxe = qrx_alloc_rxe(alloc_len);
|
|
if (rxe == NULL)
|
|
return NULL;
|
|
|
|
ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
|
|
return rxe;
|
|
}
|
|
|
|
/*
|
|
* Resize the data buffer attached to an RXE to be n bytes in size. The address
|
|
* of the RXE might change; the new address is returned, or NULL on failure, in
|
|
* which case the original RXE remains valid.
|
|
*/
|
|
static RXE *qrx_resize_rxe(RXE_LIST *rxl, RXE *rxe, size_t n)
|
|
{
|
|
RXE *rxe2, *p;
|
|
|
|
/* Should never happen. */
|
|
if (rxe == NULL)
|
|
return NULL;
|
|
|
|
if (n >= SIZE_MAX - sizeof(RXE))
|
|
return NULL;
|
|
|
|
/* Remove the item from the list to avoid accessing freed memory */
|
|
p = ossl_list_rxe_prev(rxe);
|
|
ossl_list_rxe_remove(rxl, rxe);
|
|
|
|
/* Should never resize an RXE which has been handed out. */
|
|
if (!ossl_assert(rxe->refcount == 0))
|
|
return NULL;
|
|
|
|
/*
|
|
* NOTE: We do not clear old memory, although it does contain decrypted
|
|
* data.
|
|
*/
|
|
rxe2 = OPENSSL_realloc(rxe, sizeof(RXE) + n);
|
|
if (rxe2 == NULL) {
|
|
/* Resize failed, restore old allocation. */
|
|
if (p == NULL)
|
|
ossl_list_rxe_insert_head(rxl, rxe);
|
|
else
|
|
ossl_list_rxe_insert_after(rxl, p, rxe);
|
|
return NULL;
|
|
}
|
|
|
|
if (p == NULL)
|
|
ossl_list_rxe_insert_head(rxl, rxe2);
|
|
else
|
|
ossl_list_rxe_insert_after(rxl, p, rxe2);
|
|
|
|
rxe2->alloc_len = n;
|
|
return rxe2;
|
|
}
|
|
|
|
/*
|
|
* Ensure the data buffer attached to an RXE is at least n bytes in size.
|
|
* Returns NULL on failure.
|
|
*/
|
|
static RXE *qrx_reserve_rxe(RXE_LIST *rxl,
|
|
RXE *rxe, size_t n)
|
|
{
|
|
if (rxe->alloc_len >= n)
|
|
return rxe;
|
|
|
|
return qrx_resize_rxe(rxl, rxe, n);
|
|
}
|
|
|
|
/* Return a RXE handed out to the user back to our freelist. */
|
|
static void qrx_recycle_rxe(OSSL_QRX *qrx, RXE *rxe)
|
|
{
|
|
/* RXE should not be in any list */
|
|
assert(ossl_list_rxe_prev(rxe) == NULL && ossl_list_rxe_next(rxe) == NULL);
|
|
rxe->pkt.hdr = NULL;
|
|
rxe->pkt.peer = NULL;
|
|
rxe->pkt.local = NULL;
|
|
ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
|
|
}
|
|
|
|
/*
|
|
* Given a pointer to a pointer pointing to a buffer and the size of that
|
|
* buffer, copy the buffer into *prxe, expanding the RXE if necessary (its
|
|
* pointer may change due to realloc). *pi is the offset in bytes to copy the
|
|
* buffer to, and on success is updated to be the offset pointing after the
|
|
* copied buffer. *pptr is updated to point to the new location of the buffer.
|
|
*/
|
|
static int qrx_relocate_buffer(OSSL_QRX *qrx, RXE **prxe, size_t *pi,
|
|
const unsigned char **pptr, size_t buf_len)
|
|
{
|
|
RXE *rxe;
|
|
unsigned char *dst;
|
|
|
|
if (!buf_len)
|
|
return 1;
|
|
|
|
if ((rxe = qrx_reserve_rxe(&qrx->rx_free, *prxe, *pi + buf_len)) == NULL)
|
|
return 0;
|
|
|
|
*prxe = rxe;
|
|
dst = (unsigned char *)rxe_data(rxe) + *pi;
|
|
|
|
memcpy(dst, *pptr, buf_len);
|
|
*pi += buf_len;
|
|
*pptr = dst;
|
|
return 1;
|
|
}
|
|
|
|
static uint32_t qrx_determine_enc_level(const QUIC_PKT_HDR *hdr)
|
|
{
|
|
switch (hdr->type) {
|
|
case QUIC_PKT_TYPE_INITIAL:
|
|
return QUIC_ENC_LEVEL_INITIAL;
|
|
case QUIC_PKT_TYPE_HANDSHAKE:
|
|
return QUIC_ENC_LEVEL_HANDSHAKE;
|
|
case QUIC_PKT_TYPE_0RTT:
|
|
return QUIC_ENC_LEVEL_0RTT;
|
|
case QUIC_PKT_TYPE_1RTT:
|
|
return QUIC_ENC_LEVEL_1RTT;
|
|
|
|
default:
|
|
assert(0);
|
|
case QUIC_PKT_TYPE_RETRY:
|
|
case QUIC_PKT_TYPE_VERSION_NEG:
|
|
return QUIC_ENC_LEVEL_INITIAL; /* not used */
|
|
}
|
|
}
|
|
|
|
static uint32_t rxe_determine_pn_space(RXE *rxe)
|
|
{
|
|
uint32_t enc_level;
|
|
|
|
enc_level = qrx_determine_enc_level(&rxe->hdr);
|
|
return ossl_quic_enc_level_to_pn_space(enc_level);
|
|
}
|
|
|
|
static int qrx_validate_hdr_early(OSSL_QRX *qrx, RXE *rxe,
|
|
const QUIC_CONN_ID *first_dcid)
|
|
{
|
|
/* Ensure version is what we want. */
|
|
if (rxe->hdr.version != QUIC_VERSION_1
|
|
&& rxe->hdr.version != QUIC_VERSION_NONE)
|
|
return 0;
|
|
|
|
/* Clients should never receive 0-RTT packets. */
|
|
if (rxe->hdr.type == QUIC_PKT_TYPE_0RTT)
|
|
return 0;
|
|
|
|
/* Version negotiation and retry packets must be the first packet. */
|
|
if (first_dcid != NULL && !ossl_quic_pkt_type_can_share_dgram(rxe->hdr.type))
|
|
return 0;
|
|
|
|
/*
|
|
* If this is not the first packet in a datagram, the destination connection
|
|
* ID must match the one in that packet.
|
|
*/
|
|
if (first_dcid != NULL) {
|
|
if (!ossl_assert(first_dcid->id_len < QUIC_MAX_CONN_ID_LEN)
|
|
|| !ossl_quic_conn_id_eq(first_dcid,
|
|
&rxe->hdr.dst_conn_id))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Validate header and decode PN. */
|
|
static int qrx_validate_hdr(OSSL_QRX *qrx, RXE *rxe)
|
|
{
|
|
int pn_space = rxe_determine_pn_space(rxe);
|
|
|
|
if (!ossl_quic_wire_decode_pkt_hdr_pn(rxe->hdr.pn, rxe->hdr.pn_len,
|
|
qrx->largest_pn[pn_space],
|
|
&rxe->pn))
|
|
return 0;
|
|
|
|
/*
|
|
* Allow our user to decide whether to discard the packet before we try and
|
|
* decrypt it.
|
|
*/
|
|
if (qrx->validation_cb != NULL
|
|
&& !qrx->validation_cb(rxe->pn, pn_space, qrx->validation_cb_arg))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Retrieves the correct cipher context for an EL and key phase. */
|
|
static size_t qrx_get_cipher_ctx_idx(OSSL_QRX *qrx, OSSL_QRL_ENC_LEVEL *el,
|
|
uint32_t enc_level,
|
|
unsigned char key_phase_bit)
|
|
{
|
|
if (enc_level != QUIC_ENC_LEVEL_1RTT)
|
|
return 0;
|
|
|
|
if (!ossl_assert(key_phase_bit <= 1))
|
|
return SIZE_MAX;
|
|
|
|
/*
|
|
* RFC 9001 requires that we not create timing channels which could reveal
|
|
* the decrypted value of the Key Phase bit. We usually handle this by
|
|
* keeping the cipher contexts for both the current and next key epochs
|
|
* around, so that we just select a cipher context blindly using the key
|
|
* phase bit, which is time-invariant.
|
|
*
|
|
* In the COOLDOWN state, we only have one keyslot/cipher context. RFC 9001
|
|
* suggests an implementation strategy to avoid creating a timing channel in
|
|
* this case:
|
|
*
|
|
* Endpoints can use randomized packet protection keys in place of
|
|
* discarded keys when key updates are not yet permitted.
|
|
*
|
|
* Rather than use a randomised key, we simply use our existing key as it
|
|
* will fail AEAD verification anyway. This avoids the need to keep around a
|
|
* dedicated garbage key.
|
|
*
|
|
* Note: Accessing different cipher contexts is technically not
|
|
* timing-channel safe due to microarchitectural side channels, but this is
|
|
* the best we can reasonably do and appears to be directly suggested by the
|
|
* RFC.
|
|
*/
|
|
return el->state == QRL_EL_STATE_PROV_COOLDOWN ? el->key_epoch & 1
|
|
: key_phase_bit;
|
|
}
|
|
|
|
/*
|
|
* Tries to decrypt a packet payload.
|
|
*
|
|
* Returns 1 on success or 0 on failure (which is permanent). The payload is
|
|
* decrypted from src and written to dst. The buffer dst must be of at least
|
|
* src_len bytes in length. The actual length of the output in bytes is written
|
|
* to *dec_len on success, which will always be equal to or less than (usually
|
|
* less than) src_len.
|
|
*/
|
|
static int qrx_decrypt_pkt_body(OSSL_QRX *qrx, unsigned char *dst,
|
|
const unsigned char *src,
|
|
size_t src_len, size_t *dec_len,
|
|
const unsigned char *aad, size_t aad_len,
|
|
QUIC_PN pn, uint32_t enc_level,
|
|
unsigned char key_phase_bit)
|
|
{
|
|
int l = 0, l2 = 0;
|
|
unsigned char nonce[EVP_MAX_IV_LENGTH];
|
|
size_t nonce_len, i, cctx_idx;
|
|
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
|
|
enc_level, 1);
|
|
EVP_CIPHER_CTX *cctx;
|
|
|
|
if (src_len > INT_MAX || aad_len > INT_MAX)
|
|
return 0;
|
|
|
|
/* We should not have been called if we do not have key material. */
|
|
if (!ossl_assert(el != NULL))
|
|
return 0;
|
|
|
|
if (el->tag_len >= src_len)
|
|
return 0;
|
|
|
|
/*
|
|
* If we have failed to authenticate a certain number of ciphertexts, refuse
|
|
* to decrypt any more ciphertexts.
|
|
*/
|
|
if (qrx->forged_pkt_count >= ossl_qrl_get_suite_max_forged_pkt(el->suite_id))
|
|
return 0;
|
|
|
|
cctx_idx = qrx_get_cipher_ctx_idx(qrx, el, enc_level, key_phase_bit);
|
|
if (!ossl_assert(cctx_idx < OSSL_NELEM(el->cctx)))
|
|
return 0;
|
|
|
|
cctx = el->cctx[cctx_idx];
|
|
|
|
/* Construct nonce (nonce=IV ^ PN). */
|
|
nonce_len = EVP_CIPHER_CTX_get_iv_length(cctx);
|
|
if (!ossl_assert(nonce_len >= sizeof(QUIC_PN)))
|
|
return 0;
|
|
|
|
memcpy(nonce, el->iv[cctx_idx], nonce_len);
|
|
for (i = 0; i < sizeof(QUIC_PN); ++i)
|
|
nonce[nonce_len - i - 1] ^= (unsigned char)(pn >> (i * 8));
|
|
|
|
/* type and key will already have been setup; feed the IV. */
|
|
if (EVP_CipherInit_ex(cctx, NULL,
|
|
NULL, NULL, nonce, /*enc=*/0) != 1)
|
|
return 0;
|
|
|
|
/* Feed the AEAD tag we got so the cipher can validate it. */
|
|
if (EVP_CIPHER_CTX_ctrl(cctx, EVP_CTRL_AEAD_SET_TAG,
|
|
el->tag_len,
|
|
(unsigned char *)src + src_len - el->tag_len) != 1)
|
|
return 0;
|
|
|
|
/* Feed AAD data. */
|
|
if (EVP_CipherUpdate(cctx, NULL, &l, aad, aad_len) != 1)
|
|
return 0;
|
|
|
|
/* Feed encrypted packet body. */
|
|
if (EVP_CipherUpdate(cctx, dst, &l, src, src_len - el->tag_len) != 1)
|
|
return 0;
|
|
|
|
/* Ensure authentication succeeded. */
|
|
if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1) {
|
|
/* Authentication failed, increment failed auth counter. */
|
|
++qrx->forged_pkt_count;
|
|
return 0;
|
|
}
|
|
|
|
*dec_len = l;
|
|
return 1;
|
|
}
|
|
|
|
static ossl_inline void ignore_res(int x)
|
|
{
|
|
/* No-op. */
|
|
}
|
|
|
|
static void qrx_key_update_initiated(OSSL_QRX *qrx)
|
|
{
|
|
if (!ossl_qrl_enc_level_set_key_update(&qrx->el_set, QUIC_ENC_LEVEL_1RTT))
|
|
return;
|
|
|
|
if (qrx->key_update_cb != NULL)
|
|
qrx->key_update_cb(qrx->key_update_cb_arg);
|
|
}
|
|
|
|
/* Process a single packet in a datagram. */
|
|
static int qrx_process_pkt(OSSL_QRX *qrx, QUIC_URXE *urxe,
|
|
PACKET *pkt, size_t pkt_idx,
|
|
QUIC_CONN_ID *first_dcid,
|
|
size_t datagram_len)
|
|
{
|
|
RXE *rxe;
|
|
const unsigned char *eop = NULL;
|
|
size_t i, aad_len = 0, dec_len = 0;
|
|
PACKET orig_pkt = *pkt;
|
|
const unsigned char *sop = PACKET_data(pkt);
|
|
unsigned char *dst;
|
|
char need_second_decode = 0, already_processed = 0;
|
|
QUIC_PKT_HDR_PTRS ptrs;
|
|
uint32_t pn_space, enc_level;
|
|
OSSL_QRL_ENC_LEVEL *el = NULL;
|
|
|
|
/*
|
|
* Get a free RXE. If we need to allocate a new one, use the packet length
|
|
* as a good ballpark figure.
|
|
*/
|
|
rxe = qrx_ensure_free_rxe(qrx, PACKET_remaining(pkt));
|
|
if (rxe == NULL)
|
|
return 0;
|
|
|
|
/* Have we already processed this packet? */
|
|
if (pkt_is_marked(&urxe->processed, pkt_idx))
|
|
already_processed = 1;
|
|
|
|
/*
|
|
* Decode the header into the RXE structure. We first decrypt and read the
|
|
* unprotected part of the packet header (unless we already removed header
|
|
* protection, in which case we decode all of it).
|
|
*/
|
|
need_second_decode = !pkt_is_marked(&urxe->hpr_removed, pkt_idx);
|
|
if (!ossl_quic_wire_decode_pkt_hdr(pkt,
|
|
qrx->short_conn_id_len,
|
|
need_second_decode, &rxe->hdr, &ptrs))
|
|
goto malformed;
|
|
|
|
/*
|
|
* Our successful decode above included an intelligible length and the
|
|
* PACKET is now pointing to the end of the QUIC packet.
|
|
*/
|
|
eop = PACKET_data(pkt);
|
|
|
|
/*
|
|
* Make a note of the first packet's DCID so we can later ensure the
|
|
* destination connection IDs of all packets in a datagram match.
|
|
*/
|
|
if (pkt_idx == 0)
|
|
*first_dcid = rxe->hdr.dst_conn_id;
|
|
|
|
/*
|
|
* Early header validation. Since we now know the packet length, we can also
|
|
* now skip over it if we already processed it.
|
|
*/
|
|
if (already_processed
|
|
|| !qrx_validate_hdr_early(qrx, rxe, pkt_idx == 0 ? NULL : first_dcid))
|
|
/*
|
|
* Already processed packets are handled identically to malformed
|
|
* packets; i.e., they are ignored.
|
|
*/
|
|
goto malformed;
|
|
|
|
if (!ossl_quic_pkt_type_is_encrypted(rxe->hdr.type)) {
|
|
/*
|
|
* Version negotiation and retry packets are a special case. They do not
|
|
* contain a payload which needs decrypting and have no header
|
|
* protection.
|
|
*/
|
|
|
|
/* Just copy the payload from the URXE to the RXE. */
|
|
if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len)) == NULL)
|
|
/*
|
|
* Allocation failure. EOP will be pointing to the end of the
|
|
* datagram so processing of this datagram will end here.
|
|
*/
|
|
goto malformed;
|
|
|
|
/* We are now committed to returning the packet. */
|
|
memcpy(rxe_data(rxe), rxe->hdr.data, rxe->hdr.len);
|
|
pkt_mark(&urxe->processed, pkt_idx);
|
|
|
|
rxe->hdr.data = rxe_data(rxe);
|
|
rxe->pn = QUIC_PN_INVALID;
|
|
|
|
/* Move RXE to pending. */
|
|
ossl_list_rxe_remove(&qrx->rx_free, rxe);
|
|
ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
|
|
return 0; /* success, did not defer */
|
|
}
|
|
|
|
/* Determine encryption level of packet. */
|
|
enc_level = qrx_determine_enc_level(&rxe->hdr);
|
|
|
|
/* If we do not have keying material for this encryption level yet, defer. */
|
|
switch (ossl_qrl_enc_level_set_have_el(&qrx->el_set, enc_level)) {
|
|
case 1:
|
|
/* We have keys. */
|
|
break;
|
|
case 0:
|
|
/* No keys yet. */
|
|
goto cannot_decrypt;
|
|
default:
|
|
/* We already discarded keys for this EL, we will never process this.*/
|
|
goto malformed;
|
|
}
|
|
|
|
/*
|
|
* We will copy any token included in the packet to the start of our RXE
|
|
* data buffer (so that we don't reference the URXE buffer any more and can
|
|
* recycle it). Track our position in the RXE buffer by index instead of
|
|
* pointer as the pointer may change as reallocs occur.
|
|
*/
|
|
i = 0;
|
|
|
|
/*
|
|
* rxe->hdr.data is now pointing at the (encrypted) packet payload. rxe->hdr
|
|
* also has fields pointing into the PACKET buffer which will be going away
|
|
* soon (the URXE will be reused for another incoming packet).
|
|
*
|
|
* Firstly, relocate some of these fields into the RXE as needed.
|
|
*
|
|
* Relocate token buffer and fix pointer.
|
|
*/
|
|
if (rxe->hdr.type == QUIC_PKT_TYPE_INITIAL
|
|
&& !qrx_relocate_buffer(qrx, &rxe, &i, &rxe->hdr.token,
|
|
rxe->hdr.token_len))
|
|
goto malformed;
|
|
|
|
/* Now remove header protection. */
|
|
*pkt = orig_pkt;
|
|
|
|
el = ossl_qrl_enc_level_set_get(&qrx->el_set, enc_level, 1);
|
|
assert(el != NULL); /* Already checked above */
|
|
|
|
if (need_second_decode) {
|
|
if (!ossl_quic_hdr_protector_decrypt(&el->hpr, &ptrs))
|
|
goto malformed;
|
|
|
|
/*
|
|
* We have removed header protection, so don't attempt to do it again if
|
|
* the packet gets deferred and processed again.
|
|
*/
|
|
pkt_mark(&urxe->hpr_removed, pkt_idx);
|
|
|
|
/* Decode the now unprotected header. */
|
|
if (ossl_quic_wire_decode_pkt_hdr(pkt, qrx->short_conn_id_len,
|
|
0, &rxe->hdr, NULL) != 1)
|
|
goto malformed;
|
|
}
|
|
|
|
/* Validate header and decode PN. */
|
|
if (!qrx_validate_hdr(qrx, rxe))
|
|
goto malformed;
|
|
|
|
/*
|
|
* The AAD data is the entire (unprotected) packet header including the PN.
|
|
* The packet header has been unprotected in place, so we can just reuse the
|
|
* PACKET buffer. The header ends where the payload begins.
|
|
*/
|
|
aad_len = rxe->hdr.data - sop;
|
|
|
|
/* Ensure the RXE buffer size is adequate for our payload. */
|
|
if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len + i)) == NULL) {
|
|
/*
|
|
* Allocation failure, treat as malformed and do not bother processing
|
|
* any further packets in the datagram as they are likely to also
|
|
* encounter allocation failures.
|
|
*/
|
|
eop = NULL;
|
|
goto malformed;
|
|
}
|
|
|
|
/*
|
|
* We decrypt the packet body to immediately after the token at the start of
|
|
* the RXE buffer (where present).
|
|
*
|
|
* Do the decryption from the PACKET (which points into URXE memory) to our
|
|
* RXE payload (single-copy decryption), then fixup the pointers in the
|
|
* header to point to our new buffer.
|
|
*
|
|
* If decryption fails this is considered a permanent error; we defer
|
|
* packets we don't yet have decryption keys for above, so if this fails,
|
|
* something has gone wrong with the handshake process or a packet has been
|
|
* corrupted.
|
|
*/
|
|
dst = (unsigned char *)rxe_data(rxe) + i;
|
|
if (!qrx_decrypt_pkt_body(qrx, dst, rxe->hdr.data, rxe->hdr.len,
|
|
&dec_len, sop, aad_len, rxe->pn, enc_level,
|
|
rxe->hdr.key_phase))
|
|
goto malformed;
|
|
|
|
/*
|
|
* At this point, we have successfully authenticated the AEAD tag and no
|
|
* longer need to worry about exposing the Key Phase bit in timing channels.
|
|
* Check for a Key Phase bit differing from our expectation.
|
|
*/
|
|
if (rxe->hdr.type == QUIC_PKT_TYPE_1RTT
|
|
&& rxe->hdr.key_phase != (el->key_epoch & 1))
|
|
qrx_key_update_initiated(qrx);
|
|
|
|
/*
|
|
* We have now successfully decrypted the packet payload. If there are
|
|
* additional packets in the datagram, it is possible we will fail to
|
|
* decrypt them and need to defer them until we have some key material we
|
|
* don't currently possess. If this happens, the URXE will be moved to the
|
|
* deferred queue. Since a URXE corresponds to one datagram, which may
|
|
* contain multiple packets, we must ensure any packets we have already
|
|
* processed in the URXE are not processed again (this is an RFC
|
|
* requirement). We do this by marking the nth packet in the datagram as
|
|
* processed.
|
|
*
|
|
* We are now committed to returning this decrypted packet to the user,
|
|
* meaning we now consider the packet processed and must mark it
|
|
* accordingly.
|
|
*/
|
|
pkt_mark(&urxe->processed, pkt_idx);
|
|
|
|
/*
|
|
* Update header to point to the decrypted buffer, which may be shorter
|
|
* due to AEAD tags, block padding, etc.
|
|
*/
|
|
rxe->hdr.data = dst;
|
|
rxe->hdr.len = dec_len;
|
|
rxe->data_len = dec_len;
|
|
rxe->datagram_len = datagram_len;
|
|
|
|
/* We processed the PN successfully, so update largest processed PN. */
|
|
pn_space = rxe_determine_pn_space(rxe);
|
|
if (rxe->pn > qrx->largest_pn[pn_space])
|
|
qrx->largest_pn[pn_space] = rxe->pn;
|
|
|
|
/* Copy across network addresses and RX time from URXE to RXE. */
|
|
rxe->peer = urxe->peer;
|
|
rxe->local = urxe->local;
|
|
rxe->time = urxe->time;
|
|
|
|
/* Move RXE to pending. */
|
|
ossl_list_rxe_remove(&qrx->rx_free, rxe);
|
|
ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
|
|
return 0; /* success, did not defer; not distinguished from failure */
|
|
|
|
cannot_decrypt:
|
|
/*
|
|
* We cannot process this packet right now (but might be able to later). We
|
|
* MUST attempt to process any other packets in the datagram, so defer it
|
|
* and skip over it.
|
|
*/
|
|
assert(eop != NULL && eop >= PACKET_data(pkt));
|
|
/*
|
|
* We don't care if this fails as it will just result in the packet being at
|
|
* the end of the datagram buffer.
|
|
*/
|
|
ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
|
|
return 1; /* deferred */
|
|
|
|
malformed:
|
|
if (eop != NULL) {
|
|
/*
|
|
* This packet cannot be processed and will never be processable. We
|
|
* were at least able to decode its header and determine its length, so
|
|
* we can skip over it and try to process any subsequent packets in the
|
|
* datagram.
|
|
*
|
|
* Mark as processed as an optimization.
|
|
*/
|
|
assert(eop >= PACKET_data(pkt));
|
|
pkt_mark(&urxe->processed, pkt_idx);
|
|
/* We don't care if this fails (see above) */
|
|
ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
|
|
} else {
|
|
/*
|
|
* This packet cannot be processed and will never be processable.
|
|
* Because even its header is not intelligible, we cannot examine any
|
|
* further packets in the datagram because its length cannot be
|
|
* discerned.
|
|
*
|
|
* Advance over the entire remainder of the datagram, and mark it as
|
|
* processed gap as an optimization.
|
|
*/
|
|
pkt_mark(&urxe->processed, pkt_idx);
|
|
/* We don't care if this fails (see above) */
|
|
ignore_res(PACKET_forward(pkt, PACKET_remaining(pkt)));
|
|
}
|
|
return 0; /* failure, did not defer; not distinguished from success */
|
|
}
|
|
|
|
/* Process a datagram which was received. */
|
|
static int qrx_process_datagram(OSSL_QRX *qrx, QUIC_URXE *e,
|
|
const unsigned char *data,
|
|
size_t data_len)
|
|
{
|
|
int have_deferred = 0;
|
|
PACKET pkt;
|
|
size_t pkt_idx = 0;
|
|
QUIC_CONN_ID first_dcid = { 255 };
|
|
|
|
qrx->bytes_received += data_len;
|
|
|
|
if (!PACKET_buf_init(&pkt, data, data_len))
|
|
return 0;
|
|
|
|
for (; PACKET_remaining(&pkt) > 0; ++pkt_idx) {
|
|
/*
|
|
* A packet smallest than the minimum possible QUIC packet size is not
|
|
* considered valid. We also ignore more than a certain number of
|
|
* packets within the same datagram.
|
|
*/
|
|
if (PACKET_remaining(&pkt) < QUIC_MIN_VALID_PKT_LEN
|
|
|| pkt_idx >= QUIC_MAX_PKT_PER_URXE)
|
|
break;
|
|
|
|
/*
|
|
* We note whether packet processing resulted in a deferral since
|
|
* this means we need to move the URXE to the deferred list rather
|
|
* than the free list after we're finished dealing with it for now.
|
|
*
|
|
* However, we don't otherwise care here whether processing succeeded or
|
|
* failed, as the RFC says even if a packet in a datagram is malformed,
|
|
* we should still try to process any packets following it.
|
|
*
|
|
* In the case where the packet is so malformed we can't determine its
|
|
* length, qrx_process_pkt will take care of advancing to the end of
|
|
* the packet, so we will exit the loop automatically in this case.
|
|
*/
|
|
if (qrx_process_pkt(qrx, e, &pkt, pkt_idx, &first_dcid, data_len))
|
|
have_deferred = 1;
|
|
}
|
|
|
|
/* Only report whether there were any deferrals. */
|
|
return have_deferred;
|
|
}
|
|
|
|
/* Process a single pending URXE. */
|
|
static int qrx_process_one_urxe(OSSL_QRX *qrx, QUIC_URXE *e)
|
|
{
|
|
int was_deferred;
|
|
|
|
/* The next URXE we process should be at the head of the pending list. */
|
|
if (!ossl_assert(e == ossl_list_urxe_head(&qrx->urx_pending)))
|
|
return 0;
|
|
|
|
/*
|
|
* Attempt to process the datagram. The return value indicates only if
|
|
* processing of the datagram was deferred. If we failed to process the
|
|
* datagram, we do not attempt to process it again and silently eat the
|
|
* error.
|
|
*/
|
|
was_deferred = qrx_process_datagram(qrx, e, ossl_quic_urxe_data(e),
|
|
e->data_len);
|
|
|
|
/*
|
|
* Remove the URXE from the pending list and return it to
|
|
* either the free or deferred list.
|
|
*/
|
|
ossl_list_urxe_remove(&qrx->urx_pending, e);
|
|
if (was_deferred > 0 &&
|
|
(e->deferred || qrx->num_deferred < qrx->max_deferred)) {
|
|
ossl_list_urxe_insert_tail(&qrx->urx_deferred, e);
|
|
if (!e->deferred) {
|
|
e->deferred = 1;
|
|
++qrx->num_deferred;
|
|
}
|
|
} else {
|
|
if (e->deferred) {
|
|
e->deferred = 0;
|
|
--qrx->num_deferred;
|
|
}
|
|
ossl_quic_demux_release_urxe(qrx->demux, e);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Process any pending URXEs to generate pending RXEs. */
|
|
static int qrx_process_pending_urxl(OSSL_QRX *qrx)
|
|
{
|
|
QUIC_URXE *e;
|
|
|
|
while ((e = ossl_list_urxe_head(&qrx->urx_pending)) != NULL)
|
|
if (!qrx_process_one_urxe(qrx, e))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int ossl_qrx_read_pkt(OSSL_QRX *qrx, OSSL_QRX_PKT **ppkt)
|
|
{
|
|
RXE *rxe;
|
|
|
|
if (!ossl_qrx_processed_read_pending(qrx)) {
|
|
if (!qrx_process_pending_urxl(qrx))
|
|
return 0;
|
|
|
|
if (!ossl_qrx_processed_read_pending(qrx))
|
|
return 0;
|
|
}
|
|
|
|
rxe = qrx_pop_pending_rxe(qrx);
|
|
if (!ossl_assert(rxe != NULL))
|
|
return 0;
|
|
|
|
assert(rxe->refcount == 0);
|
|
rxe->refcount = 1;
|
|
|
|
rxe->pkt.hdr = &rxe->hdr;
|
|
rxe->pkt.pn = rxe->pn;
|
|
rxe->pkt.time = rxe->time;
|
|
rxe->pkt.datagram_len = rxe->datagram_len;
|
|
rxe->pkt.peer
|
|
= BIO_ADDR_family(&rxe->peer) != AF_UNSPEC ? &rxe->peer : NULL;
|
|
rxe->pkt.local
|
|
= BIO_ADDR_family(&rxe->local) != AF_UNSPEC ? &rxe->local : NULL;
|
|
rxe->pkt.qrx = qrx;
|
|
*ppkt = &rxe->pkt;
|
|
return 1;
|
|
}
|
|
|
|
void ossl_qrx_pkt_release(OSSL_QRX_PKT *pkt)
|
|
{
|
|
RXE *rxe;
|
|
|
|
if (pkt == NULL)
|
|
return;
|
|
|
|
rxe = (RXE *)pkt;
|
|
assert(rxe->refcount > 0);
|
|
if (--rxe->refcount == 0)
|
|
qrx_recycle_rxe(pkt->qrx, rxe);
|
|
}
|
|
|
|
void ossl_qrx_pkt_up_ref(OSSL_QRX_PKT *pkt)
|
|
{
|
|
RXE *rxe = (RXE *)pkt;
|
|
|
|
assert(rxe->refcount > 0);
|
|
++rxe->refcount;
|
|
}
|
|
|
|
uint64_t ossl_qrx_get_bytes_received(OSSL_QRX *qrx, int clear)
|
|
{
|
|
uint64_t v = qrx->bytes_received;
|
|
|
|
if (clear)
|
|
qrx->bytes_received = 0;
|
|
|
|
return v;
|
|
}
|
|
|
|
int ossl_qrx_set_early_validation_cb(OSSL_QRX *qrx,
|
|
ossl_qrx_early_validation_cb *cb,
|
|
void *cb_arg)
|
|
{
|
|
qrx->validation_cb = cb;
|
|
qrx->validation_cb_arg = cb_arg;
|
|
return 1;
|
|
}
|
|
|
|
int ossl_qrx_set_key_update_cb(OSSL_QRX *qrx,
|
|
ossl_qrx_key_update_cb *cb,
|
|
void *cb_arg)
|
|
{
|
|
qrx->key_update_cb = cb;
|
|
qrx->key_update_cb_arg = cb_arg;
|
|
return 1;
|
|
}
|
|
|
|
uint64_t ossl_qrx_get_key_epoch(OSSL_QRX *qrx)
|
|
{
|
|
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
|
|
QUIC_ENC_LEVEL_1RTT, 1);
|
|
|
|
return el == NULL ? UINT64_MAX : el->key_epoch;
|
|
}
|
|
|
|
int ossl_qrx_key_update_timeout(OSSL_QRX *qrx, int normal)
|
|
{
|
|
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
|
|
QUIC_ENC_LEVEL_1RTT, 1);
|
|
|
|
if (el == NULL)
|
|
return 0;
|
|
|
|
if (el->state == QRL_EL_STATE_PROV_UPDATING
|
|
&& !ossl_qrl_enc_level_set_key_update_done(&qrx->el_set,
|
|
QUIC_ENC_LEVEL_1RTT))
|
|
return 0;
|
|
|
|
if (normal && el->state == QRL_EL_STATE_PROV_COOLDOWN
|
|
&& !ossl_qrl_enc_level_set_key_cooldown_done(&qrx->el_set,
|
|
QUIC_ENC_LEVEL_1RTT))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
uint64_t ossl_qrx_get_cur_forged_pkt_count(OSSL_QRX *qrx)
|
|
{
|
|
return qrx->forged_pkt_count;
|
|
}
|
|
|
|
uint64_t ossl_qrx_get_max_forged_pkt_count(OSSL_QRX *qrx,
|
|
uint32_t enc_level)
|
|
{
|
|
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
|
|
enc_level, 1);
|
|
|
|
return el == NULL ? UINT64_MAX
|
|
: ossl_qrl_get_suite_max_forged_pkt(el->suite_id);
|
|
}
|