openssl/ssl/statem/statem_lib.c
shub-al d561fe5a0a ssl_get_min_max_version(): Remove unused variable single
CLA: trivial

Reviewed-by: Tom Cosgrove <tom.cosgrove@arm.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/21768)
2023-08-20 13:26:46 +02:00

2891 lines
96 KiB
C

/*
* Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <limits.h>
#include <string.h>
#include <stdio.h>
#include "../ssl_local.h"
#include "statem_local.h"
#include "internal/cryptlib.h"
#include <openssl/buffer.h>
#include <openssl/objects.h>
#include <openssl/evp.h>
#include <openssl/rsa.h>
#include <openssl/x509.h>
#include <openssl/trace.h>
#include <openssl/encoder.h>
/*
* Map error codes to TLS/SSL alart types.
*/
typedef struct x509err2alert_st {
int x509err;
int alert;
} X509ERR2ALERT;
/* Fixed value used in the ServerHello random field to identify an HRR */
const unsigned char hrrrandom[] = {
0xcf, 0x21, 0xad, 0x74, 0xe5, 0x9a, 0x61, 0x11, 0xbe, 0x1d, 0x8c, 0x02,
0x1e, 0x65, 0xb8, 0x91, 0xc2, 0xa2, 0x11, 0x16, 0x7a, 0xbb, 0x8c, 0x5e,
0x07, 0x9e, 0x09, 0xe2, 0xc8, 0xa8, 0x33, 0x9c
};
int ossl_statem_set_mutator(SSL *s,
ossl_statem_mutate_handshake_cb mutate_handshake_cb,
ossl_statem_finish_mutate_handshake_cb finish_mutate_handshake_cb,
void *mutatearg)
{
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
if (sc == NULL)
return 0;
sc->statem.mutate_handshake_cb = mutate_handshake_cb;
sc->statem.mutatearg = mutatearg;
sc->statem.finish_mutate_handshake_cb = finish_mutate_handshake_cb;
return 1;
}
/*
* send s->init_buf in records of type 'type' (SSL3_RT_HANDSHAKE or
* SSL3_RT_CHANGE_CIPHER_SPEC)
*/
int ssl3_do_write(SSL_CONNECTION *s, int type)
{
int ret;
size_t written = 0;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
/*
* If we're running the test suite then we may need to mutate the message
* we've been asked to write. Does not happen in normal operation.
*/
if (s->statem.mutate_handshake_cb != NULL
&& !s->statem.write_in_progress
&& type == SSL3_RT_HANDSHAKE
&& s->init_num >= SSL3_HM_HEADER_LENGTH) {
unsigned char *msg;
size_t msglen;
if (!s->statem.mutate_handshake_cb((unsigned char *)s->init_buf->data,
s->init_num,
&msg, &msglen,
s->statem.mutatearg))
return -1;
if (msglen < SSL3_HM_HEADER_LENGTH
|| !BUF_MEM_grow(s->init_buf, msglen))
return -1;
memcpy(s->init_buf->data, msg, msglen);
s->init_num = msglen;
s->init_msg = s->init_buf->data + SSL3_HM_HEADER_LENGTH;
s->statem.finish_mutate_handshake_cb(s->statem.mutatearg);
s->statem.write_in_progress = 1;
}
ret = ssl3_write_bytes(ssl, type, &s->init_buf->data[s->init_off],
s->init_num, &written);
if (ret <= 0)
return -1;
if (type == SSL3_RT_HANDSHAKE)
/*
* should not be done for 'Hello Request's, but in that case we'll
* ignore the result anyway
* TLS1.3 KeyUpdate and NewSessionTicket do not need to be added
*/
if (!SSL_CONNECTION_IS_TLS13(s)
|| (s->statem.hand_state != TLS_ST_SW_SESSION_TICKET
&& s->statem.hand_state != TLS_ST_CW_KEY_UPDATE
&& s->statem.hand_state != TLS_ST_SW_KEY_UPDATE))
if (!ssl3_finish_mac(s,
(unsigned char *)&s->init_buf->data[s->init_off],
written))
return -1;
if (written == s->init_num) {
s->statem.write_in_progress = 0;
if (s->msg_callback)
s->msg_callback(1, s->version, type, s->init_buf->data,
(size_t)(s->init_off + s->init_num), ssl,
s->msg_callback_arg);
return 1;
}
s->init_off += written;
s->init_num -= written;
return 0;
}
int tls_close_construct_packet(SSL_CONNECTION *s, WPACKET *pkt, int htype)
{
size_t msglen;
if ((htype != SSL3_MT_CHANGE_CIPHER_SPEC && !WPACKET_close(pkt))
|| !WPACKET_get_length(pkt, &msglen)
|| msglen > INT_MAX)
return 0;
s->init_num = (int)msglen;
s->init_off = 0;
return 1;
}
int tls_setup_handshake(SSL_CONNECTION *s)
{
int ver_min, ver_max, ok;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
if (!ssl3_init_finished_mac(s)) {
/* SSLfatal() already called */
return 0;
}
/* Reset any extension flags */
memset(s->ext.extflags, 0, sizeof(s->ext.extflags));
if (ssl_get_min_max_version(s, &ver_min, &ver_max, NULL) != 0) {
SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_NO_PROTOCOLS_AVAILABLE);
return 0;
}
/* Sanity check that we have MD5-SHA1 if we need it */
if (sctx->ssl_digest_methods[SSL_MD_MD5_SHA1_IDX] == NULL) {
int md5sha1_needed = 0;
/* We don't have MD5-SHA1 - do we need it? */
if (SSL_CONNECTION_IS_DTLS(s)) {
if (DTLS_VERSION_LE(ver_max, DTLS1_VERSION))
md5sha1_needed = 1;
} else {
if (ver_max <= TLS1_1_VERSION)
md5sha1_needed = 1;
}
if (md5sha1_needed) {
SSLfatal_data(s, SSL_AD_HANDSHAKE_FAILURE,
SSL_R_NO_SUITABLE_DIGEST_ALGORITHM,
"The max supported SSL/TLS version needs the"
" MD5-SHA1 digest but it is not available"
" in the loaded providers. Use (D)TLSv1.2 or"
" above, or load different providers");
return 0;
}
ok = 1;
/* Don't allow TLSv1.1 or below to be negotiated */
if (SSL_CONNECTION_IS_DTLS(s)) {
if (DTLS_VERSION_LT(ver_min, DTLS1_2_VERSION))
ok = SSL_set_min_proto_version(ssl, DTLS1_2_VERSION);
} else {
if (ver_min < TLS1_2_VERSION)
ok = SSL_set_min_proto_version(ssl, TLS1_2_VERSION);
}
if (!ok) {
/* Shouldn't happen */
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, ERR_R_INTERNAL_ERROR);
return 0;
}
}
ok = 0;
if (s->server) {
STACK_OF(SSL_CIPHER) *ciphers = SSL_get_ciphers(ssl);
int i;
/*
* Sanity check that the maximum version we accept has ciphers
* enabled. For clients we do this check during construction of the
* ClientHello.
*/
for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
if (SSL_CONNECTION_IS_DTLS(s)) {
if (DTLS_VERSION_GE(ver_max, c->min_dtls) &&
DTLS_VERSION_LE(ver_max, c->max_dtls))
ok = 1;
} else if (ver_max >= c->min_tls && ver_max <= c->max_tls) {
ok = 1;
}
if (ok)
break;
}
if (!ok) {
SSLfatal_data(s, SSL_AD_HANDSHAKE_FAILURE,
SSL_R_NO_CIPHERS_AVAILABLE,
"No ciphers enabled for max supported "
"SSL/TLS version");
return 0;
}
if (SSL_IS_FIRST_HANDSHAKE(s)) {
/* N.B. s->session_ctx == s->ctx here */
ssl_tsan_counter(s->session_ctx, &s->session_ctx->stats.sess_accept);
} else {
/* N.B. s->ctx may not equal s->session_ctx */
ssl_tsan_counter(sctx, &sctx->stats.sess_accept_renegotiate);
s->s3.tmp.cert_request = 0;
}
} else {
if (SSL_IS_FIRST_HANDSHAKE(s))
ssl_tsan_counter(s->session_ctx, &s->session_ctx->stats.sess_connect);
else
ssl_tsan_counter(s->session_ctx,
&s->session_ctx->stats.sess_connect_renegotiate);
/* mark client_random uninitialized */
memset(s->s3.client_random, 0, sizeof(s->s3.client_random));
s->hit = 0;
s->s3.tmp.cert_req = 0;
if (SSL_CONNECTION_IS_DTLS(s))
s->statem.use_timer = 1;
}
return 1;
}
/*
* Size of the to-be-signed TLS13 data, without the hash size itself:
* 64 bytes of value 32, 33 context bytes, 1 byte separator
*/
#define TLS13_TBS_START_SIZE 64
#define TLS13_TBS_PREAMBLE_SIZE (TLS13_TBS_START_SIZE + 33 + 1)
static int get_cert_verify_tbs_data(SSL_CONNECTION *s, unsigned char *tls13tbs,
void **hdata, size_t *hdatalen)
{
/* ASCII: "TLS 1.3, server CertificateVerify", in hex for EBCDIC compatibility */
static const char servercontext[] = "\x54\x4c\x53\x20\x31\x2e\x33\x2c\x20\x73\x65\x72"
"\x76\x65\x72\x20\x43\x65\x72\x74\x69\x66\x69\x63\x61\x74\x65\x56\x65\x72\x69\x66\x79";
/* ASCII: "TLS 1.3, client CertificateVerify", in hex for EBCDIC compatibility */
static const char clientcontext[] = "\x54\x4c\x53\x20\x31\x2e\x33\x2c\x20\x63\x6c\x69"
"\x65\x6e\x74\x20\x43\x65\x72\x74\x69\x66\x69\x63\x61\x74\x65\x56\x65\x72\x69\x66\x79";
if (SSL_CONNECTION_IS_TLS13(s)) {
size_t hashlen;
/* Set the first 64 bytes of to-be-signed data to octet 32 */
memset(tls13tbs, 32, TLS13_TBS_START_SIZE);
/* This copies the 33 bytes of context plus the 0 separator byte */
if (s->statem.hand_state == TLS_ST_CR_CERT_VRFY
|| s->statem.hand_state == TLS_ST_SW_CERT_VRFY)
strcpy((char *)tls13tbs + TLS13_TBS_START_SIZE, servercontext);
else
strcpy((char *)tls13tbs + TLS13_TBS_START_SIZE, clientcontext);
/*
* If we're currently reading then we need to use the saved handshake
* hash value. We can't use the current handshake hash state because
* that includes the CertVerify itself.
*/
if (s->statem.hand_state == TLS_ST_CR_CERT_VRFY
|| s->statem.hand_state == TLS_ST_SR_CERT_VRFY) {
memcpy(tls13tbs + TLS13_TBS_PREAMBLE_SIZE, s->cert_verify_hash,
s->cert_verify_hash_len);
hashlen = s->cert_verify_hash_len;
} else if (!ssl_handshake_hash(s, tls13tbs + TLS13_TBS_PREAMBLE_SIZE,
EVP_MAX_MD_SIZE, &hashlen)) {
/* SSLfatal() already called */
return 0;
}
*hdata = tls13tbs;
*hdatalen = TLS13_TBS_PREAMBLE_SIZE + hashlen;
} else {
size_t retlen;
long retlen_l;
retlen = retlen_l = BIO_get_mem_data(s->s3.handshake_buffer, hdata);
if (retlen_l <= 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
*hdatalen = retlen;
}
return 1;
}
CON_FUNC_RETURN tls_construct_cert_verify(SSL_CONNECTION *s, WPACKET *pkt)
{
EVP_PKEY *pkey = NULL;
const EVP_MD *md = NULL;
EVP_MD_CTX *mctx = NULL;
EVP_PKEY_CTX *pctx = NULL;
size_t hdatalen = 0, siglen = 0;
void *hdata;
unsigned char *sig = NULL;
unsigned char tls13tbs[TLS13_TBS_PREAMBLE_SIZE + EVP_MAX_MD_SIZE];
const SIGALG_LOOKUP *lu = s->s3.tmp.sigalg;
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
if (lu == NULL || s->s3.tmp.cert == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
pkey = s->s3.tmp.cert->privatekey;
if (pkey == NULL || !tls1_lookup_md(sctx, lu, &md)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
mctx = EVP_MD_CTX_new();
if (mctx == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
goto err;
}
/* Get the data to be signed */
if (!get_cert_verify_tbs_data(s, tls13tbs, &hdata, &hdatalen)) {
/* SSLfatal() already called */
goto err;
}
if (SSL_USE_SIGALGS(s) && !WPACKET_put_bytes_u16(pkt, lu->sigalg)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
if (EVP_DigestSignInit_ex(mctx, &pctx,
md == NULL ? NULL : EVP_MD_get0_name(md),
sctx->libctx, sctx->propq, pkey,
NULL) <= 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
goto err;
}
if (lu->sig == EVP_PKEY_RSA_PSS) {
if (EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) <= 0
|| EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx,
RSA_PSS_SALTLEN_DIGEST) <= 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
goto err;
}
}
if (s->version == SSL3_VERSION) {
/*
* Here we use EVP_DigestSignUpdate followed by EVP_DigestSignFinal
* in order to add the EVP_CTRL_SSL3_MASTER_SECRET call between them.
*/
if (EVP_DigestSignUpdate(mctx, hdata, hdatalen) <= 0
|| EVP_MD_CTX_ctrl(mctx, EVP_CTRL_SSL3_MASTER_SECRET,
(int)s->session->master_key_length,
s->session->master_key) <= 0
|| EVP_DigestSignFinal(mctx, NULL, &siglen) <= 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
goto err;
}
sig = OPENSSL_malloc(siglen);
if (sig == NULL
|| EVP_DigestSignFinal(mctx, sig, &siglen) <= 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
goto err;
}
} else {
/*
* Here we *must* use EVP_DigestSign() because Ed25519/Ed448 does not
* support streaming via EVP_DigestSignUpdate/EVP_DigestSignFinal
*/
if (EVP_DigestSign(mctx, NULL, &siglen, hdata, hdatalen) <= 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
goto err;
}
sig = OPENSSL_malloc(siglen);
if (sig == NULL
|| EVP_DigestSign(mctx, sig, &siglen, hdata, hdatalen) <= 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
goto err;
}
}
#ifndef OPENSSL_NO_GOST
{
int pktype = lu->sig;
if (pktype == NID_id_GostR3410_2001
|| pktype == NID_id_GostR3410_2012_256
|| pktype == NID_id_GostR3410_2012_512)
BUF_reverse(sig, NULL, siglen);
}
#endif
if (!WPACKET_sub_memcpy_u16(pkt, sig, siglen)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
/* Digest cached records and discard handshake buffer */
if (!ssl3_digest_cached_records(s, 0)) {
/* SSLfatal() already called */
goto err;
}
OPENSSL_free(sig);
EVP_MD_CTX_free(mctx);
return CON_FUNC_SUCCESS;
err:
OPENSSL_free(sig);
EVP_MD_CTX_free(mctx);
return CON_FUNC_ERROR;
}
MSG_PROCESS_RETURN tls_process_cert_verify(SSL_CONNECTION *s, PACKET *pkt)
{
EVP_PKEY *pkey = NULL;
const unsigned char *data;
#ifndef OPENSSL_NO_GOST
unsigned char *gost_data = NULL;
#endif
MSG_PROCESS_RETURN ret = MSG_PROCESS_ERROR;
int j;
unsigned int len;
const EVP_MD *md = NULL;
size_t hdatalen = 0;
void *hdata;
unsigned char tls13tbs[TLS13_TBS_PREAMBLE_SIZE + EVP_MAX_MD_SIZE];
EVP_MD_CTX *mctx = EVP_MD_CTX_new();
EVP_PKEY_CTX *pctx = NULL;
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
if (mctx == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
goto err;
}
pkey = tls_get_peer_pkey(s);
if (pkey == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
if (ssl_cert_lookup_by_pkey(pkey, NULL, sctx) == NULL) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
SSL_R_SIGNATURE_FOR_NON_SIGNING_CERTIFICATE);
goto err;
}
if (SSL_USE_SIGALGS(s)) {
unsigned int sigalg;
if (!PACKET_get_net_2(pkt, &sigalg)) {
SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_PACKET);
goto err;
}
if (tls12_check_peer_sigalg(s, sigalg, pkey) <= 0) {
/* SSLfatal() already called */
goto err;
}
} else if (!tls1_set_peer_legacy_sigalg(s, pkey)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR,
SSL_R_LEGACY_SIGALG_DISALLOWED_OR_UNSUPPORTED);
goto err;
}
if (!tls1_lookup_md(sctx, s->s3.tmp.peer_sigalg, &md)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
if (SSL_USE_SIGALGS(s))
OSSL_TRACE1(TLS, "USING TLSv1.2 HASH %s\n",
md == NULL ? "n/a" : EVP_MD_get0_name(md));
/* Check for broken implementations of GOST ciphersuites */
/*
* If key is GOST and len is exactly 64 or 128, it is signature without
* length field (CryptoPro implementations at least till TLS 1.2)
*/
#ifndef OPENSSL_NO_GOST
if (!SSL_USE_SIGALGS(s)
&& ((PACKET_remaining(pkt) == 64
&& (EVP_PKEY_get_id(pkey) == NID_id_GostR3410_2001
|| EVP_PKEY_get_id(pkey) == NID_id_GostR3410_2012_256))
|| (PACKET_remaining(pkt) == 128
&& EVP_PKEY_get_id(pkey) == NID_id_GostR3410_2012_512))) {
len = PACKET_remaining(pkt);
} else
#endif
if (!PACKET_get_net_2(pkt, &len)) {
SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH);
goto err;
}
if (!PACKET_get_bytes(pkt, &data, len)) {
SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH);
goto err;
}
if (!get_cert_verify_tbs_data(s, tls13tbs, &hdata, &hdatalen)) {
/* SSLfatal() already called */
goto err;
}
OSSL_TRACE1(TLS, "Using client verify alg %s\n",
md == NULL ? "n/a" : EVP_MD_get0_name(md));
if (EVP_DigestVerifyInit_ex(mctx, &pctx,
md == NULL ? NULL : EVP_MD_get0_name(md),
sctx->libctx, sctx->propq, pkey,
NULL) <= 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
goto err;
}
#ifndef OPENSSL_NO_GOST
{
int pktype = EVP_PKEY_get_id(pkey);
if (pktype == NID_id_GostR3410_2001
|| pktype == NID_id_GostR3410_2012_256
|| pktype == NID_id_GostR3410_2012_512) {
if ((gost_data = OPENSSL_malloc(len)) == NULL)
goto err;
BUF_reverse(gost_data, data, len);
data = gost_data;
}
}
#endif
if (SSL_USE_PSS(s)) {
if (EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) <= 0
|| EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx,
RSA_PSS_SALTLEN_DIGEST) <= 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
goto err;
}
}
if (s->version == SSL3_VERSION) {
if (EVP_DigestVerifyUpdate(mctx, hdata, hdatalen) <= 0
|| EVP_MD_CTX_ctrl(mctx, EVP_CTRL_SSL3_MASTER_SECRET,
(int)s->session->master_key_length,
s->session->master_key) <= 0) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
goto err;
}
if (EVP_DigestVerifyFinal(mctx, data, len) <= 0) {
SSLfatal(s, SSL_AD_DECRYPT_ERROR, SSL_R_BAD_SIGNATURE);
goto err;
}
} else {
j = EVP_DigestVerify(mctx, data, len, hdata, hdatalen);
if (j <= 0) {
SSLfatal(s, SSL_AD_DECRYPT_ERROR, SSL_R_BAD_SIGNATURE);
goto err;
}
}
/*
* In TLSv1.3 on the client side we make sure we prepare the client
* certificate after the CertVerify instead of when we get the
* CertificateRequest. This is because in TLSv1.3 the CertificateRequest
* comes *before* the Certificate message. In TLSv1.2 it comes after. We
* want to make sure that SSL_get1_peer_certificate() will return the actual
* server certificate from the client_cert_cb callback.
*/
if (!s->server && SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.cert_req == 1)
ret = MSG_PROCESS_CONTINUE_PROCESSING;
else
ret = MSG_PROCESS_CONTINUE_READING;
err:
BIO_free(s->s3.handshake_buffer);
s->s3.handshake_buffer = NULL;
EVP_MD_CTX_free(mctx);
#ifndef OPENSSL_NO_GOST
OPENSSL_free(gost_data);
#endif
return ret;
}
CON_FUNC_RETURN tls_construct_finished(SSL_CONNECTION *s, WPACKET *pkt)
{
size_t finish_md_len;
const char *sender;
size_t slen;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
/* This is a real handshake so make sure we clean it up at the end */
if (!s->server && s->post_handshake_auth != SSL_PHA_REQUESTED)
s->statem.cleanuphand = 1;
/*
* We only change the keys if we didn't already do this when we sent the
* client certificate
*/
if (SSL_CONNECTION_IS_TLS13(s)
&& !s->server
&& s->s3.tmp.cert_req == 0
&& (!ssl->method->ssl3_enc->change_cipher_state(s,
SSL3_CC_HANDSHAKE | SSL3_CHANGE_CIPHER_CLIENT_WRITE))) {;
/* SSLfatal() already called */
return CON_FUNC_ERROR;
}
if (s->server) {
sender = ssl->method->ssl3_enc->server_finished_label;
slen = ssl->method->ssl3_enc->server_finished_label_len;
} else {
sender = ssl->method->ssl3_enc->client_finished_label;
slen = ssl->method->ssl3_enc->client_finished_label_len;
}
finish_md_len = ssl->method->ssl3_enc->final_finish_mac(s,
sender, slen,
s->s3.tmp.finish_md);
if (finish_md_len == 0) {
/* SSLfatal() already called */
return CON_FUNC_ERROR;
}
s->s3.tmp.finish_md_len = finish_md_len;
if (!WPACKET_memcpy(pkt, s->s3.tmp.finish_md, finish_md_len)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return CON_FUNC_ERROR;
}
/*
* Log the master secret, if logging is enabled. We don't log it for
* TLSv1.3: there's a different key schedule for that.
*/
if (!SSL_CONNECTION_IS_TLS13(s)
&& !ssl_log_secret(s, MASTER_SECRET_LABEL, s->session->master_key,
s->session->master_key_length)) {
/* SSLfatal() already called */
return CON_FUNC_ERROR;
}
/*
* Copy the finished so we can use it for renegotiation checks
*/
if (!ossl_assert(finish_md_len <= EVP_MAX_MD_SIZE)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return CON_FUNC_ERROR;
}
if (!s->server) {
memcpy(s->s3.previous_client_finished, s->s3.tmp.finish_md,
finish_md_len);
s->s3.previous_client_finished_len = finish_md_len;
} else {
memcpy(s->s3.previous_server_finished, s->s3.tmp.finish_md,
finish_md_len);
s->s3.previous_server_finished_len = finish_md_len;
}
return CON_FUNC_SUCCESS;
}
CON_FUNC_RETURN tls_construct_key_update(SSL_CONNECTION *s, WPACKET *pkt)
{
if (!WPACKET_put_bytes_u8(pkt, s->key_update)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return CON_FUNC_ERROR;
}
s->key_update = SSL_KEY_UPDATE_NONE;
return CON_FUNC_SUCCESS;
}
MSG_PROCESS_RETURN tls_process_key_update(SSL_CONNECTION *s, PACKET *pkt)
{
unsigned int updatetype;
/*
* A KeyUpdate message signals a key change so the end of the message must
* be on a record boundary.
*/
if (RECORD_LAYER_processed_read_pending(&s->rlayer)) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_NOT_ON_RECORD_BOUNDARY);
return MSG_PROCESS_ERROR;
}
if (!PACKET_get_1(pkt, &updatetype)
|| PACKET_remaining(pkt) != 0) {
SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_KEY_UPDATE);
return MSG_PROCESS_ERROR;
}
/*
* There are only two defined key update types. Fail if we get a value we
* didn't recognise.
*/
if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
&& updatetype != SSL_KEY_UPDATE_REQUESTED) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_BAD_KEY_UPDATE);
return MSG_PROCESS_ERROR;
}
/*
* If we get a request for us to update our sending keys too then, we need
* to additionally send a KeyUpdate message. However that message should
* not also request an update (otherwise we get into an infinite loop).
*/
if (updatetype == SSL_KEY_UPDATE_REQUESTED)
s->key_update = SSL_KEY_UPDATE_NOT_REQUESTED;
if (!tls13_update_key(s, 0)) {
/* SSLfatal() already called */
return MSG_PROCESS_ERROR;
}
return MSG_PROCESS_FINISHED_READING;
}
/*
* ssl3_take_mac calculates the Finished MAC for the handshakes messages seen
* to far.
*/
int ssl3_take_mac(SSL_CONNECTION *s)
{
const char *sender;
size_t slen;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
if (!s->server) {
sender = ssl->method->ssl3_enc->server_finished_label;
slen = ssl->method->ssl3_enc->server_finished_label_len;
} else {
sender = ssl->method->ssl3_enc->client_finished_label;
slen = ssl->method->ssl3_enc->client_finished_label_len;
}
s->s3.tmp.peer_finish_md_len =
ssl->method->ssl3_enc->final_finish_mac(s, sender, slen,
s->s3.tmp.peer_finish_md);
if (s->s3.tmp.peer_finish_md_len == 0) {
/* SSLfatal() already called */
return 0;
}
return 1;
}
MSG_PROCESS_RETURN tls_process_change_cipher_spec(SSL_CONNECTION *s,
PACKET *pkt)
{
size_t remain;
remain = PACKET_remaining(pkt);
/*
* 'Change Cipher Spec' is just a single byte, which should already have
* been consumed by ssl_get_message() so there should be no bytes left,
* unless we're using DTLS1_BAD_VER, which has an extra 2 bytes
*/
if (SSL_CONNECTION_IS_DTLS(s)) {
if ((s->version == DTLS1_BAD_VER
&& remain != DTLS1_CCS_HEADER_LENGTH + 1)
|| (s->version != DTLS1_BAD_VER
&& remain != DTLS1_CCS_HEADER_LENGTH - 1)) {
SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_CHANGE_CIPHER_SPEC);
return MSG_PROCESS_ERROR;
}
} else {
if (remain != 0) {
SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_CHANGE_CIPHER_SPEC);
return MSG_PROCESS_ERROR;
}
}
/* Check we have a cipher to change to */
if (s->s3.tmp.new_cipher == NULL) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY);
return MSG_PROCESS_ERROR;
}
s->s3.change_cipher_spec = 1;
if (!ssl3_do_change_cipher_spec(s)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return MSG_PROCESS_ERROR;
}
if (SSL_CONNECTION_IS_DTLS(s)) {
dtls1_increment_epoch(s, SSL3_CC_READ);
if (s->version == DTLS1_BAD_VER)
s->d1->handshake_read_seq++;
#ifndef OPENSSL_NO_SCTP
/*
* Remember that a CCS has been received, so that an old key of
* SCTP-Auth can be deleted when a CCS is sent. Will be ignored if no
* SCTP is used
*/
BIO_ctrl(SSL_get_wbio(SSL_CONNECTION_GET_SSL(s)),
BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD, 1, NULL);
#endif
}
return MSG_PROCESS_CONTINUE_READING;
}
MSG_PROCESS_RETURN tls_process_finished(SSL_CONNECTION *s, PACKET *pkt)
{
size_t md_len;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
int was_first = SSL_IS_FIRST_HANDSHAKE(s);
int ok;
/* This is a real handshake so make sure we clean it up at the end */
if (s->server) {
/*
* To get this far we must have read encrypted data from the client. We
* no longer tolerate unencrypted alerts. This is ignored if less than
* TLSv1.3
*/
if (s->rlayer.rrlmethod->set_plain_alerts != NULL)
s->rlayer.rrlmethod->set_plain_alerts(s->rlayer.rrl, 0);
if (s->post_handshake_auth != SSL_PHA_REQUESTED)
s->statem.cleanuphand = 1;
if (SSL_CONNECTION_IS_TLS13(s)
&& !tls13_save_handshake_digest_for_pha(s)) {
/* SSLfatal() already called */
return MSG_PROCESS_ERROR;
}
}
/*
* In TLSv1.3 a Finished message signals a key change so the end of the
* message must be on a record boundary.
*/
if (SSL_CONNECTION_IS_TLS13(s)
&& RECORD_LAYER_processed_read_pending(&s->rlayer)) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_NOT_ON_RECORD_BOUNDARY);
return MSG_PROCESS_ERROR;
}
/* If this occurs, we have missed a message */
if (!SSL_CONNECTION_IS_TLS13(s) && !s->s3.change_cipher_spec) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_GOT_A_FIN_BEFORE_A_CCS);
return MSG_PROCESS_ERROR;
}
s->s3.change_cipher_spec = 0;
md_len = s->s3.tmp.peer_finish_md_len;
if (md_len != PACKET_remaining(pkt)) {
SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_DIGEST_LENGTH);
return MSG_PROCESS_ERROR;
}
ok = CRYPTO_memcmp(PACKET_data(pkt), s->s3.tmp.peer_finish_md,
md_len);
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if (ok != 0) {
if ((PACKET_data(pkt)[0] ^ s->s3.tmp.peer_finish_md[0]) != 0xFF) {
ok = 0;
}
}
#endif
if (ok != 0) {
SSLfatal(s, SSL_AD_DECRYPT_ERROR, SSL_R_DIGEST_CHECK_FAILED);
return MSG_PROCESS_ERROR;
}
/*
* Copy the finished so we can use it for renegotiation checks
*/
if (!ossl_assert(md_len <= EVP_MAX_MD_SIZE)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return MSG_PROCESS_ERROR;
}
if (s->server) {
memcpy(s->s3.previous_client_finished, s->s3.tmp.peer_finish_md,
md_len);
s->s3.previous_client_finished_len = md_len;
} else {
memcpy(s->s3.previous_server_finished, s->s3.tmp.peer_finish_md,
md_len);
s->s3.previous_server_finished_len = md_len;
}
/*
* In TLS1.3 we also have to change cipher state and do any final processing
* of the initial server flight (if we are a client)
*/
if (SSL_CONNECTION_IS_TLS13(s)) {
if (s->server) {
if (s->post_handshake_auth != SSL_PHA_REQUESTED &&
!ssl->method->ssl3_enc->change_cipher_state(s,
SSL3_CC_APPLICATION | SSL3_CHANGE_CIPHER_SERVER_READ)) {
/* SSLfatal() already called */
return MSG_PROCESS_ERROR;
}
} else {
/* TLS 1.3 gets the secret size from the handshake md */
size_t dummy;
if (!ssl->method->ssl3_enc->generate_master_secret(s,
s->master_secret, s->handshake_secret, 0,
&dummy)) {
/* SSLfatal() already called */
return MSG_PROCESS_ERROR;
}
if (!ssl->method->ssl3_enc->change_cipher_state(s,
SSL3_CC_APPLICATION | SSL3_CHANGE_CIPHER_CLIENT_READ)) {
/* SSLfatal() already called */
return MSG_PROCESS_ERROR;
}
if (!tls_process_initial_server_flight(s)) {
/* SSLfatal() already called */
return MSG_PROCESS_ERROR;
}
}
}
if (was_first
&& !SSL_IS_FIRST_HANDSHAKE(s)
&& s->rlayer.rrlmethod->set_first_handshake != NULL)
s->rlayer.rrlmethod->set_first_handshake(s->rlayer.rrl, 0);
return MSG_PROCESS_FINISHED_READING;
}
CON_FUNC_RETURN tls_construct_change_cipher_spec(SSL_CONNECTION *s, WPACKET *pkt)
{
if (!WPACKET_put_bytes_u8(pkt, SSL3_MT_CCS)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return CON_FUNC_ERROR;
}
return CON_FUNC_SUCCESS;
}
/* Add a certificate to the WPACKET */
static int ssl_add_cert_to_wpacket(SSL_CONNECTION *s, WPACKET *pkt,
X509 *x, int chain, int for_comp)
{
int len;
unsigned char *outbytes;
int context = SSL_EXT_TLS1_3_CERTIFICATE;
if (for_comp)
context |= SSL_EXT_TLS1_3_CERTIFICATE_COMPRESSION;
len = i2d_X509(x, NULL);
if (len < 0) {
if (!for_comp)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_BUF_LIB);
return 0;
}
if (!WPACKET_sub_allocate_bytes_u24(pkt, len, &outbytes)
|| i2d_X509(x, &outbytes) != len) {
if (!for_comp)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
if ((SSL_CONNECTION_IS_TLS13(s) || for_comp)
&& !tls_construct_extensions(s, pkt, context, x, chain)) {
/* SSLfatal() already called */
return 0;
}
return 1;
}
/* Add certificate chain to provided WPACKET */
static int ssl_add_cert_chain(SSL_CONNECTION *s, WPACKET *pkt, CERT_PKEY *cpk, int for_comp)
{
int i, chain_count;
X509 *x;
STACK_OF(X509) *extra_certs;
STACK_OF(X509) *chain = NULL;
X509_STORE *chain_store;
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
if (cpk == NULL || cpk->x509 == NULL)
return 1;
x = cpk->x509;
/*
* If we have a certificate specific chain use it, else use parent ctx.
*/
if (cpk->chain != NULL)
extra_certs = cpk->chain;
else
extra_certs = sctx->extra_certs;
if ((s->mode & SSL_MODE_NO_AUTO_CHAIN) || extra_certs)
chain_store = NULL;
else if (s->cert->chain_store)
chain_store = s->cert->chain_store;
else
chain_store = sctx->cert_store;
if (chain_store != NULL) {
X509_STORE_CTX *xs_ctx = X509_STORE_CTX_new_ex(sctx->libctx,
sctx->propq);
if (xs_ctx == NULL) {
if (!for_comp)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_X509_LIB);
return 0;
}
if (!X509_STORE_CTX_init(xs_ctx, chain_store, x, NULL)) {
X509_STORE_CTX_free(xs_ctx);
if (!for_comp)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_X509_LIB);
return 0;
}
/*
* It is valid for the chain not to be complete (because normally we
* don't include the root cert in the chain). Therefore we deliberately
* ignore the error return from this call. We're not actually verifying
* the cert - we're just building as much of the chain as we can
*/
(void)X509_verify_cert(xs_ctx);
/* Don't leave errors in the queue */
ERR_clear_error();
chain = X509_STORE_CTX_get0_chain(xs_ctx);
i = ssl_security_cert_chain(s, chain, NULL, 0);
if (i != 1) {
#if 0
/* Dummy error calls so mkerr generates them */
ERR_raise(ERR_LIB_SSL, SSL_R_EE_KEY_TOO_SMALL);
ERR_raise(ERR_LIB_SSL, SSL_R_CA_KEY_TOO_SMALL);
ERR_raise(ERR_LIB_SSL, SSL_R_CA_MD_TOO_WEAK);
#endif
X509_STORE_CTX_free(xs_ctx);
if (!for_comp)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, i);
return 0;
}
chain_count = sk_X509_num(chain);
for (i = 0; i < chain_count; i++) {
x = sk_X509_value(chain, i);
if (!ssl_add_cert_to_wpacket(s, pkt, x, i, for_comp)) {
/* SSLfatal() already called */
X509_STORE_CTX_free(xs_ctx);
return 0;
}
}
X509_STORE_CTX_free(xs_ctx);
} else {
i = ssl_security_cert_chain(s, extra_certs, x, 0);
if (i != 1) {
if (!for_comp)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, i);
return 0;
}
if (!ssl_add_cert_to_wpacket(s, pkt, x, 0, for_comp)) {
/* SSLfatal() already called */
return 0;
}
for (i = 0; i < sk_X509_num(extra_certs); i++) {
x = sk_X509_value(extra_certs, i);
if (!ssl_add_cert_to_wpacket(s, pkt, x, i + 1, for_comp)) {
/* SSLfatal() already called */
return 0;
}
}
}
return 1;
}
EVP_PKEY* tls_get_peer_pkey(const SSL_CONNECTION *sc)
{
if (sc->session->peer_rpk != NULL)
return sc->session->peer_rpk;
if (sc->session->peer != NULL)
return X509_get0_pubkey(sc->session->peer);
return NULL;
}
int tls_process_rpk(SSL_CONNECTION *sc, PACKET *pkt, EVP_PKEY **peer_rpk)
{
EVP_PKEY *pkey = NULL;
int ret = 0;
RAW_EXTENSION *rawexts = NULL;
PACKET extensions;
PACKET context;
unsigned long cert_len = 0, spki_len = 0;
const unsigned char *spki, *spkistart;
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(sc);
/*-
* ----------------------------
* TLS 1.3 Certificate message:
* ----------------------------
* https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.2
*
* enum {
* X509(0),
* RawPublicKey(2),
* (255)
* } CertificateType;
*
* struct {
* select (certificate_type) {
* case RawPublicKey:
* // From RFC 7250 ASN.1_subjectPublicKeyInfo
* opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;
*
* case X509:
* opaque cert_data<1..2^24-1>;
* };
* Extension extensions<0..2^16-1>;
* } CertificateEntry;
*
* struct {
* opaque certificate_request_context<0..2^8-1>;
* CertificateEntry certificate_list<0..2^24-1>;
* } Certificate;
*
* The client MUST send a Certificate message if and only if the server
* has requested client authentication via a CertificateRequest message
* (Section 4.3.2). If the server requests client authentication but no
* suitable certificate is available, the client MUST send a Certificate
* message containing no certificates (i.e., with the "certificate_list"
* field having length 0).
*
* ----------------------------
* TLS 1.2 Certificate message:
* ----------------------------
* https://datatracker.ietf.org/doc/html/rfc7250#section-3
*
* opaque ASN.1Cert<1..2^24-1>;
*
* struct {
* select(certificate_type){
*
* // certificate type defined in this document.
* case RawPublicKey:
* opaque ASN.1_subjectPublicKeyInfo<1..2^24-1>;
*
* // X.509 certificate defined in RFC 5246
* case X.509:
* ASN.1Cert certificate_list<0..2^24-1>;
*
* // Additional certificate type based on
* // "TLS Certificate Types" subregistry
* };
* } Certificate;
*
* -------------
* Consequently:
* -------------
* After the (TLS 1.3 only) context octet string (1 byte length + data) the
* Certificate message has a 3-byte length that is zero in the client to
* server message when the client has no RPK to send. In that case, there
* are no (TLS 1.3 only) per-certificate extensions either, because the
* [CertificateEntry] list is empty.
*
* In the server to client direction, or when the client had an RPK to send,
* the TLS 1.3 message just prepends the length of the RPK+extensions,
* while TLS <= 1.2 sends just the RPK (octet-string).
*
* The context must be zero-length in the server to client direction, and
* must match the value recorded in the certificate request in the client
* to server direction.
*/
if (SSL_CONNECTION_IS_TLS13(sc)) {
if (!PACKET_get_length_prefixed_1(pkt, &context)) {
SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_INVALID_CONTEXT);
goto err;
}
if (sc->server) {
if (sc->pha_context == NULL) {
if (PACKET_remaining(&context) != 0) {
SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_INVALID_CONTEXT);
goto err;
}
} else {
if (!PACKET_equal(&context, sc->pha_context, sc->pha_context_len)) {
SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_INVALID_CONTEXT);
goto err;
}
}
} else {
if (PACKET_remaining(&context) != 0) {
SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_INVALID_CONTEXT);
goto err;
}
}
}
if (!PACKET_get_net_3(pkt, &cert_len)
|| PACKET_remaining(pkt) != cert_len) {
SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH);
goto err;
}
/*
* The list length may be zero when there is no RPK. In the case of TLS
* 1.2 this is actually the RPK length, which cannot be zero as specified,
* but that breaks the ability of the client to decline client auth. We
* overload the 0 RPK length to mean "no RPK". This interpretation is
* also used some other (reference?) implementations, but is not supported
* by the verbatim RFC7250 text.
*/
if (cert_len == 0)
return 1;
if (SSL_CONNECTION_IS_TLS13(sc)) {
/*
* With TLS 1.3, a non-empty explicit-length RPK octet-string followed
* by a possibly empty extension block.
*/
if (!PACKET_get_net_3(pkt, &spki_len)) {
SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH);
goto err;
}
if (spki_len == 0) {
/* empty RPK */
SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_EMPTY_RAW_PUBLIC_KEY);
goto err;
}
} else {
spki_len = cert_len;
}
if (!PACKET_get_bytes(pkt, &spki, spki_len)) {
SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH);
goto err;
}
spkistart = spki;
if ((pkey = d2i_PUBKEY_ex(NULL, &spki, spki_len, sctx->libctx, sctx->propq)) == NULL
|| spki != (spkistart + spki_len)) {
SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH);
goto err;
}
if (EVP_PKEY_missing_parameters(pkey)) {
SSLfatal(sc, SSL_AD_INTERNAL_ERROR,
SSL_R_UNABLE_TO_FIND_PUBLIC_KEY_PARAMETERS);
goto err;
}
/* Process the Extensions block */
if (SSL_CONNECTION_IS_TLS13(sc)) {
if (PACKET_remaining(pkt) != (cert_len - 3 - spki_len)) {
SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_BAD_LENGTH);
goto err;
}
if (!PACKET_as_length_prefixed_2(pkt, &extensions)
|| PACKET_remaining(pkt) != 0) {
SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH);
goto err;
}
if (!tls_collect_extensions(sc, &extensions, SSL_EXT_TLS1_3_RAW_PUBLIC_KEY,
&rawexts, NULL, 1)) {
/* SSLfatal already called */
goto err;
}
/* chain index is always zero and fin always 1 for RPK */
if (!tls_parse_all_extensions(sc, SSL_EXT_TLS1_3_RAW_PUBLIC_KEY,
rawexts, NULL, 0, 1)) {
/* SSLfatal already called */
goto err;
}
}
ret = 1;
if (peer_rpk != NULL) {
*peer_rpk = pkey;
pkey = NULL;
}
err:
OPENSSL_free(rawexts);
EVP_PKEY_free(pkey);
return ret;
}
unsigned long tls_output_rpk(SSL_CONNECTION *sc, WPACKET *pkt, CERT_PKEY *cpk)
{
int pdata_len = 0;
unsigned char *pdata = NULL;
X509_PUBKEY *xpk = NULL;
unsigned long ret = 0;
X509 *x509 = NULL;
if (cpk != NULL && cpk->x509 != NULL) {
x509 = cpk->x509;
/* Get the RPK from the certificate */
xpk = X509_get_X509_PUBKEY(cpk->x509);
if (xpk == NULL) {
SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
pdata_len = i2d_X509_PUBKEY(xpk, &pdata);
} else if (cpk != NULL && cpk->privatekey != NULL) {
/* Get the RPK from the private key */
pdata_len = i2d_PUBKEY(cpk->privatekey, &pdata);
} else {
/* The server RPK is not optional */
if (sc->server) {
SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
/* The client can send a zero length certificate list */
if (!WPACKET_sub_memcpy_u24(pkt, pdata, pdata_len)) {
SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
return 1;
}
if (pdata_len <= 0) {
SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
/*
* TLSv1.2 is _just_ the raw public key
* TLSv1.3 includes extensions, so there's a length wrapper
*/
if (SSL_CONNECTION_IS_TLS13(sc)) {
if (!WPACKET_start_sub_packet_u24(pkt)) {
SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
}
if (!WPACKET_sub_memcpy_u24(pkt, pdata, pdata_len)) {
SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
if (SSL_CONNECTION_IS_TLS13(sc)) {
/*
* Only send extensions relevant to raw public keys. Until such
* extensions are defined, this will be an empty set of extensions.
* |x509| may be NULL, which raw public-key extensions need to handle.
*/
if (!tls_construct_extensions(sc, pkt, SSL_EXT_TLS1_3_RAW_PUBLIC_KEY,
x509, 0)) {
/* SSLfatal() already called */
goto err;
}
if (!WPACKET_close(pkt)) {
SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
}
ret = 1;
err:
OPENSSL_free(pdata);
return ret;
}
unsigned long ssl3_output_cert_chain(SSL_CONNECTION *s, WPACKET *pkt,
CERT_PKEY *cpk, int for_comp)
{
if (!WPACKET_start_sub_packet_u24(pkt)) {
if (!for_comp)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
if (!ssl_add_cert_chain(s, pkt, cpk, for_comp))
return 0;
if (!WPACKET_close(pkt)) {
if (!for_comp)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
/*
* Tidy up after the end of a handshake. In the case of SCTP this may result
* in NBIO events. If |clearbufs| is set then init_buf and the wbio buffer is
* freed up as well.
*/
WORK_STATE tls_finish_handshake(SSL_CONNECTION *s, ossl_unused WORK_STATE wst,
int clearbufs, int stop)
{
void (*cb) (const SSL *ssl, int type, int val) = NULL;
int cleanuphand = s->statem.cleanuphand;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
if (clearbufs) {
if (!SSL_CONNECTION_IS_DTLS(s)
#ifndef OPENSSL_NO_SCTP
/*
* RFC6083: SCTP provides a reliable and in-sequence transport service for DTLS
* messages that require it. Therefore, DTLS procedures for retransmissions
* MUST NOT be used.
* Hence the init_buf can be cleared when DTLS over SCTP as transport is used.
*/
|| BIO_dgram_is_sctp(SSL_get_wbio(ssl))
#endif
) {
/*
* We don't do this in DTLS over UDP because we may still need the init_buf
* in case there are any unexpected retransmits
*/
BUF_MEM_free(s->init_buf);
s->init_buf = NULL;
}
if (!ssl_free_wbio_buffer(s)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return WORK_ERROR;
}
s->init_num = 0;
}
if (SSL_CONNECTION_IS_TLS13(s) && !s->server
&& s->post_handshake_auth == SSL_PHA_REQUESTED)
s->post_handshake_auth = SSL_PHA_EXT_SENT;
/*
* Only set if there was a Finished message and this isn't after a TLSv1.3
* post handshake exchange
*/
if (cleanuphand) {
/* skipped if we just sent a HelloRequest */
s->renegotiate = 0;
s->new_session = 0;
s->statem.cleanuphand = 0;
s->ext.ticket_expected = 0;
ssl3_cleanup_key_block(s);
if (s->server) {
/*
* In TLSv1.3 we update the cache as part of constructing the
* NewSessionTicket
*/
if (!SSL_CONNECTION_IS_TLS13(s))
ssl_update_cache(s, SSL_SESS_CACHE_SERVER);
/* N.B. s->ctx may not equal s->session_ctx */
ssl_tsan_counter(sctx, &sctx->stats.sess_accept_good);
s->handshake_func = ossl_statem_accept;
} else {
if (SSL_CONNECTION_IS_TLS13(s)) {
/*
* We encourage applications to only use TLSv1.3 tickets once,
* so we remove this one from the cache.
*/
if ((s->session_ctx->session_cache_mode
& SSL_SESS_CACHE_CLIENT) != 0)
SSL_CTX_remove_session(s->session_ctx, s->session);
} else {
/*
* In TLSv1.3 we update the cache as part of processing the
* NewSessionTicket
*/
ssl_update_cache(s, SSL_SESS_CACHE_CLIENT);
}
if (s->hit)
ssl_tsan_counter(s->session_ctx,
&s->session_ctx->stats.sess_hit);
s->handshake_func = ossl_statem_connect;
ssl_tsan_counter(s->session_ctx,
&s->session_ctx->stats.sess_connect_good);
}
if (SSL_CONNECTION_IS_DTLS(s)) {
/* done with handshaking */
s->d1->handshake_read_seq = 0;
s->d1->handshake_write_seq = 0;
s->d1->next_handshake_write_seq = 0;
dtls1_clear_received_buffer(s);
}
}
if (s->info_callback != NULL)
cb = s->info_callback;
else if (sctx->info_callback != NULL)
cb = sctx->info_callback;
/* The callback may expect us to not be in init at handshake done */
ossl_statem_set_in_init(s, 0);
if (cb != NULL) {
if (cleanuphand
|| !SSL_CONNECTION_IS_TLS13(s)
|| SSL_IS_FIRST_HANDSHAKE(s))
cb(ssl, SSL_CB_HANDSHAKE_DONE, 1);
}
if (!stop) {
/* If we've got more work to do we go back into init */
ossl_statem_set_in_init(s, 1);
return WORK_FINISHED_CONTINUE;
}
return WORK_FINISHED_STOP;
}
int tls_get_message_header(SSL_CONNECTION *s, int *mt)
{
/* s->init_num < SSL3_HM_HEADER_LENGTH */
int skip_message, i, recvd_type;
unsigned char *p;
size_t l, readbytes;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
p = (unsigned char *)s->init_buf->data;
do {
while (s->init_num < SSL3_HM_HEADER_LENGTH) {
i = ssl->method->ssl_read_bytes(ssl, SSL3_RT_HANDSHAKE, &recvd_type,
&p[s->init_num],
SSL3_HM_HEADER_LENGTH - s->init_num,
0, &readbytes);
if (i <= 0) {
s->rwstate = SSL_READING;
return 0;
}
if (recvd_type == SSL3_RT_CHANGE_CIPHER_SPEC) {
/*
* A ChangeCipherSpec must be a single byte and may not occur
* in the middle of a handshake message.
*/
if (s->init_num != 0 || readbytes != 1 || p[0] != SSL3_MT_CCS) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_BAD_CHANGE_CIPHER_SPEC);
return 0;
}
if (s->statem.hand_state == TLS_ST_BEFORE
&& (s->s3.flags & TLS1_FLAGS_STATELESS) != 0) {
/*
* We are stateless and we received a CCS. Probably this is
* from a client between the first and second ClientHellos.
* We should ignore this, but return an error because we do
* not return success until we see the second ClientHello
* with a valid cookie.
*/
return 0;
}
s->s3.tmp.message_type = *mt = SSL3_MT_CHANGE_CIPHER_SPEC;
s->init_num = readbytes - 1;
s->init_msg = s->init_buf->data;
s->s3.tmp.message_size = readbytes;
return 1;
} else if (recvd_type != SSL3_RT_HANDSHAKE) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_CCS_RECEIVED_EARLY);
return 0;
}
s->init_num += readbytes;
}
skip_message = 0;
if (!s->server)
if (s->statem.hand_state != TLS_ST_OK
&& p[0] == SSL3_MT_HELLO_REQUEST)
/*
* The server may always send 'Hello Request' messages --
* we are doing a handshake anyway now, so ignore them if
* their format is correct. Does not count for 'Finished'
* MAC.
*/
if (p[1] == 0 && p[2] == 0 && p[3] == 0) {
s->init_num = 0;
skip_message = 1;
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE,
p, SSL3_HM_HEADER_LENGTH, ssl,
s->msg_callback_arg);
}
} while (skip_message);
/* s->init_num == SSL3_HM_HEADER_LENGTH */
*mt = *p;
s->s3.tmp.message_type = *(p++);
if (RECORD_LAYER_is_sslv2_record(&s->rlayer)) {
/*
* Only happens with SSLv3+ in an SSLv2 backward compatible
* ClientHello
*
* Total message size is the remaining record bytes to read
* plus the SSL3_HM_HEADER_LENGTH bytes that we already read
*/
l = s->rlayer.tlsrecs[0].length + SSL3_HM_HEADER_LENGTH;
s->s3.tmp.message_size = l;
s->init_msg = s->init_buf->data;
s->init_num = SSL3_HM_HEADER_LENGTH;
} else {
n2l3(p, l);
/* BUF_MEM_grow takes an 'int' parameter */
if (l > (INT_MAX - SSL3_HM_HEADER_LENGTH)) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
SSL_R_EXCESSIVE_MESSAGE_SIZE);
return 0;
}
s->s3.tmp.message_size = l;
s->init_msg = s->init_buf->data + SSL3_HM_HEADER_LENGTH;
s->init_num = 0;
}
return 1;
}
int tls_get_message_body(SSL_CONNECTION *s, size_t *len)
{
size_t n, readbytes;
unsigned char *p;
int i;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
if (s->s3.tmp.message_type == SSL3_MT_CHANGE_CIPHER_SPEC) {
/* We've already read everything in */
*len = (unsigned long)s->init_num;
return 1;
}
p = s->init_msg;
n = s->s3.tmp.message_size - s->init_num;
while (n > 0) {
i = ssl->method->ssl_read_bytes(ssl, SSL3_RT_HANDSHAKE, NULL,
&p[s->init_num], n, 0, &readbytes);
if (i <= 0) {
s->rwstate = SSL_READING;
*len = 0;
return 0;
}
s->init_num += readbytes;
n -= readbytes;
}
/*
* If receiving Finished, record MAC of prior handshake messages for
* Finished verification.
*/
if (*(s->init_buf->data) == SSL3_MT_FINISHED && !ssl3_take_mac(s)) {
/* SSLfatal() already called */
*len = 0;
return 0;
}
/* Feed this message into MAC computation. */
if (RECORD_LAYER_is_sslv2_record(&s->rlayer)) {
if (!ssl3_finish_mac(s, (unsigned char *)s->init_buf->data,
s->init_num)) {
/* SSLfatal() already called */
*len = 0;
return 0;
}
if (s->msg_callback)
s->msg_callback(0, SSL2_VERSION, 0, s->init_buf->data,
(size_t)s->init_num, ssl, s->msg_callback_arg);
} else {
/*
* We defer feeding in the HRR until later. We'll do it as part of
* processing the message
* The TLsv1.3 handshake transcript stops at the ClientFinished
* message.
*/
#define SERVER_HELLO_RANDOM_OFFSET (SSL3_HM_HEADER_LENGTH + 2)
/* KeyUpdate and NewSessionTicket do not need to be added */
if (!SSL_CONNECTION_IS_TLS13(s)
|| (s->s3.tmp.message_type != SSL3_MT_NEWSESSION_TICKET
&& s->s3.tmp.message_type != SSL3_MT_KEY_UPDATE)) {
if (s->s3.tmp.message_type != SSL3_MT_SERVER_HELLO
|| s->init_num < SERVER_HELLO_RANDOM_OFFSET + SSL3_RANDOM_SIZE
|| memcmp(hrrrandom,
s->init_buf->data + SERVER_HELLO_RANDOM_OFFSET,
SSL3_RANDOM_SIZE) != 0) {
if (!ssl3_finish_mac(s, (unsigned char *)s->init_buf->data,
s->init_num + SSL3_HM_HEADER_LENGTH)) {
/* SSLfatal() already called */
*len = 0;
return 0;
}
}
}
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, s->init_buf->data,
(size_t)s->init_num + SSL3_HM_HEADER_LENGTH, ssl,
s->msg_callback_arg);
}
*len = s->init_num;
return 1;
}
static const X509ERR2ALERT x509table[] = {
{X509_V_ERR_APPLICATION_VERIFICATION, SSL_AD_HANDSHAKE_FAILURE},
{X509_V_ERR_CA_KEY_TOO_SMALL, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_EC_KEY_EXPLICIT_PARAMS, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_CA_MD_TOO_WEAK, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_CERT_CHAIN_TOO_LONG, SSL_AD_UNKNOWN_CA},
{X509_V_ERR_CERT_HAS_EXPIRED, SSL_AD_CERTIFICATE_EXPIRED},
{X509_V_ERR_CERT_NOT_YET_VALID, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_CERT_REJECTED, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_CERT_REVOKED, SSL_AD_CERTIFICATE_REVOKED},
{X509_V_ERR_CERT_SIGNATURE_FAILURE, SSL_AD_DECRYPT_ERROR},
{X509_V_ERR_CERT_UNTRUSTED, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_CRL_HAS_EXPIRED, SSL_AD_CERTIFICATE_EXPIRED},
{X509_V_ERR_CRL_NOT_YET_VALID, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_CRL_SIGNATURE_FAILURE, SSL_AD_DECRYPT_ERROR},
{X509_V_ERR_DANE_NO_MATCH, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT, SSL_AD_UNKNOWN_CA},
{X509_V_ERR_EE_KEY_TOO_SMALL, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_EMAIL_MISMATCH, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_HOSTNAME_MISMATCH, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_INVALID_CA, SSL_AD_UNKNOWN_CA},
{X509_V_ERR_INVALID_CALL, SSL_AD_INTERNAL_ERROR},
{X509_V_ERR_INVALID_PURPOSE, SSL_AD_UNSUPPORTED_CERTIFICATE},
{X509_V_ERR_IP_ADDRESS_MISMATCH, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_OUT_OF_MEM, SSL_AD_INTERNAL_ERROR},
{X509_V_ERR_PATH_LENGTH_EXCEEDED, SSL_AD_UNKNOWN_CA},
{X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN, SSL_AD_UNKNOWN_CA},
{X509_V_ERR_STORE_LOOKUP, SSL_AD_INTERNAL_ERROR},
{X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE, SSL_AD_BAD_CERTIFICATE},
{X509_V_ERR_UNABLE_TO_GET_CRL, SSL_AD_UNKNOWN_CA},
{X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER, SSL_AD_UNKNOWN_CA},
{X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT, SSL_AD_UNKNOWN_CA},
{X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY, SSL_AD_UNKNOWN_CA},
{X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE, SSL_AD_UNKNOWN_CA},
{X509_V_ERR_UNSPECIFIED, SSL_AD_INTERNAL_ERROR},
/* Last entry; return this if we don't find the value above. */
{X509_V_OK, SSL_AD_CERTIFICATE_UNKNOWN}
};
int ssl_x509err2alert(int x509err)
{
const X509ERR2ALERT *tp;
for (tp = x509table; tp->x509err != X509_V_OK; ++tp)
if (tp->x509err == x509err)
break;
return tp->alert;
}
int ssl_allow_compression(SSL_CONNECTION *s)
{
if (s->options & SSL_OP_NO_COMPRESSION)
return 0;
return ssl_security(s, SSL_SECOP_COMPRESSION, 0, 0, NULL);
}
static int version_cmp(const SSL_CONNECTION *s, int a, int b)
{
int dtls = SSL_CONNECTION_IS_DTLS(s);
if (a == b)
return 0;
if (!dtls)
return a < b ? -1 : 1;
return DTLS_VERSION_LT(a, b) ? -1 : 1;
}
typedef struct {
int version;
const SSL_METHOD *(*cmeth) (void);
const SSL_METHOD *(*smeth) (void);
} version_info;
#if TLS_MAX_VERSION_INTERNAL != TLS1_3_VERSION
# error Code needs update for TLS_method() support beyond TLS1_3_VERSION.
#endif
/* Must be in order high to low */
static const version_info tls_version_table[] = {
#ifndef OPENSSL_NO_TLS1_3
{TLS1_3_VERSION, tlsv1_3_client_method, tlsv1_3_server_method},
#else
{TLS1_3_VERSION, NULL, NULL},
#endif
#ifndef OPENSSL_NO_TLS1_2
{TLS1_2_VERSION, tlsv1_2_client_method, tlsv1_2_server_method},
#else
{TLS1_2_VERSION, NULL, NULL},
#endif
#ifndef OPENSSL_NO_TLS1_1
{TLS1_1_VERSION, tlsv1_1_client_method, tlsv1_1_server_method},
#else
{TLS1_1_VERSION, NULL, NULL},
#endif
#ifndef OPENSSL_NO_TLS1
{TLS1_VERSION, tlsv1_client_method, tlsv1_server_method},
#else
{TLS1_VERSION, NULL, NULL},
#endif
#ifndef OPENSSL_NO_SSL3
{SSL3_VERSION, sslv3_client_method, sslv3_server_method},
#else
{SSL3_VERSION, NULL, NULL},
#endif
{0, NULL, NULL},
};
#if DTLS_MAX_VERSION_INTERNAL != DTLS1_2_VERSION
# error Code needs update for DTLS_method() support beyond DTLS1_2_VERSION.
#endif
/* Must be in order high to low */
static const version_info dtls_version_table[] = {
#ifndef OPENSSL_NO_DTLS1_2
{DTLS1_2_VERSION, dtlsv1_2_client_method, dtlsv1_2_server_method},
#else
{DTLS1_2_VERSION, NULL, NULL},
#endif
#ifndef OPENSSL_NO_DTLS1
{DTLS1_VERSION, dtlsv1_client_method, dtlsv1_server_method},
{DTLS1_BAD_VER, dtls_bad_ver_client_method, NULL},
#else
{DTLS1_VERSION, NULL, NULL},
{DTLS1_BAD_VER, NULL, NULL},
#endif
{0, NULL, NULL},
};
/*
* ssl_method_error - Check whether an SSL_METHOD is enabled.
*
* @s: The SSL handle for the candidate method
* @method: the intended method.
*
* Returns 0 on success, or an SSL error reason on failure.
*/
static int ssl_method_error(const SSL_CONNECTION *s, const SSL_METHOD *method)
{
int version = method->version;
if ((s->min_proto_version != 0 &&
version_cmp(s, version, s->min_proto_version) < 0) ||
ssl_security(s, SSL_SECOP_VERSION, 0, version, NULL) == 0)
return SSL_R_VERSION_TOO_LOW;
if (s->max_proto_version != 0 &&
version_cmp(s, version, s->max_proto_version) > 0)
return SSL_R_VERSION_TOO_HIGH;
if ((s->options & method->mask) != 0)
return SSL_R_UNSUPPORTED_PROTOCOL;
if ((method->flags & SSL_METHOD_NO_SUITEB) != 0 && tls1_suiteb(s))
return SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE;
return 0;
}
/*
* Only called by servers. Returns 1 if the server has a TLSv1.3 capable
* certificate type, or has PSK or a certificate callback configured, or has
* a servername callback configure. Otherwise returns 0.
*/
static int is_tls13_capable(const SSL_CONNECTION *s)
{
size_t i;
int curve;
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
if (!ossl_assert(sctx != NULL) || !ossl_assert(s->session_ctx != NULL))
return 0;
/*
* A servername callback can change the available certs, so if a servername
* cb is set then we just assume TLSv1.3 will be ok
*/
if (sctx->ext.servername_cb != NULL
|| s->session_ctx->ext.servername_cb != NULL)
return 1;
#ifndef OPENSSL_NO_PSK
if (s->psk_server_callback != NULL)
return 1;
#endif
if (s->psk_find_session_cb != NULL || s->cert->cert_cb != NULL)
return 1;
/* All provider-based sig algs are required to support at least TLS1.3 */
for (i = 0; i < s->ssl_pkey_num; i++) {
/* Skip over certs disallowed for TLSv1.3 */
switch (i) {
case SSL_PKEY_DSA_SIGN:
case SSL_PKEY_GOST01:
case SSL_PKEY_GOST12_256:
case SSL_PKEY_GOST12_512:
continue;
default:
break;
}
if (!ssl_has_cert(s, i))
continue;
if (i != SSL_PKEY_ECC)
return 1;
/*
* Prior to TLSv1.3 sig algs allowed any curve to be used. TLSv1.3 is
* more restrictive so check that our sig algs are consistent with this
* EC cert. See section 4.2.3 of RFC8446.
*/
curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC].privatekey);
if (tls_check_sigalg_curve(s, curve))
return 1;
}
return 0;
}
/*
* ssl_version_supported - Check that the specified `version` is supported by
* `SSL *` instance
*
* @s: The SSL handle for the candidate method
* @version: Protocol version to test against
*
* Returns 1 when supported, otherwise 0
*/
int ssl_version_supported(const SSL_CONNECTION *s, int version,
const SSL_METHOD **meth)
{
const version_info *vent;
const version_info *table;
switch (SSL_CONNECTION_GET_SSL(s)->method->version) {
default:
/* Version should match method version for non-ANY method */
return version_cmp(s, version, s->version) == 0;
case TLS_ANY_VERSION:
table = tls_version_table;
break;
case DTLS_ANY_VERSION:
table = dtls_version_table;
break;
}
for (vent = table;
vent->version != 0 && version_cmp(s, version, vent->version) <= 0;
++vent) {
if (vent->cmeth != NULL
&& version_cmp(s, version, vent->version) == 0
&& ssl_method_error(s, vent->cmeth()) == 0
&& (!s->server
|| version != TLS1_3_VERSION
|| is_tls13_capable(s))) {
if (meth != NULL)
*meth = vent->cmeth();
return 1;
}
}
return 0;
}
/*
* ssl_check_version_downgrade - In response to RFC7507 SCSV version
* fallback indication from a client check whether we're using the highest
* supported protocol version.
*
* @s server SSL handle.
*
* Returns 1 when using the highest enabled version, 0 otherwise.
*/
int ssl_check_version_downgrade(SSL_CONNECTION *s)
{
const version_info *vent;
const version_info *table;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
/*
* Check that the current protocol is the highest enabled version
* (according to ssl->defltmethod, as version negotiation may have changed
* s->method).
*/
if (s->version == ssl->defltmeth->version)
return 1;
/*
* Apparently we're using a version-flexible SSL_METHOD (not at its
* highest protocol version).
*/
if (ssl->defltmeth->version == TLS_method()->version)
table = tls_version_table;
else if (ssl->defltmeth->version == DTLS_method()->version)
table = dtls_version_table;
else {
/* Unexpected state; fail closed. */
return 0;
}
for (vent = table; vent->version != 0; ++vent) {
if (vent->smeth != NULL && ssl_method_error(s, vent->smeth()) == 0)
return s->version == vent->version;
}
return 0;
}
/*
* ssl_set_version_bound - set an upper or lower bound on the supported (D)TLS
* protocols, provided the initial (D)TLS method is version-flexible. This
* function sanity-checks the proposed value and makes sure the method is
* version-flexible, then sets the limit if all is well.
*
* @method_version: The version of the current SSL_METHOD.
* @version: the intended limit.
* @bound: pointer to limit to be updated.
*
* Returns 1 on success, 0 on failure.
*/
int ssl_set_version_bound(int method_version, int version, int *bound)
{
int valid_tls;
int valid_dtls;
if (version == 0) {
*bound = version;
return 1;
}
valid_tls = version >= SSL3_VERSION && version <= TLS_MAX_VERSION_INTERNAL;
valid_dtls =
/* We support client side pre-standardisation version of DTLS */
(version == DTLS1_BAD_VER)
|| (DTLS_VERSION_LE(version, DTLS_MAX_VERSION_INTERNAL)
&& DTLS_VERSION_GE(version, DTLS1_VERSION));
if (!valid_tls && !valid_dtls)
return 0;
/*-
* Restrict TLS methods to TLS protocol versions.
* Restrict DTLS methods to DTLS protocol versions.
* Note, DTLS version numbers are decreasing, use comparison macros.
*
* Note that for both lower-bounds we use explicit versions, not
* (D)TLS_MIN_VERSION. This is because we don't want to break user
* configurations. If the MIN (supported) version ever rises, the user's
* "floor" remains valid even if no longer available. We don't expect the
* MAX ceiling to ever get lower, so making that variable makes sense.
*
* We ignore attempts to set bounds on version-inflexible methods,
* returning success.
*/
switch (method_version) {
default:
break;
case TLS_ANY_VERSION:
if (valid_tls)
*bound = version;
break;
case DTLS_ANY_VERSION:
if (valid_dtls)
*bound = version;
break;
}
return 1;
}
static void check_for_downgrade(SSL_CONNECTION *s, int vers, DOWNGRADE *dgrd)
{
if (vers == TLS1_2_VERSION
&& ssl_version_supported(s, TLS1_3_VERSION, NULL)) {
*dgrd = DOWNGRADE_TO_1_2;
} else if (!SSL_CONNECTION_IS_DTLS(s)
&& vers < TLS1_2_VERSION
/*
* We need to ensure that a server that disables TLSv1.2
* (creating a hole between TLSv1.3 and TLSv1.1) can still
* complete handshakes with clients that support TLSv1.2 and
* below. Therefore we do not enable the sentinel if TLSv1.3 is
* enabled and TLSv1.2 is not.
*/
&& ssl_version_supported(s, TLS1_2_VERSION, NULL)) {
*dgrd = DOWNGRADE_TO_1_1;
} else {
*dgrd = DOWNGRADE_NONE;
}
}
/*
* ssl_choose_server_version - Choose server (D)TLS version. Called when the
* client HELLO is received to select the final server protocol version and
* the version specific method.
*
* @s: server SSL handle.
*
* Returns 0 on success or an SSL error reason number on failure.
*/
int ssl_choose_server_version(SSL_CONNECTION *s, CLIENTHELLO_MSG *hello,
DOWNGRADE *dgrd)
{
/*-
* With version-flexible methods we have an initial state with:
*
* s->method->version == (D)TLS_ANY_VERSION,
* s->version == (D)TLS_MAX_VERSION_INTERNAL.
*
* So we detect version-flexible methods via the method version, not the
* handle version.
*/
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
int server_version = ssl->method->version;
int client_version = hello->legacy_version;
const version_info *vent;
const version_info *table;
int disabled = 0;
RAW_EXTENSION *suppversions;
s->client_version = client_version;
switch (server_version) {
default:
if (!SSL_CONNECTION_IS_TLS13(s)) {
if (version_cmp(s, client_version, s->version) < 0)
return SSL_R_WRONG_SSL_VERSION;
*dgrd = DOWNGRADE_NONE;
/*
* If this SSL handle is not from a version flexible method we don't
* (and never did) check min/max FIPS or Suite B constraints. Hope
* that's OK. It is up to the caller to not choose fixed protocol
* versions they don't want. If not, then easy to fix, just return
* ssl_method_error(s, s->method)
*/
return 0;
}
/*
* Fall through if we are TLSv1.3 already (this means we must be after
* a HelloRetryRequest
*/
/* fall thru */
case TLS_ANY_VERSION:
table = tls_version_table;
break;
case DTLS_ANY_VERSION:
table = dtls_version_table;
break;
}
suppversions = &hello->pre_proc_exts[TLSEXT_IDX_supported_versions];
/* If we did an HRR then supported versions is mandatory */
if (!suppversions->present && s->hello_retry_request != SSL_HRR_NONE)
return SSL_R_UNSUPPORTED_PROTOCOL;
if (suppversions->present && !SSL_CONNECTION_IS_DTLS(s)) {
unsigned int candidate_vers = 0;
unsigned int best_vers = 0;
const SSL_METHOD *best_method = NULL;
PACKET versionslist;
suppversions->parsed = 1;
if (!PACKET_as_length_prefixed_1(&suppversions->data, &versionslist)) {
/* Trailing or invalid data? */
return SSL_R_LENGTH_MISMATCH;
}
/*
* The TLSv1.3 spec says the client MUST set this to TLS1_2_VERSION.
* The spec only requires servers to check that it isn't SSLv3:
* "Any endpoint receiving a Hello message with
* ClientHello.legacy_version or ServerHello.legacy_version set to
* 0x0300 MUST abort the handshake with a "protocol_version" alert."
* We are slightly stricter and require that it isn't SSLv3 or lower.
* We tolerate TLSv1 and TLSv1.1.
*/
if (client_version <= SSL3_VERSION)
return SSL_R_BAD_LEGACY_VERSION;
while (PACKET_get_net_2(&versionslist, &candidate_vers)) {
if (version_cmp(s, candidate_vers, best_vers) <= 0)
continue;
if (ssl_version_supported(s, candidate_vers, &best_method))
best_vers = candidate_vers;
}
if (PACKET_remaining(&versionslist) != 0) {
/* Trailing data? */
return SSL_R_LENGTH_MISMATCH;
}
if (best_vers > 0) {
if (s->hello_retry_request != SSL_HRR_NONE) {
/*
* This is after a HelloRetryRequest so we better check that we
* negotiated TLSv1.3
*/
if (best_vers != TLS1_3_VERSION)
return SSL_R_UNSUPPORTED_PROTOCOL;
return 0;
}
check_for_downgrade(s, best_vers, dgrd);
s->version = best_vers;
ssl->method = best_method;
if (!ssl_set_record_protocol_version(s, best_vers))
return ERR_R_INTERNAL_ERROR;
return 0;
}
return SSL_R_UNSUPPORTED_PROTOCOL;
}
/*
* If the supported versions extension isn't present, then the highest
* version we can negotiate is TLSv1.2
*/
if (version_cmp(s, client_version, TLS1_3_VERSION) >= 0)
client_version = TLS1_2_VERSION;
/*
* No supported versions extension, so we just use the version supplied in
* the ClientHello.
*/
for (vent = table; vent->version != 0; ++vent) {
const SSL_METHOD *method;
if (vent->smeth == NULL ||
version_cmp(s, client_version, vent->version) < 0)
continue;
method = vent->smeth();
if (ssl_method_error(s, method) == 0) {
check_for_downgrade(s, vent->version, dgrd);
s->version = vent->version;
ssl->method = method;
if (!ssl_set_record_protocol_version(s, s->version))
return ERR_R_INTERNAL_ERROR;
return 0;
}
disabled = 1;
}
return disabled ? SSL_R_UNSUPPORTED_PROTOCOL : SSL_R_VERSION_TOO_LOW;
}
/*
* ssl_choose_client_version - Choose client (D)TLS version. Called when the
* server HELLO is received to select the final client protocol version and
* the version specific method.
*
* @s: client SSL handle.
* @version: The proposed version from the server's HELLO.
* @extensions: The extensions received
*
* Returns 1 on success or 0 on error.
*/
int ssl_choose_client_version(SSL_CONNECTION *s, int version,
RAW_EXTENSION *extensions)
{
const version_info *vent;
const version_info *table;
int ret, ver_min, ver_max, real_max, origv;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
origv = s->version;
s->version = version;
/* This will overwrite s->version if the extension is present */
if (!tls_parse_extension(s, TLSEXT_IDX_supported_versions,
SSL_EXT_TLS1_2_SERVER_HELLO
| SSL_EXT_TLS1_3_SERVER_HELLO, extensions,
NULL, 0)) {
s->version = origv;
return 0;
}
if (s->hello_retry_request != SSL_HRR_NONE
&& s->version != TLS1_3_VERSION) {
s->version = origv;
SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_WRONG_SSL_VERSION);
return 0;
}
switch (ssl->method->version) {
default:
if (s->version != ssl->method->version) {
s->version = origv;
SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_WRONG_SSL_VERSION);
return 0;
}
/*
* If this SSL handle is not from a version flexible method we don't
* (and never did) check min/max, FIPS or Suite B constraints. Hope
* that's OK. It is up to the caller to not choose fixed protocol
* versions they don't want. If not, then easy to fix, just return
* ssl_method_error(s, s->method)
*/
if (!ssl_set_record_protocol_version(s, s->version)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
case TLS_ANY_VERSION:
table = tls_version_table;
break;
case DTLS_ANY_VERSION:
table = dtls_version_table;
break;
}
ret = ssl_get_min_max_version(s, &ver_min, &ver_max, &real_max);
if (ret != 0) {
s->version = origv;
SSLfatal(s, SSL_AD_PROTOCOL_VERSION, ret);
return 0;
}
if (SSL_CONNECTION_IS_DTLS(s) ? DTLS_VERSION_LT(s->version, ver_min)
: s->version < ver_min) {
s->version = origv;
SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_UNSUPPORTED_PROTOCOL);
return 0;
} else if (SSL_CONNECTION_IS_DTLS(s) ? DTLS_VERSION_GT(s->version, ver_max)
: s->version > ver_max) {
s->version = origv;
SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_UNSUPPORTED_PROTOCOL);
return 0;
}
if ((s->mode & SSL_MODE_SEND_FALLBACK_SCSV) == 0)
real_max = ver_max;
/* Check for downgrades */
if (s->version == TLS1_2_VERSION && real_max > s->version) {
if (memcmp(tls12downgrade,
s->s3.server_random + SSL3_RANDOM_SIZE
- sizeof(tls12downgrade),
sizeof(tls12downgrade)) == 0) {
s->version = origv;
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
SSL_R_INAPPROPRIATE_FALLBACK);
return 0;
}
} else if (!SSL_CONNECTION_IS_DTLS(s)
&& s->version < TLS1_2_VERSION
&& real_max > s->version) {
if (memcmp(tls11downgrade,
s->s3.server_random + SSL3_RANDOM_SIZE
- sizeof(tls11downgrade),
sizeof(tls11downgrade)) == 0) {
s->version = origv;
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
SSL_R_INAPPROPRIATE_FALLBACK);
return 0;
}
}
for (vent = table; vent->version != 0; ++vent) {
if (vent->cmeth == NULL || s->version != vent->version)
continue;
ssl->method = vent->cmeth();
if (!ssl_set_record_protocol_version(s, s->version)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
s->version = origv;
SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_UNSUPPORTED_PROTOCOL);
return 0;
}
/*
* ssl_get_min_max_version - get minimum and maximum protocol version
* @s: The SSL connection
* @min_version: The minimum supported version
* @max_version: The maximum supported version
* @real_max: The highest version below the lowest compile time version hole
* where that hole lies above at least one run-time enabled
* protocol.
*
* Work out what version we should be using for the initial ClientHello if the
* version is initially (D)TLS_ANY_VERSION. We apply any explicit SSL_OP_NO_xxx
* options, the MinProtocol and MaxProtocol configuration commands, any Suite B
* constraints and any floor imposed by the security level here,
* so we don't advertise the wrong protocol version to only reject the outcome later.
*
* Computing the right floor matters. If, e.g., TLS 1.0 and 1.2 are enabled,
* TLS 1.1 is disabled, but the security level, Suite-B and/or MinProtocol
* only allow TLS 1.2, we want to advertise TLS1.2, *not* TLS1.
*
* Returns 0 on success or an SSL error reason number on failure. On failure
* min_version and max_version will also be set to 0.
*/
int ssl_get_min_max_version(const SSL_CONNECTION *s, int *min_version,
int *max_version, int *real_max)
{
int version, tmp_real_max;
int hole;
const SSL_METHOD *method;
const version_info *table;
const version_info *vent;
const SSL *ssl = SSL_CONNECTION_GET_SSL(s);
switch (ssl->method->version) {
default:
/*
* If this SSL handle is not from a version flexible method we don't
* (and never did) check min/max FIPS or Suite B constraints. Hope
* that's OK. It is up to the caller to not choose fixed protocol
* versions they don't want. If not, then easy to fix, just return
* ssl_method_error(s, s->method)
*/
*min_version = *max_version = s->version;
/*
* Providing a real_max only makes sense where we're using a version
* flexible method.
*/
if (!ossl_assert(real_max == NULL))
return ERR_R_INTERNAL_ERROR;
return 0;
case TLS_ANY_VERSION:
table = tls_version_table;
break;
case DTLS_ANY_VERSION:
table = dtls_version_table;
break;
}
/*
* SSL_OP_NO_X disables all protocols above X *if* there are some protocols
* below X enabled. This is required in order to maintain the "version
* capability" vector contiguous. Any versions with a NULL client method
* (protocol version client is disabled at compile-time) is also a "hole".
*
* Our initial state is hole == 1, version == 0. That is, versions above
* the first version in the method table are disabled (a "hole" above
* the valid protocol entries) and we don't have a selected version yet.
*
* Whenever "hole == 1", and we hit an enabled method, its version becomes
* the selected version. We're no longer in a hole, so "hole" becomes 0.
*
* If "hole == 0" and we hit an enabled method, we support a contiguous
* range of at least two methods. If we hit a disabled method,
* then hole becomes true again, but nothing else changes yet,
* because all the remaining methods may be disabled too.
* If we again hit an enabled method after the new hole, it becomes
* selected, as we start from scratch.
*/
*min_version = version = 0;
hole = 1;
if (real_max != NULL)
*real_max = 0;
tmp_real_max = 0;
for (vent = table; vent->version != 0; ++vent) {
/*
* A table entry with a NULL client method is still a hole in the
* "version capability" vector.
*/
if (vent->cmeth == NULL) {
hole = 1;
tmp_real_max = 0;
continue;
}
method = vent->cmeth();
if (hole == 1 && tmp_real_max == 0)
tmp_real_max = vent->version;
if (ssl_method_error(s, method) != 0) {
hole = 1;
} else if (!hole) {
*min_version = method->version;
} else {
if (real_max != NULL && tmp_real_max != 0)
*real_max = tmp_real_max;
version = method->version;
*min_version = version;
hole = 0;
}
}
*max_version = version;
/* Fail if everything is disabled */
if (version == 0)
return SSL_R_NO_PROTOCOLS_AVAILABLE;
return 0;
}
/*
* ssl_set_client_hello_version - Work out what version we should be using for
* the initial ClientHello.legacy_version field.
*
* @s: client SSL handle.
*
* Returns 0 on success or an SSL error reason number on failure.
*/
int ssl_set_client_hello_version(SSL_CONNECTION *s)
{
int ver_min, ver_max, ret;
/*
* In a renegotiation we always send the same client_version that we sent
* last time, regardless of which version we eventually negotiated.
*/
if (!SSL_IS_FIRST_HANDSHAKE(s))
return 0;
ret = ssl_get_min_max_version(s, &ver_min, &ver_max, NULL);
if (ret != 0)
return ret;
s->version = ver_max;
if (SSL_CONNECTION_IS_DTLS(s)) {
if (ver_max == DTLS1_BAD_VER) {
/*
* Even though this is technically before version negotiation,
* because we have asked for DTLS1_BAD_VER we will never negotiate
* anything else, and this has impacts on the record layer for when
* we read the ServerHello. So we need to tell the record layer
* about this immediately.
*/
if (!ssl_set_record_protocol_version(s, ver_max))
return 0;
}
} else if (ver_max > TLS1_2_VERSION) {
/* TLS1.3 always uses TLS1.2 in the legacy_version field */
ver_max = TLS1_2_VERSION;
}
s->client_version = ver_max;
return 0;
}
/*
* Checks a list of |groups| to determine if the |group_id| is in it. If it is
* and |checkallow| is 1 then additionally check if the group is allowed to be
* used. Returns 1 if the group is in the list (and allowed if |checkallow| is
* 1) or 0 otherwise.
*/
int check_in_list(SSL_CONNECTION *s, uint16_t group_id, const uint16_t *groups,
size_t num_groups, int checkallow)
{
size_t i;
if (groups == NULL || num_groups == 0)
return 0;
for (i = 0; i < num_groups; i++) {
uint16_t group = groups[i];
if (group_id == group
&& (!checkallow
|| tls_group_allowed(s, group, SSL_SECOP_CURVE_CHECK))) {
return 1;
}
}
return 0;
}
/* Replace ClientHello1 in the transcript hash with a synthetic message */
int create_synthetic_message_hash(SSL_CONNECTION *s,
const unsigned char *hashval,
size_t hashlen, const unsigned char *hrr,
size_t hrrlen)
{
unsigned char hashvaltmp[EVP_MAX_MD_SIZE];
unsigned char msghdr[SSL3_HM_HEADER_LENGTH];
memset(msghdr, 0, sizeof(msghdr));
if (hashval == NULL) {
hashval = hashvaltmp;
hashlen = 0;
/* Get the hash of the initial ClientHello */
if (!ssl3_digest_cached_records(s, 0)
|| !ssl_handshake_hash(s, hashvaltmp, sizeof(hashvaltmp),
&hashlen)) {
/* SSLfatal() already called */
return 0;
}
}
/* Reinitialise the transcript hash */
if (!ssl3_init_finished_mac(s)) {
/* SSLfatal() already called */
return 0;
}
/* Inject the synthetic message_hash message */
msghdr[0] = SSL3_MT_MESSAGE_HASH;
msghdr[SSL3_HM_HEADER_LENGTH - 1] = (unsigned char)hashlen;
if (!ssl3_finish_mac(s, msghdr, SSL3_HM_HEADER_LENGTH)
|| !ssl3_finish_mac(s, hashval, hashlen)) {
/* SSLfatal() already called */
return 0;
}
/*
* Now re-inject the HRR and current message if appropriate (we just deleted
* it when we reinitialised the transcript hash above). Only necessary after
* receiving a ClientHello2 with a cookie.
*/
if (hrr != NULL
&& (!ssl3_finish_mac(s, hrr, hrrlen)
|| !ssl3_finish_mac(s, (unsigned char *)s->init_buf->data,
s->s3.tmp.message_size
+ SSL3_HM_HEADER_LENGTH))) {
/* SSLfatal() already called */
return 0;
}
return 1;
}
static int ca_dn_cmp(const X509_NAME *const *a, const X509_NAME *const *b)
{
return X509_NAME_cmp(*a, *b);
}
int parse_ca_names(SSL_CONNECTION *s, PACKET *pkt)
{
STACK_OF(X509_NAME) *ca_sk = sk_X509_NAME_new(ca_dn_cmp);
X509_NAME *xn = NULL;
PACKET cadns;
if (ca_sk == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB);
goto err;
}
/* get the CA RDNs */
if (!PACKET_get_length_prefixed_2(pkt, &cadns)) {
SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH);
goto err;
}
while (PACKET_remaining(&cadns)) {
const unsigned char *namestart, *namebytes;
unsigned int name_len;
if (!PACKET_get_net_2(&cadns, &name_len)
|| !PACKET_get_bytes(&cadns, &namebytes, name_len)) {
SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH);
goto err;
}
namestart = namebytes;
if ((xn = d2i_X509_NAME(NULL, &namebytes, name_len)) == NULL) {
SSLfatal(s, SSL_AD_DECODE_ERROR, ERR_R_ASN1_LIB);
goto err;
}
if (namebytes != (namestart + name_len)) {
SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_CA_DN_LENGTH_MISMATCH);
goto err;
}
if (!sk_X509_NAME_push(ca_sk, xn)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB);
goto err;
}
xn = NULL;
}
sk_X509_NAME_pop_free(s->s3.tmp.peer_ca_names, X509_NAME_free);
s->s3.tmp.peer_ca_names = ca_sk;
return 1;
err:
sk_X509_NAME_pop_free(ca_sk, X509_NAME_free);
X509_NAME_free(xn);
return 0;
}
const STACK_OF(X509_NAME) *get_ca_names(SSL_CONNECTION *s)
{
const STACK_OF(X509_NAME) *ca_sk = NULL;
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
if (s->server) {
ca_sk = SSL_get_client_CA_list(ssl);
if (ca_sk != NULL && sk_X509_NAME_num(ca_sk) == 0)
ca_sk = NULL;
}
if (ca_sk == NULL)
ca_sk = SSL_get0_CA_list(ssl);
return ca_sk;
}
int construct_ca_names(SSL_CONNECTION *s, const STACK_OF(X509_NAME) *ca_sk,
WPACKET *pkt)
{
/* Start sub-packet for client CA list */
if (!WPACKET_start_sub_packet_u16(pkt)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
if ((ca_sk != NULL) && !(s->options & SSL_OP_DISABLE_TLSEXT_CA_NAMES)) {
int i;
for (i = 0; i < sk_X509_NAME_num(ca_sk); i++) {
unsigned char *namebytes;
X509_NAME *name = sk_X509_NAME_value(ca_sk, i);
int namelen;
if (name == NULL
|| (namelen = i2d_X509_NAME(name, NULL)) < 0
|| !WPACKET_sub_allocate_bytes_u16(pkt, namelen,
&namebytes)
|| i2d_X509_NAME(name, &namebytes) != namelen) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
}
}
if (!WPACKET_close(pkt)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
/* Create a buffer containing data to be signed for server key exchange */
size_t construct_key_exchange_tbs(SSL_CONNECTION *s, unsigned char **ptbs,
const void *param, size_t paramlen)
{
size_t tbslen = 2 * SSL3_RANDOM_SIZE + paramlen;
unsigned char *tbs = OPENSSL_malloc(tbslen);
if (tbs == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB);
return 0;
}
memcpy(tbs, s->s3.client_random, SSL3_RANDOM_SIZE);
memcpy(tbs + SSL3_RANDOM_SIZE, s->s3.server_random, SSL3_RANDOM_SIZE);
memcpy(tbs + SSL3_RANDOM_SIZE * 2, param, paramlen);
*ptbs = tbs;
return tbslen;
}
/*
* Saves the current handshake digest for Post-Handshake Auth,
* Done after ClientFinished is processed, done exactly once
*/
int tls13_save_handshake_digest_for_pha(SSL_CONNECTION *s)
{
if (s->pha_dgst == NULL) {
if (!ssl3_digest_cached_records(s, 1))
/* SSLfatal() already called */
return 0;
s->pha_dgst = EVP_MD_CTX_new();
if (s->pha_dgst == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
if (!EVP_MD_CTX_copy_ex(s->pha_dgst,
s->s3.handshake_dgst)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
EVP_MD_CTX_free(s->pha_dgst);
s->pha_dgst = NULL;
return 0;
}
}
return 1;
}
/*
* Restores the Post-Handshake Auth handshake digest
* Done just before sending/processing the Cert Request
*/
int tls13_restore_handshake_digest_for_pha(SSL_CONNECTION *s)
{
if (s->pha_dgst == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
if (!EVP_MD_CTX_copy_ex(s->s3.handshake_dgst,
s->pha_dgst)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
#ifndef OPENSSL_NO_COMP_ALG
MSG_PROCESS_RETURN tls13_process_compressed_certificate(SSL_CONNECTION *sc,
PACKET *pkt,
PACKET *tmppkt,
BUF_MEM *buf)
{
MSG_PROCESS_RETURN ret = MSG_PROCESS_ERROR;
int comp_alg;
COMP_METHOD *method = NULL;
COMP_CTX *comp = NULL;
size_t expected_length;
size_t comp_length;
int i;
int found = 0;
if (buf == NULL) {
SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!PACKET_get_net_2(pkt, (unsigned int*)&comp_alg)) {
SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, ERR_R_INTERNAL_ERROR);
goto err;
}
/* If we have a prefs list, make sure the algorithm is in it */
if (sc->cert_comp_prefs[0] != TLSEXT_comp_cert_none) {
for (i = 0; sc->cert_comp_prefs[i] != TLSEXT_comp_cert_none; i++) {
if (sc->cert_comp_prefs[i] == comp_alg) {
found = 1;
break;
}
}
if (!found) {
SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, SSL_R_BAD_COMPRESSION_ALGORITHM);
goto err;
}
}
if (!ossl_comp_has_alg(comp_alg)) {
SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, SSL_R_BAD_COMPRESSION_ALGORITHM);
goto err;
}
switch (comp_alg) {
case TLSEXT_comp_cert_zlib:
method = COMP_zlib_oneshot();
break;
case TLSEXT_comp_cert_brotli:
method = COMP_brotli_oneshot();
break;
case TLSEXT_comp_cert_zstd:
method = COMP_zstd_oneshot();
break;
default:
SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, SSL_R_BAD_COMPRESSION_ALGORITHM);
goto err;
}
if ((comp = COMP_CTX_new(method)) == NULL
|| !PACKET_get_net_3_len(pkt, &expected_length)
|| !PACKET_get_net_3_len(pkt, &comp_length)
|| PACKET_remaining(pkt) != comp_length
|| !BUF_MEM_grow(buf, expected_length)
|| !PACKET_buf_init(tmppkt, (unsigned char *)buf->data, expected_length)
|| COMP_expand_block(comp, (unsigned char *)buf->data, expected_length,
(unsigned char*)PACKET_data(pkt), comp_length) != (int)expected_length) {
SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, SSL_R_BAD_DECOMPRESSION);
goto err;
}
ret = MSG_PROCESS_CONTINUE_PROCESSING;
err:
COMP_CTX_free(comp);
return ret;
}
#endif