mirror of
https://github.com/openssl/openssl.git
synced 2024-12-27 06:21:43 +08:00
7cc355c2e4
Added Algorithm names AES-128-CBC-CTS, AES-192-CBC-CTS and AES-256-CBC-CTS. CS1, CS2 and CS3 variants are supported. Only single shot updates are supported. The cipher returns the mode EVP_CIPH_CBC_MODE (Internally it shares the aes_cbc cipher code). This would allow existing code that uses AES_CBC to switch to the CTS variant without breaking code that tests for this mode. Because it shares the aes_cbc code the cts128.c functions could not be used directly. The cipher returns the flag EVP_CIPH_FLAG_CTS. EVP_CIPH_FLAG_FIPS & EVP_CIPH_FLAG_NON_FIPS_ALLOW have been deprecated. Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/12094)
3573 lines
100 KiB
C
3573 lines
100 KiB
C
/*
|
|
* Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/pem.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/provider.h>
|
|
#include <openssl/x509v3.h>
|
|
#include <openssl/pkcs12.h>
|
|
#include <openssl/kdf.h>
|
|
#include <openssl/params.h>
|
|
#include <openssl/core_names.h>
|
|
#include "internal/numbers.h"
|
|
#include "internal/nelem.h"
|
|
#include "testutil.h"
|
|
#include "evp_test.h"
|
|
|
|
DEFINE_STACK_OF_STRING()
|
|
|
|
#define AAD_NUM 4
|
|
|
|
typedef struct evp_test_method_st EVP_TEST_METHOD;
|
|
|
|
/*
|
|
* Structure holding test information
|
|
*/
|
|
typedef struct evp_test_st {
|
|
STANZA s; /* Common test stanza */
|
|
char *name;
|
|
int skip; /* Current test should be skipped */
|
|
const EVP_TEST_METHOD *meth; /* method for this test */
|
|
const char *err, *aux_err; /* Error string for test */
|
|
char *expected_err; /* Expected error value of test */
|
|
char *reason; /* Expected error reason string */
|
|
void *data; /* test specific data */
|
|
} EVP_TEST;
|
|
|
|
/*
|
|
* Test method structure
|
|
*/
|
|
struct evp_test_method_st {
|
|
/* Name of test as it appears in file */
|
|
const char *name;
|
|
/* Initialise test for "alg" */
|
|
int (*init) (EVP_TEST * t, const char *alg);
|
|
/* Clean up method */
|
|
void (*cleanup) (EVP_TEST * t);
|
|
/* Test specific name value pair processing */
|
|
int (*parse) (EVP_TEST * t, const char *name, const char *value);
|
|
/* Run the test itself */
|
|
int (*run_test) (EVP_TEST * t);
|
|
};
|
|
|
|
|
|
/*
|
|
* Linked list of named keys.
|
|
*/
|
|
typedef struct key_list_st {
|
|
char *name;
|
|
EVP_PKEY *key;
|
|
struct key_list_st *next;
|
|
} KEY_LIST;
|
|
|
|
/*
|
|
* List of public and private keys
|
|
*/
|
|
static KEY_LIST *private_keys;
|
|
static KEY_LIST *public_keys;
|
|
static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst);
|
|
|
|
static int parse_bin(const char *value, unsigned char **buf, size_t *buflen);
|
|
|
|
/*
|
|
* Compare two memory regions for equality, returning zero if they differ.
|
|
* However, if there is expected to be an error and the actual error
|
|
* matches then the memory is expected to be different so handle this
|
|
* case without producing unnecessary test framework output.
|
|
*/
|
|
static int memory_err_compare(EVP_TEST *t, const char *err,
|
|
const void *expected, size_t expected_len,
|
|
const void *got, size_t got_len)
|
|
{
|
|
int r;
|
|
|
|
if (t->expected_err != NULL && strcmp(t->expected_err, err) == 0)
|
|
r = !TEST_mem_ne(expected, expected_len, got, got_len);
|
|
else
|
|
r = TEST_mem_eq(expected, expected_len, got, got_len);
|
|
if (!r)
|
|
t->err = err;
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Structure used to hold a list of blocks of memory to test
|
|
* calls to "update" like functions.
|
|
*/
|
|
struct evp_test_buffer_st {
|
|
unsigned char *buf;
|
|
size_t buflen;
|
|
size_t count;
|
|
int count_set;
|
|
};
|
|
|
|
static void evp_test_buffer_free(EVP_TEST_BUFFER *db)
|
|
{
|
|
if (db != NULL) {
|
|
OPENSSL_free(db->buf);
|
|
OPENSSL_free(db);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* append buffer to a list
|
|
*/
|
|
static int evp_test_buffer_append(const char *value,
|
|
STACK_OF(EVP_TEST_BUFFER) **sk)
|
|
{
|
|
EVP_TEST_BUFFER *db = NULL;
|
|
|
|
if (!TEST_ptr(db = OPENSSL_malloc(sizeof(*db))))
|
|
goto err;
|
|
|
|
if (!parse_bin(value, &db->buf, &db->buflen))
|
|
goto err;
|
|
db->count = 1;
|
|
db->count_set = 0;
|
|
|
|
if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null()))
|
|
goto err;
|
|
if (!sk_EVP_TEST_BUFFER_push(*sk, db))
|
|
goto err;
|
|
|
|
return 1;
|
|
|
|
err:
|
|
evp_test_buffer_free(db);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* replace last buffer in list with copies of itself
|
|
*/
|
|
static int evp_test_buffer_ncopy(const char *value,
|
|
STACK_OF(EVP_TEST_BUFFER) *sk)
|
|
{
|
|
EVP_TEST_BUFFER *db;
|
|
unsigned char *tbuf, *p;
|
|
size_t tbuflen;
|
|
int ncopy = atoi(value);
|
|
int i;
|
|
|
|
if (ncopy <= 0)
|
|
return 0;
|
|
if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
|
|
return 0;
|
|
db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
|
|
|
|
tbuflen = db->buflen * ncopy;
|
|
if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen)))
|
|
return 0;
|
|
for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen)
|
|
memcpy(p, db->buf, db->buflen);
|
|
|
|
OPENSSL_free(db->buf);
|
|
db->buf = tbuf;
|
|
db->buflen = tbuflen;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* set repeat count for last buffer in list
|
|
*/
|
|
static int evp_test_buffer_set_count(const char *value,
|
|
STACK_OF(EVP_TEST_BUFFER) *sk)
|
|
{
|
|
EVP_TEST_BUFFER *db;
|
|
int count = atoi(value);
|
|
|
|
if (count <= 0)
|
|
return 0;
|
|
|
|
if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0)
|
|
return 0;
|
|
|
|
db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1);
|
|
if (db->count_set != 0)
|
|
return 0;
|
|
|
|
db->count = (size_t)count;
|
|
db->count_set = 1;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* call "fn" with each element of the list in turn
|
|
*/
|
|
static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk,
|
|
int (*fn)(void *ctx,
|
|
const unsigned char *buf,
|
|
size_t buflen),
|
|
void *ctx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) {
|
|
EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i);
|
|
size_t j;
|
|
|
|
for (j = 0; j < tb->count; j++) {
|
|
if (fn(ctx, tb->buf, tb->buflen) <= 0)
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Unescape some sequences in string literals (only \n for now).
|
|
* Return an allocated buffer, set |out_len|. If |input_len|
|
|
* is zero, get an empty buffer but set length to zero.
|
|
*/
|
|
static unsigned char* unescape(const char *input, size_t input_len,
|
|
size_t *out_len)
|
|
{
|
|
unsigned char *ret, *p;
|
|
size_t i;
|
|
|
|
if (input_len == 0) {
|
|
*out_len = 0;
|
|
return OPENSSL_zalloc(1);
|
|
}
|
|
|
|
/* Escaping is non-expanding; over-allocate original size for simplicity. */
|
|
if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len)))
|
|
return NULL;
|
|
|
|
for (i = 0; i < input_len; i++) {
|
|
if (*input == '\\') {
|
|
if (i == input_len - 1 || *++input != 'n') {
|
|
TEST_error("Bad escape sequence in file");
|
|
goto err;
|
|
}
|
|
*p++ = '\n';
|
|
i++;
|
|
input++;
|
|
} else {
|
|
*p++ = *input++;
|
|
}
|
|
}
|
|
|
|
*out_len = p - ret;
|
|
return ret;
|
|
|
|
err:
|
|
OPENSSL_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* For a hex string "value" convert to a binary allocated buffer.
|
|
* Return 1 on success or 0 on failure.
|
|
*/
|
|
static int parse_bin(const char *value, unsigned char **buf, size_t *buflen)
|
|
{
|
|
long len;
|
|
|
|
/* Check for NULL literal */
|
|
if (strcmp(value, "NULL") == 0) {
|
|
*buf = NULL;
|
|
*buflen = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Check for empty value */
|
|
if (*value == '\0') {
|
|
/*
|
|
* Don't return NULL for zero length buffer. This is needed for
|
|
* some tests with empty keys: HMAC_Init_ex() expects a non-NULL key
|
|
* buffer even if the key length is 0, in order to detect key reset.
|
|
*/
|
|
*buf = OPENSSL_malloc(1);
|
|
if (*buf == NULL)
|
|
return 0;
|
|
**buf = 0;
|
|
*buflen = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Check for string literal */
|
|
if (value[0] == '"') {
|
|
size_t vlen = strlen(++value);
|
|
|
|
if (vlen == 0 || value[vlen - 1] != '"')
|
|
return 0;
|
|
vlen--;
|
|
*buf = unescape(value, vlen, buflen);
|
|
return *buf == NULL ? 0 : 1;
|
|
}
|
|
|
|
/* Otherwise assume as hex literal and convert it to binary buffer */
|
|
if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) {
|
|
TEST_info("Can't convert %s", value);
|
|
TEST_openssl_errors();
|
|
return -1;
|
|
}
|
|
/* Size of input buffer means we'll never overflow */
|
|
*buflen = len;
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
*** MESSAGE DIGEST TESTS
|
|
**/
|
|
|
|
typedef struct digest_data_st {
|
|
/* Digest this test is for */
|
|
const EVP_MD *digest;
|
|
EVP_MD *fetched_digest;
|
|
/* Input to digest */
|
|
STACK_OF(EVP_TEST_BUFFER) *input;
|
|
/* Expected output */
|
|
unsigned char *output;
|
|
size_t output_len;
|
|
/* Padding type */
|
|
int pad_type;
|
|
} DIGEST_DATA;
|
|
|
|
static int digest_test_init(EVP_TEST *t, const char *alg)
|
|
{
|
|
DIGEST_DATA *mdat;
|
|
const EVP_MD *digest;
|
|
EVP_MD *fetched_digest;
|
|
|
|
if ((digest = fetched_digest = EVP_MD_fetch(NULL, alg, NULL)) == NULL
|
|
&& (digest = EVP_get_digestbyname(alg)) == NULL) {
|
|
/* If alg has an OID assume disabled algorithm */
|
|
if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
|
|
return 0;
|
|
t->data = mdat;
|
|
mdat->digest = digest;
|
|
mdat->fetched_digest = fetched_digest;
|
|
mdat->pad_type = 0;
|
|
if (fetched_digest != NULL)
|
|
TEST_info("%s is fetched", alg);
|
|
return 1;
|
|
}
|
|
|
|
static void digest_test_cleanup(EVP_TEST *t)
|
|
{
|
|
DIGEST_DATA *mdat = t->data;
|
|
|
|
sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free);
|
|
OPENSSL_free(mdat->output);
|
|
EVP_MD_meth_free(mdat->fetched_digest);
|
|
}
|
|
|
|
static int digest_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
DIGEST_DATA *mdata = t->data;
|
|
|
|
if (strcmp(keyword, "Input") == 0)
|
|
return evp_test_buffer_append(value, &mdata->input);
|
|
if (strcmp(keyword, "Output") == 0)
|
|
return parse_bin(value, &mdata->output, &mdata->output_len);
|
|
if (strcmp(keyword, "Count") == 0)
|
|
return evp_test_buffer_set_count(value, mdata->input);
|
|
if (strcmp(keyword, "Ncopy") == 0)
|
|
return evp_test_buffer_ncopy(value, mdata->input);
|
|
if (strcmp(keyword, "Padding") == 0)
|
|
return (mdata->pad_type = atoi(value)) > 0;
|
|
return 0;
|
|
}
|
|
|
|
static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen)
|
|
{
|
|
return EVP_DigestUpdate(ctx, buf, buflen);
|
|
}
|
|
|
|
static int digest_test_run(EVP_TEST *t)
|
|
{
|
|
DIGEST_DATA *expected = t->data;
|
|
EVP_MD_CTX *mctx;
|
|
unsigned char *got = NULL;
|
|
unsigned int got_len;
|
|
OSSL_PARAM params[2];
|
|
|
|
t->err = "TEST_FAILURE";
|
|
if (!TEST_ptr(mctx = EVP_MD_CTX_new()))
|
|
goto err;
|
|
|
|
got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ?
|
|
expected->output_len : EVP_MAX_MD_SIZE);
|
|
if (!TEST_ptr(got))
|
|
goto err;
|
|
|
|
if (!EVP_DigestInit_ex(mctx, expected->digest, NULL)) {
|
|
t->err = "DIGESTINIT_ERROR";
|
|
goto err;
|
|
}
|
|
if (expected->pad_type > 0) {
|
|
params[0] = OSSL_PARAM_construct_int(OSSL_DIGEST_PARAM_PAD_TYPE,
|
|
&expected->pad_type);
|
|
params[1] = OSSL_PARAM_construct_end();
|
|
if (!TEST_int_gt(EVP_MD_CTX_set_params(mctx, params), 0)) {
|
|
t->err = "PARAMS_ERROR";
|
|
goto err;
|
|
}
|
|
}
|
|
if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) {
|
|
t->err = "DIGESTUPDATE_ERROR";
|
|
goto err;
|
|
}
|
|
|
|
if (EVP_MD_flags(expected->digest) & EVP_MD_FLAG_XOF) {
|
|
EVP_MD_CTX *mctx_cpy;
|
|
char dont[] = "touch";
|
|
|
|
if (!TEST_ptr(mctx_cpy = EVP_MD_CTX_new())) {
|
|
goto err;
|
|
}
|
|
if (!EVP_MD_CTX_copy(mctx_cpy, mctx)) {
|
|
EVP_MD_CTX_free(mctx_cpy);
|
|
goto err;
|
|
}
|
|
if (!EVP_DigestFinalXOF(mctx_cpy, (unsigned char *)dont, 0)) {
|
|
EVP_MD_CTX_free(mctx_cpy);
|
|
t->err = "DIGESTFINALXOF_ERROR";
|
|
goto err;
|
|
}
|
|
if (!TEST_str_eq(dont, "touch")) {
|
|
EVP_MD_CTX_free(mctx_cpy);
|
|
t->err = "DIGESTFINALXOF_ERROR";
|
|
goto err;
|
|
}
|
|
EVP_MD_CTX_free(mctx_cpy);
|
|
|
|
got_len = expected->output_len;
|
|
if (!EVP_DigestFinalXOF(mctx, got, got_len)) {
|
|
t->err = "DIGESTFINALXOF_ERROR";
|
|
goto err;
|
|
}
|
|
} else {
|
|
if (!EVP_DigestFinal(mctx, got, &got_len)) {
|
|
t->err = "DIGESTFINAL_ERROR";
|
|
goto err;
|
|
}
|
|
}
|
|
if (!TEST_int_eq(expected->output_len, got_len)) {
|
|
t->err = "DIGEST_LENGTH_MISMATCH";
|
|
goto err;
|
|
}
|
|
if (!memory_err_compare(t, "DIGEST_MISMATCH",
|
|
expected->output, expected->output_len,
|
|
got, got_len))
|
|
goto err;
|
|
|
|
t->err = NULL;
|
|
|
|
err:
|
|
OPENSSL_free(got);
|
|
EVP_MD_CTX_free(mctx);
|
|
return 1;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD digest_test_method = {
|
|
"Digest",
|
|
digest_test_init,
|
|
digest_test_cleanup,
|
|
digest_test_parse,
|
|
digest_test_run
|
|
};
|
|
|
|
|
|
/**
|
|
*** CIPHER TESTS
|
|
**/
|
|
|
|
typedef struct cipher_data_st {
|
|
const EVP_CIPHER *cipher;
|
|
EVP_CIPHER *fetched_cipher;
|
|
int enc;
|
|
/* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
|
|
int aead;
|
|
unsigned char *key;
|
|
size_t key_len;
|
|
size_t key_bits; /* Used by RC2 */
|
|
unsigned char *iv;
|
|
unsigned int rounds;
|
|
size_t iv_len;
|
|
unsigned char *plaintext;
|
|
size_t plaintext_len;
|
|
unsigned char *ciphertext;
|
|
size_t ciphertext_len;
|
|
/* GCM, CCM, OCB and SIV only */
|
|
unsigned char *aad[AAD_NUM];
|
|
size_t aad_len[AAD_NUM];
|
|
unsigned char *tag;
|
|
const char *cts_mode;
|
|
size_t tag_len;
|
|
int tag_late;
|
|
} CIPHER_DATA;
|
|
|
|
static int cipher_test_init(EVP_TEST *t, const char *alg)
|
|
{
|
|
const EVP_CIPHER *cipher;
|
|
EVP_CIPHER *fetched_cipher;
|
|
CIPHER_DATA *cdat;
|
|
int m;
|
|
|
|
if ((cipher = fetched_cipher = EVP_CIPHER_fetch(NULL, alg, NULL)) == NULL
|
|
&& (cipher = EVP_get_cipherbyname(alg)) == NULL) {
|
|
/* If alg has an OID assume disabled algorithm */
|
|
if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
cdat = OPENSSL_zalloc(sizeof(*cdat));
|
|
cdat->cipher = cipher;
|
|
cdat->fetched_cipher = fetched_cipher;
|
|
cdat->enc = -1;
|
|
m = EVP_CIPHER_mode(cipher);
|
|
if (m == EVP_CIPH_GCM_MODE
|
|
|| m == EVP_CIPH_OCB_MODE
|
|
|| m == EVP_CIPH_SIV_MODE
|
|
|| m == EVP_CIPH_CCM_MODE)
|
|
cdat->aead = m;
|
|
else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
|
|
cdat->aead = -1;
|
|
else
|
|
cdat->aead = 0;
|
|
|
|
t->data = cdat;
|
|
if (fetched_cipher != NULL)
|
|
TEST_info("%s is fetched", alg);
|
|
return 1;
|
|
}
|
|
|
|
static void cipher_test_cleanup(EVP_TEST *t)
|
|
{
|
|
int i;
|
|
CIPHER_DATA *cdat = t->data;
|
|
|
|
OPENSSL_free(cdat->key);
|
|
OPENSSL_free(cdat->iv);
|
|
OPENSSL_free(cdat->ciphertext);
|
|
OPENSSL_free(cdat->plaintext);
|
|
for (i = 0; i < AAD_NUM; i++)
|
|
OPENSSL_free(cdat->aad[i]);
|
|
OPENSSL_free(cdat->tag);
|
|
EVP_CIPHER_meth_free(cdat->fetched_cipher);
|
|
}
|
|
|
|
static int cipher_test_parse(EVP_TEST *t, const char *keyword,
|
|
const char *value)
|
|
{
|
|
CIPHER_DATA *cdat = t->data;
|
|
int i;
|
|
|
|
if (strcmp(keyword, "Key") == 0)
|
|
return parse_bin(value, &cdat->key, &cdat->key_len);
|
|
if (strcmp(keyword, "Rounds") == 0) {
|
|
i = atoi(value);
|
|
if (i < 0)
|
|
return -1;
|
|
cdat->rounds = (unsigned int)i;
|
|
return 1;
|
|
}
|
|
if (strcmp(keyword, "IV") == 0)
|
|
return parse_bin(value, &cdat->iv, &cdat->iv_len);
|
|
if (strcmp(keyword, "Plaintext") == 0)
|
|
return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len);
|
|
if (strcmp(keyword, "Ciphertext") == 0)
|
|
return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
|
|
if (strcmp(keyword, "KeyBits") == 0) {
|
|
i = atoi(value);
|
|
if (i < 0)
|
|
return -1;
|
|
cdat->key_bits = (size_t)i;
|
|
return 1;
|
|
}
|
|
if (cdat->aead) {
|
|
if (strcmp(keyword, "AAD") == 0) {
|
|
for (i = 0; i < AAD_NUM; i++) {
|
|
if (cdat->aad[i] == NULL)
|
|
return parse_bin(value, &cdat->aad[i], &cdat->aad_len[i]);
|
|
}
|
|
return -1;
|
|
}
|
|
if (strcmp(keyword, "Tag") == 0)
|
|
return parse_bin(value, &cdat->tag, &cdat->tag_len);
|
|
if (strcmp(keyword, "SetTagLate") == 0) {
|
|
if (strcmp(value, "TRUE") == 0)
|
|
cdat->tag_late = 1;
|
|
else if (strcmp(value, "FALSE") == 0)
|
|
cdat->tag_late = 0;
|
|
else
|
|
return -1;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (strcmp(keyword, "Operation") == 0) {
|
|
if (strcmp(value, "ENCRYPT") == 0)
|
|
cdat->enc = 1;
|
|
else if (strcmp(value, "DECRYPT") == 0)
|
|
cdat->enc = 0;
|
|
else
|
|
return -1;
|
|
return 1;
|
|
}
|
|
if (strcmp(keyword, "CTSMode") == 0) {
|
|
cdat->cts_mode = value;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cipher_test_enc(EVP_TEST *t, int enc,
|
|
size_t out_misalign, size_t inp_misalign, int frag)
|
|
{
|
|
CIPHER_DATA *expected = t->data;
|
|
unsigned char *in, *expected_out, *tmp = NULL;
|
|
size_t in_len, out_len, donelen = 0;
|
|
int ok = 0, tmplen, chunklen, tmpflen, i;
|
|
EVP_CIPHER_CTX *ctx_base = NULL;
|
|
EVP_CIPHER_CTX *ctx = NULL;
|
|
|
|
t->err = "TEST_FAILURE";
|
|
if (!TEST_ptr(ctx_base = EVP_CIPHER_CTX_new()))
|
|
goto err;
|
|
if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new()))
|
|
goto err;
|
|
EVP_CIPHER_CTX_set_flags(ctx_base, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
|
|
if (enc) {
|
|
in = expected->plaintext;
|
|
in_len = expected->plaintext_len;
|
|
expected_out = expected->ciphertext;
|
|
out_len = expected->ciphertext_len;
|
|
} else {
|
|
in = expected->ciphertext;
|
|
in_len = expected->ciphertext_len;
|
|
expected_out = expected->plaintext;
|
|
out_len = expected->plaintext_len;
|
|
}
|
|
if (inp_misalign == (size_t)-1) {
|
|
/*
|
|
* Exercise in-place encryption
|
|
*/
|
|
tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
|
|
if (!tmp)
|
|
goto err;
|
|
in = memcpy(tmp + out_misalign, in, in_len);
|
|
} else {
|
|
inp_misalign += 16 - ((out_misalign + in_len) & 15);
|
|
/*
|
|
* 'tmp' will store both output and copy of input. We make the copy
|
|
* of input to specifically aligned part of 'tmp'. So we just
|
|
* figured out how much padding would ensure the required alignment,
|
|
* now we allocate extended buffer and finally copy the input just
|
|
* past inp_misalign in expression below. Output will be written
|
|
* past out_misalign...
|
|
*/
|
|
tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
|
|
inp_misalign + in_len);
|
|
if (!tmp)
|
|
goto err;
|
|
in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
|
|
inp_misalign, in, in_len);
|
|
}
|
|
if (!EVP_CipherInit_ex(ctx_base, expected->cipher, NULL, NULL, NULL, enc)) {
|
|
t->err = "CIPHERINIT_ERROR";
|
|
goto err;
|
|
}
|
|
if (expected->cts_mode != NULL) {
|
|
OSSL_PARAM params[2];
|
|
|
|
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_CIPHER_PARAM_CTS_MODE,
|
|
(char *)expected->cts_mode,
|
|
0);
|
|
params[1] = OSSL_PARAM_construct_end();
|
|
if (!EVP_CIPHER_CTX_set_params(ctx_base, params)) {
|
|
t->err = "INVALID_CTS_MODE";
|
|
goto err;
|
|
}
|
|
}
|
|
if (expected->iv) {
|
|
if (expected->aead) {
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_AEAD_SET_IVLEN,
|
|
expected->iv_len, 0)) {
|
|
t->err = "INVALID_IV_LENGTH";
|
|
goto err;
|
|
}
|
|
} else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx_base)) {
|
|
t->err = "INVALID_IV_LENGTH";
|
|
goto err;
|
|
}
|
|
}
|
|
if (expected->aead) {
|
|
unsigned char *tag;
|
|
/*
|
|
* If encrypting or OCB just set tag length initially, otherwise
|
|
* set tag length and value.
|
|
*/
|
|
if (enc || expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late) {
|
|
t->err = "TAG_LENGTH_SET_ERROR";
|
|
tag = NULL;
|
|
} else {
|
|
t->err = "TAG_SET_ERROR";
|
|
tag = expected->tag;
|
|
}
|
|
if (tag || expected->aead != EVP_CIPH_GCM_MODE) {
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_AEAD_SET_TAG,
|
|
expected->tag_len, tag))
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (expected->rounds > 0) {
|
|
int rounds = (int)expected->rounds;
|
|
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_SET_RC5_ROUNDS, rounds, NULL)) {
|
|
t->err = "INVALID_ROUNDS";
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (!EVP_CIPHER_CTX_set_key_length(ctx_base, expected->key_len)) {
|
|
t->err = "INVALID_KEY_LENGTH";
|
|
goto err;
|
|
}
|
|
if (expected->key_bits > 0) {
|
|
int bits = (int)expected->key_bits;
|
|
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_SET_RC2_KEY_BITS, bits, NULL)) {
|
|
t->err = "INVALID KEY BITS";
|
|
goto err;
|
|
}
|
|
}
|
|
if (!EVP_CipherInit_ex(ctx_base, NULL, NULL, expected->key, expected->iv, -1)) {
|
|
t->err = "KEY_SET_ERROR";
|
|
goto err;
|
|
}
|
|
|
|
/* Check that we get the same IV back */
|
|
if (expected->iv != NULL
|
|
&& (EVP_CIPHER_flags(expected->cipher) & EVP_CIPH_CUSTOM_IV) == 0
|
|
&& !TEST_mem_eq(expected->iv, expected->iv_len,
|
|
EVP_CIPHER_CTX_iv(ctx_base), expected->iv_len)) {
|
|
t->err = "INVALID_IV";
|
|
goto err;
|
|
}
|
|
|
|
/* Test that the cipher dup functions correctly if it is supported */
|
|
if (EVP_CIPHER_CTX_copy(ctx, ctx_base)) {
|
|
EVP_CIPHER_CTX_free(ctx_base);
|
|
ctx_base = NULL;
|
|
} else {
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
ctx = ctx_base;
|
|
}
|
|
|
|
if (expected->aead == EVP_CIPH_CCM_MODE) {
|
|
if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
|
|
t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
|
|
goto err;
|
|
}
|
|
}
|
|
if (expected->aad[0] != NULL) {
|
|
t->err = "AAD_SET_ERROR";
|
|
if (!frag) {
|
|
for (i = 0; expected->aad[i] != NULL; i++) {
|
|
if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i],
|
|
expected->aad_len[i]))
|
|
goto err;
|
|
}
|
|
} else {
|
|
/*
|
|
* Supply the AAD in chunks less than the block size where possible
|
|
*/
|
|
for (i = 0; expected->aad[i] != NULL; i++) {
|
|
if (expected->aad_len[i] > 0) {
|
|
if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i], 1))
|
|
goto err;
|
|
donelen++;
|
|
}
|
|
if (expected->aad_len[i] > 2) {
|
|
if (!EVP_CipherUpdate(ctx, NULL, &chunklen,
|
|
expected->aad[i] + donelen,
|
|
expected->aad_len[i] - 2))
|
|
goto err;
|
|
donelen += expected->aad_len[i] - 2;
|
|
}
|
|
if (expected->aad_len[i] > 1
|
|
&& !EVP_CipherUpdate(ctx, NULL, &chunklen,
|
|
expected->aad[i] + donelen, 1))
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!enc && (expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late)) {
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
|
|
expected->tag_len, expected->tag)) {
|
|
t->err = "TAG_SET_ERROR";
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
EVP_CIPHER_CTX_set_padding(ctx, 0);
|
|
t->err = "CIPHERUPDATE_ERROR";
|
|
tmplen = 0;
|
|
if (!frag) {
|
|
/* We supply the data all in one go */
|
|
if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
|
|
goto err;
|
|
} else {
|
|
/* Supply the data in chunks less than the block size where possible */
|
|
if (in_len > 0) {
|
|
if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1))
|
|
goto err;
|
|
tmplen += chunklen;
|
|
in++;
|
|
in_len--;
|
|
}
|
|
if (in_len > 1) {
|
|
if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
|
|
in, in_len - 1))
|
|
goto err;
|
|
tmplen += chunklen;
|
|
in += in_len - 1;
|
|
in_len = 1;
|
|
}
|
|
if (in_len > 0 ) {
|
|
if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
|
|
in, 1))
|
|
goto err;
|
|
tmplen += chunklen;
|
|
}
|
|
}
|
|
if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) {
|
|
t->err = "CIPHERFINAL_ERROR";
|
|
goto err;
|
|
}
|
|
if (!memory_err_compare(t, "VALUE_MISMATCH", expected_out, out_len,
|
|
tmp + out_misalign, tmplen + tmpflen))
|
|
goto err;
|
|
if (enc && expected->aead) {
|
|
unsigned char rtag[16];
|
|
|
|
if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) {
|
|
t->err = "TAG_LENGTH_INTERNAL_ERROR";
|
|
goto err;
|
|
}
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
|
|
expected->tag_len, rtag)) {
|
|
t->err = "TAG_RETRIEVE_ERROR";
|
|
goto err;
|
|
}
|
|
if (!memory_err_compare(t, "TAG_VALUE_MISMATCH",
|
|
expected->tag, expected->tag_len,
|
|
rtag, expected->tag_len))
|
|
goto err;
|
|
}
|
|
t->err = NULL;
|
|
ok = 1;
|
|
err:
|
|
OPENSSL_free(tmp);
|
|
if (ctx != ctx_base)
|
|
EVP_CIPHER_CTX_free(ctx_base);
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
return ok;
|
|
}
|
|
|
|
static int cipher_test_run(EVP_TEST *t)
|
|
{
|
|
CIPHER_DATA *cdat = t->data;
|
|
int rv, frag = 0;
|
|
size_t out_misalign, inp_misalign;
|
|
|
|
if (!cdat->key) {
|
|
t->err = "NO_KEY";
|
|
return 0;
|
|
}
|
|
if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
|
|
/* IV is optional and usually omitted in wrap mode */
|
|
if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
|
|
t->err = "NO_IV";
|
|
return 0;
|
|
}
|
|
}
|
|
if (cdat->aead && !cdat->tag) {
|
|
t->err = "NO_TAG";
|
|
return 0;
|
|
}
|
|
for (out_misalign = 0; out_misalign <= 1;) {
|
|
static char aux_err[64];
|
|
t->aux_err = aux_err;
|
|
for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
|
|
if (inp_misalign == (size_t)-1) {
|
|
/* kludge: inp_misalign == -1 means "exercise in-place" */
|
|
BIO_snprintf(aux_err, sizeof(aux_err),
|
|
"%s in-place, %sfragmented",
|
|
out_misalign ? "misaligned" : "aligned",
|
|
frag ? "" : "not ");
|
|
} else {
|
|
BIO_snprintf(aux_err, sizeof(aux_err),
|
|
"%s output and %s input, %sfragmented",
|
|
out_misalign ? "misaligned" : "aligned",
|
|
inp_misalign ? "misaligned" : "aligned",
|
|
frag ? "" : "not ");
|
|
}
|
|
if (cdat->enc) {
|
|
rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag);
|
|
/* Not fatal errors: return */
|
|
if (rv != 1) {
|
|
if (rv < 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
}
|
|
if (cdat->enc != 1) {
|
|
rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag);
|
|
/* Not fatal errors: return */
|
|
if (rv != 1) {
|
|
if (rv < 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (out_misalign == 1 && frag == 0) {
|
|
/*
|
|
* XTS, SIV, CCM and Wrap modes have special requirements about input
|
|
* lengths so we don't fragment for those
|
|
*/
|
|
if (cdat->aead == EVP_CIPH_CCM_MODE
|
|
|| ((EVP_CIPHER_flags(cdat->cipher) & EVP_CIPH_FLAG_CTS) != 0)
|
|
|| EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_SIV_MODE
|
|
|| EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE
|
|
|| EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE)
|
|
break;
|
|
out_misalign = 0;
|
|
frag++;
|
|
} else {
|
|
out_misalign++;
|
|
}
|
|
}
|
|
t->aux_err = NULL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD cipher_test_method = {
|
|
"Cipher",
|
|
cipher_test_init,
|
|
cipher_test_cleanup,
|
|
cipher_test_parse,
|
|
cipher_test_run
|
|
};
|
|
|
|
|
|
/**
|
|
*** MAC TESTS
|
|
**/
|
|
|
|
typedef struct mac_data_st {
|
|
/* MAC type in one form or another */
|
|
char *mac_name;
|
|
EVP_MAC *mac; /* for mac_test_run_mac */
|
|
int type; /* for mac_test_run_pkey */
|
|
/* Algorithm string for this MAC */
|
|
char *alg;
|
|
/* MAC key */
|
|
unsigned char *key;
|
|
size_t key_len;
|
|
/* MAC IV (GMAC) */
|
|
unsigned char *iv;
|
|
size_t iv_len;
|
|
/* Input to MAC */
|
|
unsigned char *input;
|
|
size_t input_len;
|
|
/* Expected output */
|
|
unsigned char *output;
|
|
size_t output_len;
|
|
unsigned char *custom;
|
|
size_t custom_len;
|
|
/* MAC salt (blake2) */
|
|
unsigned char *salt;
|
|
size_t salt_len;
|
|
/* Collection of controls */
|
|
STACK_OF(OPENSSL_STRING) *controls;
|
|
} MAC_DATA;
|
|
|
|
static int mac_test_init(EVP_TEST *t, const char *alg)
|
|
{
|
|
EVP_MAC *mac = NULL;
|
|
int type = NID_undef;
|
|
MAC_DATA *mdat;
|
|
|
|
if ((mac = EVP_MAC_fetch(NULL, alg, NULL)) == NULL) {
|
|
/*
|
|
* Since we didn't find an EVP_MAC, we check for known EVP_PKEY methods
|
|
* For debugging purposes, we allow 'NNNN by EVP_PKEY' to force running
|
|
* the EVP_PKEY method.
|
|
*/
|
|
size_t sz = strlen(alg);
|
|
static const char epilogue[] = " by EVP_PKEY";
|
|
|
|
if (sz >= sizeof(epilogue)
|
|
&& strcmp(alg + sz - (sizeof(epilogue) - 1), epilogue) == 0)
|
|
sz -= sizeof(epilogue) - 1;
|
|
|
|
if (strncmp(alg, "HMAC", sz) == 0) {
|
|
type = EVP_PKEY_HMAC;
|
|
} else if (strncmp(alg, "CMAC", sz) == 0) {
|
|
#ifndef OPENSSL_NO_CMAC
|
|
type = EVP_PKEY_CMAC;
|
|
#else
|
|
t->skip = 1;
|
|
return 1;
|
|
#endif
|
|
} else if (strncmp(alg, "Poly1305", sz) == 0) {
|
|
#ifndef OPENSSL_NO_POLY1305
|
|
type = EVP_PKEY_POLY1305;
|
|
#else
|
|
t->skip = 1;
|
|
return 1;
|
|
#endif
|
|
} else if (strncmp(alg, "SipHash", sz) == 0) {
|
|
#ifndef OPENSSL_NO_SIPHASH
|
|
type = EVP_PKEY_SIPHASH;
|
|
#else
|
|
t->skip = 1;
|
|
return 1;
|
|
#endif
|
|
} else {
|
|
/*
|
|
* Not a known EVP_PKEY method either. If it's a known OID, then
|
|
* assume it's been disabled.
|
|
*/
|
|
if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
mdat = OPENSSL_zalloc(sizeof(*mdat));
|
|
mdat->type = type;
|
|
mdat->mac_name = OPENSSL_strdup(alg);
|
|
mdat->mac = mac;
|
|
mdat->controls = sk_OPENSSL_STRING_new_null();
|
|
t->data = mdat;
|
|
return 1;
|
|
}
|
|
|
|
/* Because OPENSSL_free is a macro, it can't be passed as a function pointer */
|
|
static void openssl_free(char *m)
|
|
{
|
|
OPENSSL_free(m);
|
|
}
|
|
|
|
static void mac_test_cleanup(EVP_TEST *t)
|
|
{
|
|
MAC_DATA *mdat = t->data;
|
|
|
|
EVP_MAC_free(mdat->mac);
|
|
OPENSSL_free(mdat->mac_name);
|
|
sk_OPENSSL_STRING_pop_free(mdat->controls, openssl_free);
|
|
OPENSSL_free(mdat->alg);
|
|
OPENSSL_free(mdat->key);
|
|
OPENSSL_free(mdat->iv);
|
|
OPENSSL_free(mdat->custom);
|
|
OPENSSL_free(mdat->salt);
|
|
OPENSSL_free(mdat->input);
|
|
OPENSSL_free(mdat->output);
|
|
}
|
|
|
|
static int mac_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
MAC_DATA *mdata = t->data;
|
|
|
|
if (strcmp(keyword, "Key") == 0)
|
|
return parse_bin(value, &mdata->key, &mdata->key_len);
|
|
if (strcmp(keyword, "IV") == 0)
|
|
return parse_bin(value, &mdata->iv, &mdata->iv_len);
|
|
if (strcmp(keyword, "Custom") == 0)
|
|
return parse_bin(value, &mdata->custom, &mdata->custom_len);
|
|
if (strcmp(keyword, "Salt") == 0)
|
|
return parse_bin(value, &mdata->salt, &mdata->salt_len);
|
|
if (strcmp(keyword, "Algorithm") == 0) {
|
|
mdata->alg = OPENSSL_strdup(value);
|
|
if (!mdata->alg)
|
|
return -1;
|
|
return 1;
|
|
}
|
|
if (strcmp(keyword, "Input") == 0)
|
|
return parse_bin(value, &mdata->input, &mdata->input_len);
|
|
if (strcmp(keyword, "Output") == 0)
|
|
return parse_bin(value, &mdata->output, &mdata->output_len);
|
|
if (strcmp(keyword, "Ctrl") == 0)
|
|
return sk_OPENSSL_STRING_push(mdata->controls,
|
|
OPENSSL_strdup(value)) != 0;
|
|
return 0;
|
|
}
|
|
|
|
static int mac_test_ctrl_pkey(EVP_TEST *t, EVP_PKEY_CTX *pctx,
|
|
const char *value)
|
|
{
|
|
int rv;
|
|
char *p, *tmpval;
|
|
|
|
if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
|
|
return 0;
|
|
p = strchr(tmpval, ':');
|
|
if (p != NULL)
|
|
*p++ = '\0';
|
|
rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
|
|
if (rv == -2)
|
|
t->err = "PKEY_CTRL_INVALID";
|
|
else if (rv <= 0)
|
|
t->err = "PKEY_CTRL_ERROR";
|
|
else
|
|
rv = 1;
|
|
OPENSSL_free(tmpval);
|
|
return rv > 0;
|
|
}
|
|
|
|
static int mac_test_run_pkey(EVP_TEST *t)
|
|
{
|
|
MAC_DATA *expected = t->data;
|
|
EVP_MD_CTX *mctx = NULL;
|
|
EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
|
|
EVP_PKEY *key = NULL;
|
|
const EVP_MD *md = NULL;
|
|
unsigned char *got = NULL;
|
|
size_t got_len;
|
|
int i;
|
|
|
|
if (expected->alg == NULL)
|
|
TEST_info("Trying the EVP_PKEY %s test", OBJ_nid2sn(expected->type));
|
|
else
|
|
TEST_info("Trying the EVP_PKEY %s test with %s",
|
|
OBJ_nid2sn(expected->type), expected->alg);
|
|
|
|
#ifdef OPENSSL_NO_DES
|
|
if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) {
|
|
/* Skip DES */
|
|
t->err = NULL;
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
if (expected->type == EVP_PKEY_CMAC)
|
|
key = EVP_PKEY_new_CMAC_key(NULL, expected->key, expected->key_len,
|
|
EVP_get_cipherbyname(expected->alg));
|
|
else
|
|
key = EVP_PKEY_new_raw_private_key(expected->type, NULL, expected->key,
|
|
expected->key_len);
|
|
if (key == NULL) {
|
|
t->err = "MAC_KEY_CREATE_ERROR";
|
|
goto err;
|
|
}
|
|
|
|
if (expected->type == EVP_PKEY_HMAC) {
|
|
if (!TEST_ptr(md = EVP_get_digestbyname(expected->alg))) {
|
|
t->err = "MAC_ALGORITHM_SET_ERROR";
|
|
goto err;
|
|
}
|
|
}
|
|
if (!TEST_ptr(mctx = EVP_MD_CTX_new())) {
|
|
t->err = "INTERNAL_ERROR";
|
|
goto err;
|
|
}
|
|
if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) {
|
|
t->err = "DIGESTSIGNINIT_ERROR";
|
|
goto err;
|
|
}
|
|
for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++)
|
|
if (!mac_test_ctrl_pkey(t, pctx,
|
|
sk_OPENSSL_STRING_value(expected->controls,
|
|
i))) {
|
|
t->err = "EVPPKEYCTXCTRL_ERROR";
|
|
goto err;
|
|
}
|
|
if (!EVP_DigestSignUpdate(mctx, expected->input, expected->input_len)) {
|
|
t->err = "DIGESTSIGNUPDATE_ERROR";
|
|
goto err;
|
|
}
|
|
if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) {
|
|
t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
|
|
goto err;
|
|
}
|
|
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
|
|
t->err = "TEST_FAILURE";
|
|
goto err;
|
|
}
|
|
if (!EVP_DigestSignFinal(mctx, got, &got_len)
|
|
|| !memory_err_compare(t, "TEST_MAC_ERR",
|
|
expected->output, expected->output_len,
|
|
got, got_len)) {
|
|
t->err = "TEST_MAC_ERR";
|
|
goto err;
|
|
}
|
|
t->err = NULL;
|
|
err:
|
|
EVP_MD_CTX_free(mctx);
|
|
OPENSSL_free(got);
|
|
EVP_PKEY_CTX_free(genctx);
|
|
EVP_PKEY_free(key);
|
|
return 1;
|
|
}
|
|
|
|
static int mac_test_run_mac(EVP_TEST *t)
|
|
{
|
|
MAC_DATA *expected = t->data;
|
|
EVP_MAC_CTX *ctx = NULL;
|
|
unsigned char *got = NULL;
|
|
size_t got_len;
|
|
int i;
|
|
OSSL_PARAM params[21];
|
|
size_t params_n = 0;
|
|
size_t params_n_allocstart = 0;
|
|
const OSSL_PARAM *defined_params =
|
|
EVP_MAC_settable_ctx_params(expected->mac);
|
|
|
|
if (expected->alg == NULL)
|
|
TEST_info("Trying the EVP_MAC %s test", expected->mac_name);
|
|
else
|
|
TEST_info("Trying the EVP_MAC %s test with %s",
|
|
expected->mac_name, expected->alg);
|
|
|
|
#ifdef OPENSSL_NO_DES
|
|
if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) {
|
|
/* Skip DES */
|
|
t->err = NULL;
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
if (expected->alg != NULL) {
|
|
/*
|
|
* The underlying algorithm may be a cipher or a digest.
|
|
* We don't know which it is, but we can ask the MAC what it
|
|
* should be and bet on that.
|
|
*/
|
|
if (OSSL_PARAM_locate_const(defined_params,
|
|
OSSL_MAC_PARAM_CIPHER) != NULL) {
|
|
params[params_n++] =
|
|
OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER,
|
|
expected->alg, 0);
|
|
} else if (OSSL_PARAM_locate_const(defined_params,
|
|
OSSL_MAC_PARAM_DIGEST) != NULL) {
|
|
params[params_n++] =
|
|
OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
|
|
expected->alg, 0);
|
|
} else {
|
|
t->err = "MAC_BAD_PARAMS";
|
|
goto err;
|
|
}
|
|
}
|
|
if (expected->key != NULL)
|
|
params[params_n++] =
|
|
OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
|
|
expected->key,
|
|
expected->key_len);
|
|
if (expected->custom != NULL)
|
|
params[params_n++] =
|
|
OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_CUSTOM,
|
|
expected->custom,
|
|
expected->custom_len);
|
|
if (expected->salt != NULL)
|
|
params[params_n++] =
|
|
OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_SALT,
|
|
expected->salt,
|
|
expected->salt_len);
|
|
if (expected->iv != NULL)
|
|
params[params_n++] =
|
|
OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_IV,
|
|
expected->iv,
|
|
expected->iv_len);
|
|
|
|
/*
|
|
* Unknown controls. They must match parameters that the MAC recognises
|
|
*/
|
|
if (params_n + sk_OPENSSL_STRING_num(expected->controls)
|
|
>= OSSL_NELEM(params)) {
|
|
t->err = "MAC_TOO_MANY_PARAMETERS";
|
|
goto err;
|
|
}
|
|
params_n_allocstart = params_n;
|
|
for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) {
|
|
char *tmpkey, *tmpval;
|
|
char *value = sk_OPENSSL_STRING_value(expected->controls, i);
|
|
|
|
if (!TEST_ptr(tmpkey = OPENSSL_strdup(value))) {
|
|
t->err = "MAC_PARAM_ERROR";
|
|
goto err;
|
|
}
|
|
tmpval = strchr(tmpkey, ':');
|
|
if (tmpval != NULL)
|
|
*tmpval++ = '\0';
|
|
|
|
if (tmpval == NULL
|
|
|| !OSSL_PARAM_allocate_from_text(¶ms[params_n],
|
|
defined_params,
|
|
tmpkey, tmpval,
|
|
strlen(tmpval), NULL)) {
|
|
OPENSSL_free(tmpkey);
|
|
t->err = "MAC_PARAM_ERROR";
|
|
goto err;
|
|
}
|
|
params_n++;
|
|
|
|
OPENSSL_free(tmpkey);
|
|
}
|
|
params[params_n] = OSSL_PARAM_construct_end();
|
|
|
|
if ((ctx = EVP_MAC_new_ctx(expected->mac)) == NULL) {
|
|
t->err = "MAC_CREATE_ERROR";
|
|
goto err;
|
|
}
|
|
|
|
if (!EVP_MAC_set_ctx_params(ctx, params)) {
|
|
t->err = "MAC_BAD_PARAMS";
|
|
goto err;
|
|
}
|
|
if (!EVP_MAC_init(ctx)) {
|
|
t->err = "MAC_INIT_ERROR";
|
|
goto err;
|
|
}
|
|
if (!EVP_MAC_update(ctx, expected->input, expected->input_len)) {
|
|
t->err = "MAC_UPDATE_ERROR";
|
|
goto err;
|
|
}
|
|
if (!EVP_MAC_final(ctx, NULL, &got_len, 0)) {
|
|
t->err = "MAC_FINAL_LENGTH_ERROR";
|
|
goto err;
|
|
}
|
|
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
|
|
t->err = "TEST_FAILURE";
|
|
goto err;
|
|
}
|
|
if (!EVP_MAC_final(ctx, got, &got_len, got_len)
|
|
|| !memory_err_compare(t, "TEST_MAC_ERR",
|
|
expected->output, expected->output_len,
|
|
got, got_len)) {
|
|
t->err = "TEST_MAC_ERR";
|
|
goto err;
|
|
}
|
|
t->err = NULL;
|
|
err:
|
|
while (params_n-- > params_n_allocstart) {
|
|
OPENSSL_free(params[params_n].data);
|
|
}
|
|
EVP_MAC_free_ctx(ctx);
|
|
OPENSSL_free(got);
|
|
return 1;
|
|
}
|
|
|
|
static int mac_test_run(EVP_TEST *t)
|
|
{
|
|
MAC_DATA *expected = t->data;
|
|
|
|
if (expected->mac != NULL)
|
|
return mac_test_run_mac(t);
|
|
return mac_test_run_pkey(t);
|
|
}
|
|
|
|
static const EVP_TEST_METHOD mac_test_method = {
|
|
"MAC",
|
|
mac_test_init,
|
|
mac_test_cleanup,
|
|
mac_test_parse,
|
|
mac_test_run
|
|
};
|
|
|
|
|
|
/**
|
|
*** PUBLIC KEY TESTS
|
|
*** These are all very similar and share much common code.
|
|
**/
|
|
|
|
typedef struct pkey_data_st {
|
|
/* Context for this operation */
|
|
EVP_PKEY_CTX *ctx;
|
|
/* Key operation to perform */
|
|
int (*keyop) (EVP_PKEY_CTX *ctx,
|
|
unsigned char *sig, size_t *siglen,
|
|
const unsigned char *tbs, size_t tbslen);
|
|
/* Input to MAC */
|
|
unsigned char *input;
|
|
size_t input_len;
|
|
/* Expected output */
|
|
unsigned char *output;
|
|
size_t output_len;
|
|
} PKEY_DATA;
|
|
|
|
/*
|
|
* Perform public key operation setup: lookup key, allocated ctx and call
|
|
* the appropriate initialisation function
|
|
*/
|
|
static int pkey_test_init(EVP_TEST *t, const char *name,
|
|
int use_public,
|
|
int (*keyopinit) (EVP_PKEY_CTX *ctx),
|
|
int (*keyop)(EVP_PKEY_CTX *ctx,
|
|
unsigned char *sig, size_t *siglen,
|
|
const unsigned char *tbs,
|
|
size_t tbslen))
|
|
{
|
|
PKEY_DATA *kdata;
|
|
EVP_PKEY *pkey = NULL;
|
|
int rv = 0;
|
|
|
|
if (use_public)
|
|
rv = find_key(&pkey, name, public_keys);
|
|
if (rv == 0)
|
|
rv = find_key(&pkey, name, private_keys);
|
|
if (rv == 0 || pkey == NULL) {
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
|
|
if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) {
|
|
EVP_PKEY_free(pkey);
|
|
return 0;
|
|
}
|
|
kdata->keyop = keyop;
|
|
if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL))) {
|
|
EVP_PKEY_free(pkey);
|
|
OPENSSL_free(kdata);
|
|
return 0;
|
|
}
|
|
if (keyopinit(kdata->ctx) <= 0)
|
|
t->err = "KEYOP_INIT_ERROR";
|
|
t->data = kdata;
|
|
return 1;
|
|
}
|
|
|
|
static void pkey_test_cleanup(EVP_TEST *t)
|
|
{
|
|
PKEY_DATA *kdata = t->data;
|
|
|
|
OPENSSL_free(kdata->input);
|
|
OPENSSL_free(kdata->output);
|
|
EVP_PKEY_CTX_free(kdata->ctx);
|
|
}
|
|
|
|
static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx,
|
|
const char *value)
|
|
{
|
|
int rv;
|
|
char *p, *tmpval;
|
|
|
|
if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
|
|
return 0;
|
|
p = strchr(tmpval, ':');
|
|
if (p != NULL)
|
|
*p++ = '\0';
|
|
rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
|
|
if (rv == -2) {
|
|
t->err = "PKEY_CTRL_INVALID";
|
|
rv = 1;
|
|
} else if (p != NULL && rv <= 0) {
|
|
/* If p has an OID and lookup fails assume disabled algorithm */
|
|
int nid = OBJ_sn2nid(p);
|
|
|
|
if (nid == NID_undef)
|
|
nid = OBJ_ln2nid(p);
|
|
if (nid != NID_undef
|
|
&& EVP_get_digestbynid(nid) == NULL
|
|
&& EVP_get_cipherbynid(nid) == NULL) {
|
|
t->skip = 1;
|
|
rv = 1;
|
|
} else {
|
|
t->err = "PKEY_CTRL_ERROR";
|
|
rv = 1;
|
|
}
|
|
}
|
|
OPENSSL_free(tmpval);
|
|
return rv > 0;
|
|
}
|
|
|
|
static int pkey_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
PKEY_DATA *kdata = t->data;
|
|
if (strcmp(keyword, "Input") == 0)
|
|
return parse_bin(value, &kdata->input, &kdata->input_len);
|
|
if (strcmp(keyword, "Output") == 0)
|
|
return parse_bin(value, &kdata->output, &kdata->output_len);
|
|
if (strcmp(keyword, "Ctrl") == 0)
|
|
return pkey_test_ctrl(t, kdata->ctx, value);
|
|
return 0;
|
|
}
|
|
|
|
static int pkey_test_run(EVP_TEST *t)
|
|
{
|
|
PKEY_DATA *expected = t->data;
|
|
unsigned char *got = NULL;
|
|
size_t got_len;
|
|
EVP_PKEY_CTX *copy = NULL;
|
|
|
|
if (expected->keyop(expected->ctx, NULL, &got_len,
|
|
expected->input, expected->input_len) <= 0
|
|
|| !TEST_ptr(got = OPENSSL_malloc(got_len))) {
|
|
t->err = "KEYOP_LENGTH_ERROR";
|
|
goto err;
|
|
}
|
|
if (expected->keyop(expected->ctx, got, &got_len,
|
|
expected->input, expected->input_len) <= 0) {
|
|
t->err = "KEYOP_ERROR";
|
|
goto err;
|
|
}
|
|
if (!memory_err_compare(t, "KEYOP_MISMATCH",
|
|
expected->output, expected->output_len,
|
|
got, got_len))
|
|
goto err;
|
|
|
|
t->err = NULL;
|
|
OPENSSL_free(got);
|
|
got = NULL;
|
|
|
|
/* Repeat the test on a copy. */
|
|
if (!TEST_ptr(copy = EVP_PKEY_CTX_dup(expected->ctx))) {
|
|
t->err = "INTERNAL_ERROR";
|
|
goto err;
|
|
}
|
|
if (expected->keyop(copy, NULL, &got_len, expected->input,
|
|
expected->input_len) <= 0
|
|
|| !TEST_ptr(got = OPENSSL_malloc(got_len))) {
|
|
t->err = "KEYOP_LENGTH_ERROR";
|
|
goto err;
|
|
}
|
|
if (expected->keyop(copy, got, &got_len, expected->input,
|
|
expected->input_len) <= 0) {
|
|
t->err = "KEYOP_ERROR";
|
|
goto err;
|
|
}
|
|
if (!memory_err_compare(t, "KEYOP_MISMATCH",
|
|
expected->output, expected->output_len,
|
|
got, got_len))
|
|
goto err;
|
|
|
|
err:
|
|
OPENSSL_free(got);
|
|
EVP_PKEY_CTX_free(copy);
|
|
return 1;
|
|
}
|
|
|
|
static int sign_test_init(EVP_TEST *t, const char *name)
|
|
{
|
|
return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
|
|
}
|
|
|
|
static const EVP_TEST_METHOD psign_test_method = {
|
|
"Sign",
|
|
sign_test_init,
|
|
pkey_test_cleanup,
|
|
pkey_test_parse,
|
|
pkey_test_run
|
|
};
|
|
|
|
static int verify_recover_test_init(EVP_TEST *t, const char *name)
|
|
{
|
|
return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
|
|
EVP_PKEY_verify_recover);
|
|
}
|
|
|
|
static const EVP_TEST_METHOD pverify_recover_test_method = {
|
|
"VerifyRecover",
|
|
verify_recover_test_init,
|
|
pkey_test_cleanup,
|
|
pkey_test_parse,
|
|
pkey_test_run
|
|
};
|
|
|
|
static int decrypt_test_init(EVP_TEST *t, const char *name)
|
|
{
|
|
return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
|
|
EVP_PKEY_decrypt);
|
|
}
|
|
|
|
static const EVP_TEST_METHOD pdecrypt_test_method = {
|
|
"Decrypt",
|
|
decrypt_test_init,
|
|
pkey_test_cleanup,
|
|
pkey_test_parse,
|
|
pkey_test_run
|
|
};
|
|
|
|
static int verify_test_init(EVP_TEST *t, const char *name)
|
|
{
|
|
return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
|
|
}
|
|
|
|
static int verify_test_run(EVP_TEST *t)
|
|
{
|
|
PKEY_DATA *kdata = t->data;
|
|
|
|
if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
|
|
kdata->input, kdata->input_len) <= 0)
|
|
t->err = "VERIFY_ERROR";
|
|
return 1;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD pverify_test_method = {
|
|
"Verify",
|
|
verify_test_init,
|
|
pkey_test_cleanup,
|
|
pkey_test_parse,
|
|
verify_test_run
|
|
};
|
|
|
|
|
|
static int pderive_test_init(EVP_TEST *t, const char *name)
|
|
{
|
|
return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
|
|
}
|
|
|
|
static int pderive_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
PKEY_DATA *kdata = t->data;
|
|
|
|
if (strcmp(keyword, "PeerKey") == 0) {
|
|
EVP_PKEY *peer;
|
|
if (find_key(&peer, value, public_keys) == 0)
|
|
return -1;
|
|
if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
|
|
return -1;
|
|
return 1;
|
|
}
|
|
if (strcmp(keyword, "SharedSecret") == 0)
|
|
return parse_bin(value, &kdata->output, &kdata->output_len);
|
|
if (strcmp(keyword, "Ctrl") == 0)
|
|
return pkey_test_ctrl(t, kdata->ctx, value);
|
|
return 0;
|
|
}
|
|
|
|
static int pderive_test_run(EVP_TEST *t)
|
|
{
|
|
PKEY_DATA *expected = t->data;
|
|
unsigned char *got = NULL;
|
|
size_t got_len;
|
|
|
|
if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) {
|
|
t->err = "DERIVE_ERROR";
|
|
goto err;
|
|
}
|
|
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
|
|
t->err = "DERIVE_ERROR";
|
|
goto err;
|
|
}
|
|
if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
|
|
t->err = "DERIVE_ERROR";
|
|
goto err;
|
|
}
|
|
if (!memory_err_compare(t, "SHARED_SECRET_MISMATCH",
|
|
expected->output, expected->output_len,
|
|
got, got_len))
|
|
goto err;
|
|
|
|
t->err = NULL;
|
|
err:
|
|
OPENSSL_free(got);
|
|
return 1;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD pderive_test_method = {
|
|
"Derive",
|
|
pderive_test_init,
|
|
pkey_test_cleanup,
|
|
pderive_test_parse,
|
|
pderive_test_run
|
|
};
|
|
|
|
|
|
/**
|
|
*** PBE TESTS
|
|
**/
|
|
|
|
typedef enum pbe_type_enum {
|
|
PBE_TYPE_INVALID = 0,
|
|
PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12
|
|
} PBE_TYPE;
|
|
|
|
typedef struct pbe_data_st {
|
|
PBE_TYPE pbe_type;
|
|
/* scrypt parameters */
|
|
uint64_t N, r, p, maxmem;
|
|
/* PKCS#12 parameters */
|
|
int id, iter;
|
|
const EVP_MD *md;
|
|
/* password */
|
|
unsigned char *pass;
|
|
size_t pass_len;
|
|
/* salt */
|
|
unsigned char *salt;
|
|
size_t salt_len;
|
|
/* Expected output */
|
|
unsigned char *key;
|
|
size_t key_len;
|
|
} PBE_DATA;
|
|
|
|
#ifndef OPENSSL_NO_SCRYPT
|
|
/*
|
|
* Parse unsigned decimal 64 bit integer value
|
|
*/
|
|
static int parse_uint64(const char *value, uint64_t *pr)
|
|
{
|
|
const char *p = value;
|
|
|
|
if (!TEST_true(*p)) {
|
|
TEST_info("Invalid empty integer value");
|
|
return -1;
|
|
}
|
|
for (*pr = 0; *p; ) {
|
|
if (*pr > UINT64_MAX / 10) {
|
|
TEST_error("Integer overflow in string %s", value);
|
|
return -1;
|
|
}
|
|
*pr *= 10;
|
|
if (!TEST_true(isdigit((unsigned char)*p))) {
|
|
TEST_error("Invalid character in string %s", value);
|
|
return -1;
|
|
}
|
|
*pr += *p - '0';
|
|
p++;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int scrypt_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
PBE_DATA *pdata = t->data;
|
|
|
|
if (strcmp(keyword, "N") == 0)
|
|
return parse_uint64(value, &pdata->N);
|
|
if (strcmp(keyword, "p") == 0)
|
|
return parse_uint64(value, &pdata->p);
|
|
if (strcmp(keyword, "r") == 0)
|
|
return parse_uint64(value, &pdata->r);
|
|
if (strcmp(keyword, "maxmem") == 0)
|
|
return parse_uint64(value, &pdata->maxmem);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int pbkdf2_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
PBE_DATA *pdata = t->data;
|
|
|
|
if (strcmp(keyword, "iter") == 0) {
|
|
pdata->iter = atoi(value);
|
|
if (pdata->iter <= 0)
|
|
return -1;
|
|
return 1;
|
|
}
|
|
if (strcmp(keyword, "MD") == 0) {
|
|
pdata->md = EVP_get_digestbyname(value);
|
|
if (pdata->md == NULL)
|
|
return -1;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int pkcs12_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
PBE_DATA *pdata = t->data;
|
|
|
|
if (strcmp(keyword, "id") == 0) {
|
|
pdata->id = atoi(value);
|
|
if (pdata->id <= 0)
|
|
return -1;
|
|
return 1;
|
|
}
|
|
return pbkdf2_test_parse(t, keyword, value);
|
|
}
|
|
|
|
static int pbe_test_init(EVP_TEST *t, const char *alg)
|
|
{
|
|
PBE_DATA *pdat;
|
|
PBE_TYPE pbe_type = PBE_TYPE_INVALID;
|
|
|
|
if (strcmp(alg, "scrypt") == 0) {
|
|
#ifndef OPENSSL_NO_SCRYPT
|
|
pbe_type = PBE_TYPE_SCRYPT;
|
|
#else
|
|
t->skip = 1;
|
|
return 1;
|
|
#endif
|
|
} else if (strcmp(alg, "pbkdf2") == 0) {
|
|
pbe_type = PBE_TYPE_PBKDF2;
|
|
} else if (strcmp(alg, "pkcs12") == 0) {
|
|
pbe_type = PBE_TYPE_PKCS12;
|
|
} else {
|
|
TEST_error("Unknown pbe algorithm %s", alg);
|
|
}
|
|
pdat = OPENSSL_zalloc(sizeof(*pdat));
|
|
pdat->pbe_type = pbe_type;
|
|
t->data = pdat;
|
|
return 1;
|
|
}
|
|
|
|
static void pbe_test_cleanup(EVP_TEST *t)
|
|
{
|
|
PBE_DATA *pdat = t->data;
|
|
|
|
OPENSSL_free(pdat->pass);
|
|
OPENSSL_free(pdat->salt);
|
|
OPENSSL_free(pdat->key);
|
|
}
|
|
|
|
static int pbe_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
PBE_DATA *pdata = t->data;
|
|
|
|
if (strcmp(keyword, "Password") == 0)
|
|
return parse_bin(value, &pdata->pass, &pdata->pass_len);
|
|
if (strcmp(keyword, "Salt") == 0)
|
|
return parse_bin(value, &pdata->salt, &pdata->salt_len);
|
|
if (strcmp(keyword, "Key") == 0)
|
|
return parse_bin(value, &pdata->key, &pdata->key_len);
|
|
if (pdata->pbe_type == PBE_TYPE_PBKDF2)
|
|
return pbkdf2_test_parse(t, keyword, value);
|
|
else if (pdata->pbe_type == PBE_TYPE_PKCS12)
|
|
return pkcs12_test_parse(t, keyword, value);
|
|
#ifndef OPENSSL_NO_SCRYPT
|
|
else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
|
|
return scrypt_test_parse(t, keyword, value);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int pbe_test_run(EVP_TEST *t)
|
|
{
|
|
PBE_DATA *expected = t->data;
|
|
unsigned char *key;
|
|
|
|
if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) {
|
|
t->err = "INTERNAL_ERROR";
|
|
goto err;
|
|
}
|
|
if (expected->pbe_type == PBE_TYPE_PBKDF2) {
|
|
if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len,
|
|
expected->salt, expected->salt_len,
|
|
expected->iter, expected->md,
|
|
expected->key_len, key) == 0) {
|
|
t->err = "PBKDF2_ERROR";
|
|
goto err;
|
|
}
|
|
#ifndef OPENSSL_NO_SCRYPT
|
|
} else if (expected->pbe_type == PBE_TYPE_SCRYPT) {
|
|
if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len,
|
|
expected->salt, expected->salt_len, expected->N,
|
|
expected->r, expected->p, expected->maxmem,
|
|
key, expected->key_len) == 0) {
|
|
t->err = "SCRYPT_ERROR";
|
|
goto err;
|
|
}
|
|
#endif
|
|
} else if (expected->pbe_type == PBE_TYPE_PKCS12) {
|
|
if (PKCS12_key_gen_uni(expected->pass, expected->pass_len,
|
|
expected->salt, expected->salt_len,
|
|
expected->id, expected->iter, expected->key_len,
|
|
key, expected->md) == 0) {
|
|
t->err = "PKCS12_ERROR";
|
|
goto err;
|
|
}
|
|
}
|
|
if (!memory_err_compare(t, "KEY_MISMATCH", expected->key, expected->key_len,
|
|
key, expected->key_len))
|
|
goto err;
|
|
|
|
t->err = NULL;
|
|
err:
|
|
OPENSSL_free(key);
|
|
return 1;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD pbe_test_method = {
|
|
"PBE",
|
|
pbe_test_init,
|
|
pbe_test_cleanup,
|
|
pbe_test_parse,
|
|
pbe_test_run
|
|
};
|
|
|
|
|
|
/**
|
|
*** BASE64 TESTS
|
|
**/
|
|
|
|
typedef enum {
|
|
BASE64_CANONICAL_ENCODING = 0,
|
|
BASE64_VALID_ENCODING = 1,
|
|
BASE64_INVALID_ENCODING = 2
|
|
} base64_encoding_type;
|
|
|
|
typedef struct encode_data_st {
|
|
/* Input to encoding */
|
|
unsigned char *input;
|
|
size_t input_len;
|
|
/* Expected output */
|
|
unsigned char *output;
|
|
size_t output_len;
|
|
base64_encoding_type encoding;
|
|
} ENCODE_DATA;
|
|
|
|
static int encode_test_init(EVP_TEST *t, const char *encoding)
|
|
{
|
|
ENCODE_DATA *edata;
|
|
|
|
if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata))))
|
|
return 0;
|
|
if (strcmp(encoding, "canonical") == 0) {
|
|
edata->encoding = BASE64_CANONICAL_ENCODING;
|
|
} else if (strcmp(encoding, "valid") == 0) {
|
|
edata->encoding = BASE64_VALID_ENCODING;
|
|
} else if (strcmp(encoding, "invalid") == 0) {
|
|
edata->encoding = BASE64_INVALID_ENCODING;
|
|
if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR")))
|
|
goto err;
|
|
} else {
|
|
TEST_error("Bad encoding: %s."
|
|
" Should be one of {canonical, valid, invalid}",
|
|
encoding);
|
|
goto err;
|
|
}
|
|
t->data = edata;
|
|
return 1;
|
|
err:
|
|
OPENSSL_free(edata);
|
|
return 0;
|
|
}
|
|
|
|
static void encode_test_cleanup(EVP_TEST *t)
|
|
{
|
|
ENCODE_DATA *edata = t->data;
|
|
|
|
OPENSSL_free(edata->input);
|
|
OPENSSL_free(edata->output);
|
|
memset(edata, 0, sizeof(*edata));
|
|
}
|
|
|
|
static int encode_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
ENCODE_DATA *edata = t->data;
|
|
|
|
if (strcmp(keyword, "Input") == 0)
|
|
return parse_bin(value, &edata->input, &edata->input_len);
|
|
if (strcmp(keyword, "Output") == 0)
|
|
return parse_bin(value, &edata->output, &edata->output_len);
|
|
return 0;
|
|
}
|
|
|
|
static int encode_test_run(EVP_TEST *t)
|
|
{
|
|
ENCODE_DATA *expected = t->data;
|
|
unsigned char *encode_out = NULL, *decode_out = NULL;
|
|
int output_len, chunk_len;
|
|
EVP_ENCODE_CTX *decode_ctx = NULL, *encode_ctx = NULL;
|
|
|
|
if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) {
|
|
t->err = "INTERNAL_ERROR";
|
|
goto err;
|
|
}
|
|
|
|
if (expected->encoding == BASE64_CANONICAL_ENCODING) {
|
|
|
|
if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new())
|
|
|| !TEST_ptr(encode_out =
|
|
OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len))))
|
|
goto err;
|
|
|
|
EVP_EncodeInit(encode_ctx);
|
|
if (!TEST_true(EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
|
|
expected->input, expected->input_len)))
|
|
goto err;
|
|
|
|
output_len = chunk_len;
|
|
|
|
EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
|
|
output_len += chunk_len;
|
|
|
|
if (!memory_err_compare(t, "BAD_ENCODING",
|
|
expected->output, expected->output_len,
|
|
encode_out, output_len))
|
|
goto err;
|
|
}
|
|
|
|
if (!TEST_ptr(decode_out =
|
|
OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len))))
|
|
goto err;
|
|
|
|
EVP_DecodeInit(decode_ctx);
|
|
if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, expected->output,
|
|
expected->output_len) < 0) {
|
|
t->err = "DECODE_ERROR";
|
|
goto err;
|
|
}
|
|
output_len = chunk_len;
|
|
|
|
if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
|
|
t->err = "DECODE_ERROR";
|
|
goto err;
|
|
}
|
|
output_len += chunk_len;
|
|
|
|
if (expected->encoding != BASE64_INVALID_ENCODING
|
|
&& !memory_err_compare(t, "BAD_DECODING",
|
|
expected->input, expected->input_len,
|
|
decode_out, output_len)) {
|
|
t->err = "BAD_DECODING";
|
|
goto err;
|
|
}
|
|
|
|
t->err = NULL;
|
|
err:
|
|
OPENSSL_free(encode_out);
|
|
OPENSSL_free(decode_out);
|
|
EVP_ENCODE_CTX_free(decode_ctx);
|
|
EVP_ENCODE_CTX_free(encode_ctx);
|
|
return 1;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD encode_test_method = {
|
|
"Encoding",
|
|
encode_test_init,
|
|
encode_test_cleanup,
|
|
encode_test_parse,
|
|
encode_test_run,
|
|
};
|
|
|
|
|
|
/**
|
|
*** RAND TESTS
|
|
**/
|
|
|
|
#define MAX_RAND_REPEATS 15
|
|
|
|
typedef struct rand_data_pass_st {
|
|
unsigned char *entropy;
|
|
unsigned char *reseed_entropy;
|
|
unsigned char *nonce;
|
|
unsigned char *pers;
|
|
unsigned char *reseed_addin;
|
|
unsigned char *addinA;
|
|
unsigned char *addinB;
|
|
unsigned char *pr_entropyA;
|
|
unsigned char *pr_entropyB;
|
|
unsigned char *output;
|
|
size_t entropy_len, nonce_len, pers_len, addinA_len, addinB_len,
|
|
pr_entropyA_len, pr_entropyB_len, output_len, reseed_entropy_len,
|
|
reseed_addin_len;
|
|
} RAND_DATA_PASS;
|
|
|
|
typedef struct rand_data_st {
|
|
/* Context for this operation */
|
|
EVP_RAND_CTX *ctx;
|
|
EVP_RAND_CTX *parent;
|
|
int n;
|
|
int prediction_resistance;
|
|
int use_df;
|
|
unsigned int generate_bits;
|
|
char *cipher;
|
|
char *digest;
|
|
|
|
/* Expected output */
|
|
RAND_DATA_PASS data[MAX_RAND_REPEATS];
|
|
} RAND_DATA;
|
|
|
|
static int rand_test_init(EVP_TEST *t, const char *name)
|
|
{
|
|
RAND_DATA *rdata;
|
|
EVP_RAND *rand;
|
|
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
|
|
unsigned int strength = 256;
|
|
|
|
if (!TEST_ptr(rdata = OPENSSL_zalloc(sizeof(*rdata))))
|
|
return 0;
|
|
|
|
rand = EVP_RAND_fetch(NULL, "TEST-RAND", NULL);
|
|
if (rand == NULL)
|
|
goto err;
|
|
rdata->parent = EVP_RAND_CTX_new(rand, NULL);
|
|
EVP_RAND_free(rand);
|
|
if (rdata->parent == NULL)
|
|
goto err;
|
|
|
|
*params = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH, &strength);
|
|
if (!EVP_RAND_set_ctx_params(rdata->parent, params))
|
|
goto err;
|
|
|
|
rand = EVP_RAND_fetch(NULL, name, NULL);
|
|
if (rand == NULL)
|
|
goto err;
|
|
rdata->ctx = EVP_RAND_CTX_new(rand, rdata->parent);
|
|
EVP_RAND_free(rand);
|
|
if (rdata->ctx == NULL)
|
|
goto err;
|
|
|
|
rdata->n = -1;
|
|
t->data = rdata;
|
|
return 1;
|
|
err:
|
|
EVP_RAND_CTX_free(rdata->parent);
|
|
OPENSSL_free(rdata);
|
|
return 0;
|
|
}
|
|
|
|
static void rand_test_cleanup(EVP_TEST *t)
|
|
{
|
|
RAND_DATA *rdata = t->data;
|
|
int i;
|
|
|
|
OPENSSL_free(rdata->cipher);
|
|
OPENSSL_free(rdata->digest);
|
|
|
|
for (i = 0; i <= rdata->n; i++) {
|
|
OPENSSL_free(rdata->data[i].entropy);
|
|
OPENSSL_free(rdata->data[i].reseed_entropy);
|
|
OPENSSL_free(rdata->data[i].nonce);
|
|
OPENSSL_free(rdata->data[i].pers);
|
|
OPENSSL_free(rdata->data[i].reseed_addin);
|
|
OPENSSL_free(rdata->data[i].addinA);
|
|
OPENSSL_free(rdata->data[i].addinB);
|
|
OPENSSL_free(rdata->data[i].pr_entropyA);
|
|
OPENSSL_free(rdata->data[i].pr_entropyB);
|
|
OPENSSL_free(rdata->data[i].output);
|
|
}
|
|
EVP_RAND_CTX_free(rdata->ctx);
|
|
EVP_RAND_CTX_free(rdata->parent);
|
|
}
|
|
|
|
static int rand_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
RAND_DATA *rdata = t->data;
|
|
RAND_DATA_PASS *item;
|
|
const char *p;
|
|
int n;
|
|
|
|
if ((p = strchr(keyword, '.')) != NULL) {
|
|
n = atoi(++p);
|
|
if (n >= MAX_RAND_REPEATS)
|
|
return 0;
|
|
if (n > rdata->n)
|
|
rdata->n = n;
|
|
item = rdata->data + n;
|
|
if (strncmp(keyword, "Entropy.", sizeof("Entropy")) == 0)
|
|
return parse_bin(value, &item->entropy, &item->entropy_len);
|
|
if (strncmp(keyword, "ReseedEntropy.", sizeof("ReseedEntropy")) == 0)
|
|
return parse_bin(value, &item->reseed_entropy,
|
|
&item->reseed_entropy_len);
|
|
if (strncmp(keyword, "Nonce.", sizeof("Nonce")) == 0)
|
|
return parse_bin(value, &item->nonce, &item->nonce_len);
|
|
if (strncmp(keyword, "PersonalisationString.",
|
|
sizeof("PersonalisationString")) == 0)
|
|
return parse_bin(value, &item->pers, &item->pers_len);
|
|
if (strncmp(keyword, "ReseedAdditionalInput.",
|
|
sizeof("ReseedAdditionalInput")) == 0)
|
|
return parse_bin(value, &item->reseed_addin,
|
|
&item->reseed_addin_len);
|
|
if (strncmp(keyword, "AdditionalInputA.",
|
|
sizeof("AdditionalInputA")) == 0)
|
|
return parse_bin(value, &item->addinA, &item->addinA_len);
|
|
if (strncmp(keyword, "AdditionalInputB.",
|
|
sizeof("AdditionalInputB")) == 0)
|
|
return parse_bin(value, &item->addinB, &item->addinB_len);
|
|
if (strncmp(keyword, "EntropyPredictionResistanceA.",
|
|
sizeof("EntropyPredictionResistanceA")) == 0)
|
|
return parse_bin(value, &item->pr_entropyA, &item->pr_entropyA_len);
|
|
if (strncmp(keyword, "EntropyPredictionResistanceB.",
|
|
sizeof("EntropyPredictionResistanceB")) == 0)
|
|
return parse_bin(value, &item->pr_entropyB, &item->pr_entropyB_len);
|
|
if (strncmp(keyword, "Output.", sizeof("Output")) == 0)
|
|
return parse_bin(value, &item->output, &item->output_len);
|
|
} else {
|
|
if (strcmp(keyword, "Cipher") == 0)
|
|
return TEST_ptr(rdata->cipher = OPENSSL_strdup(value));
|
|
if (strcmp(keyword, "Digest") == 0)
|
|
return TEST_ptr(rdata->digest = OPENSSL_strdup(value));
|
|
if (strcmp(keyword, "DerivationFunction") == 0) {
|
|
rdata->use_df = atoi(value) != 0;
|
|
return 1;
|
|
}
|
|
if (strcmp(keyword, "GenerateBits") == 0) {
|
|
if ((n = atoi(value)) <= 0 || n % 8 != 0)
|
|
return 0;
|
|
rdata->generate_bits = (unsigned int)n;
|
|
return 1;
|
|
}
|
|
if (strcmp(keyword, "PredictionResistance") == 0) {
|
|
rdata->prediction_resistance = atoi(value) != 0;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int rand_test_run(EVP_TEST *t)
|
|
{
|
|
RAND_DATA *expected = t->data;
|
|
RAND_DATA_PASS *item;
|
|
unsigned char *got;
|
|
size_t got_len = expected->generate_bits / 8;
|
|
OSSL_PARAM params[5], *p = params;
|
|
int i = -1, ret = 0;
|
|
unsigned int strength;
|
|
unsigned char *z;
|
|
|
|
if (!TEST_ptr(got = OPENSSL_malloc(got_len)))
|
|
return 0;
|
|
|
|
*p++ = OSSL_PARAM_construct_int(OSSL_DRBG_PARAM_USE_DF, &expected->use_df);
|
|
if (expected->cipher != NULL)
|
|
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_CIPHER,
|
|
expected->cipher, 0);
|
|
if (expected->digest != NULL)
|
|
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_DIGEST,
|
|
expected->digest, 0);
|
|
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_MAC, "HMAC", 0);
|
|
*p = OSSL_PARAM_construct_end();
|
|
if (!TEST_true(EVP_RAND_set_ctx_params(expected->ctx, params)))
|
|
goto err;
|
|
|
|
strength = EVP_RAND_strength(expected->ctx);
|
|
for (i = 0; i <= expected->n; i++) {
|
|
item = expected->data + i;
|
|
|
|
p = params;
|
|
z = item->entropy != NULL ? item->entropy : (unsigned char *)"";
|
|
*p++ = OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_ENTROPY,
|
|
z, item->entropy_len);
|
|
z = item->nonce != NULL ? item->nonce : (unsigned char *)"";
|
|
*p++ = OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_NONCE,
|
|
z, item->nonce_len);
|
|
*p = OSSL_PARAM_construct_end();
|
|
if (!TEST_true(EVP_RAND_set_ctx_params(expected->parent, params))
|
|
|| !TEST_true(EVP_RAND_instantiate(expected->parent, strength,
|
|
0, NULL, 0)))
|
|
goto err;
|
|
|
|
z = item->pers != NULL ? item->pers : (unsigned char *)"";
|
|
if (!TEST_true(EVP_RAND_instantiate
|
|
(expected->ctx, strength,
|
|
expected->prediction_resistance, z,
|
|
item->pers_len)))
|
|
goto err;
|
|
|
|
if (item->reseed_entropy != NULL) {
|
|
params[0] = OSSL_PARAM_construct_octet_string
|
|
(OSSL_RAND_PARAM_TEST_ENTROPY, item->reseed_entropy,
|
|
item->reseed_entropy_len);
|
|
params[1] = OSSL_PARAM_construct_end();
|
|
if (!TEST_true(EVP_RAND_set_ctx_params(expected->parent, params)))
|
|
goto err;
|
|
|
|
if (!TEST_true(EVP_RAND_reseed
|
|
(expected->ctx, expected->prediction_resistance,
|
|
NULL, 0, item->reseed_addin,
|
|
item->reseed_addin_len)))
|
|
goto err;
|
|
}
|
|
if (item->pr_entropyA != NULL) {
|
|
params[0] = OSSL_PARAM_construct_octet_string
|
|
(OSSL_RAND_PARAM_TEST_ENTROPY, item->pr_entropyA,
|
|
item->pr_entropyA_len);
|
|
params[1] = OSSL_PARAM_construct_end();
|
|
if (!TEST_true(EVP_RAND_set_ctx_params(expected->parent, params)))
|
|
goto err;
|
|
}
|
|
if (!TEST_true(EVP_RAND_generate
|
|
(expected->ctx, got, got_len,
|
|
strength, expected->prediction_resistance,
|
|
item->addinA, item->addinA_len)))
|
|
goto err;
|
|
|
|
if (item->pr_entropyB != NULL) {
|
|
params[0] = OSSL_PARAM_construct_octet_string
|
|
(OSSL_RAND_PARAM_TEST_ENTROPY, item->pr_entropyB,
|
|
item->pr_entropyB_len);
|
|
params[1] = OSSL_PARAM_construct_end();
|
|
if (!TEST_true(EVP_RAND_set_ctx_params(expected->parent, params)))
|
|
return 0;
|
|
}
|
|
if (!TEST_true(EVP_RAND_generate
|
|
(expected->ctx, got, got_len,
|
|
strength, expected->prediction_resistance,
|
|
item->addinB, item->addinB_len)))
|
|
goto err;
|
|
if (!TEST_mem_eq(got, got_len, item->output, item->output_len))
|
|
goto err;
|
|
if (!TEST_true(EVP_RAND_uninstantiate(expected->ctx))
|
|
|| !TEST_true(EVP_RAND_uninstantiate(expected->parent))
|
|
|| !TEST_true(EVP_RAND_verify_zeroization(expected->ctx))
|
|
|| !TEST_int_eq(EVP_RAND_state(expected->ctx),
|
|
EVP_RAND_STATE_UNINITIALISED))
|
|
goto err;
|
|
}
|
|
t->err = NULL;
|
|
ret = 1;
|
|
|
|
err:
|
|
if (ret == 0 && i >= 0)
|
|
TEST_info("Error in test case %d of %d\n", i, expected->n + 1);
|
|
OPENSSL_free(got);
|
|
return ret;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD rand_test_method = {
|
|
"RAND",
|
|
rand_test_init,
|
|
rand_test_cleanup,
|
|
rand_test_parse,
|
|
rand_test_run
|
|
};
|
|
|
|
|
|
/**
|
|
*** KDF TESTS
|
|
**/
|
|
|
|
typedef struct kdf_data_st {
|
|
/* Context for this operation */
|
|
EVP_KDF_CTX *ctx;
|
|
/* Expected output */
|
|
unsigned char *output;
|
|
size_t output_len;
|
|
OSSL_PARAM params[20];
|
|
OSSL_PARAM *p;
|
|
} KDF_DATA;
|
|
|
|
/*
|
|
* Perform public key operation setup: lookup key, allocated ctx and call
|
|
* the appropriate initialisation function
|
|
*/
|
|
static int kdf_test_init(EVP_TEST *t, const char *name)
|
|
{
|
|
KDF_DATA *kdata;
|
|
EVP_KDF *kdf;
|
|
|
|
#ifdef OPENSSL_NO_SCRYPT
|
|
/* TODO(3.0) Replace with "scrypt" once aliases are supported */
|
|
if (strcmp(name, "id-scrypt") == 0) {
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
#endif /* OPENSSL_NO_SCRYPT */
|
|
|
|
#ifdef OPENSSL_NO_CMS
|
|
if (strcmp(name, "X942KDF") == 0) {
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
#endif /* OPENSSL_NO_CMS */
|
|
|
|
if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
|
|
return 0;
|
|
kdata->p = kdata->params;
|
|
*kdata->p = OSSL_PARAM_construct_end();
|
|
|
|
kdf = EVP_KDF_fetch(NULL, name, NULL);
|
|
if (kdf == NULL) {
|
|
OPENSSL_free(kdata);
|
|
return 0;
|
|
}
|
|
kdata->ctx = EVP_KDF_new_ctx(kdf);
|
|
EVP_KDF_free(kdf);
|
|
if (kdata->ctx == NULL) {
|
|
OPENSSL_free(kdata);
|
|
return 0;
|
|
}
|
|
t->data = kdata;
|
|
return 1;
|
|
}
|
|
|
|
static void kdf_test_cleanup(EVP_TEST *t)
|
|
{
|
|
KDF_DATA *kdata = t->data;
|
|
OSSL_PARAM *p;
|
|
|
|
for (p = kdata->params; p->key != NULL; p++)
|
|
OPENSSL_free(p->data);
|
|
OPENSSL_free(kdata->output);
|
|
EVP_KDF_free_ctx(kdata->ctx);
|
|
}
|
|
|
|
static int kdf_test_ctrl(EVP_TEST *t, EVP_KDF_CTX *kctx,
|
|
const char *value)
|
|
{
|
|
KDF_DATA *kdata = t->data;
|
|
int rv;
|
|
char *p, *name;
|
|
const OSSL_PARAM *defs =
|
|
EVP_KDF_settable_ctx_params(EVP_KDF_get_ctx_kdf(kctx));
|
|
|
|
if (!TEST_ptr(name = OPENSSL_strdup(value)))
|
|
return 0;
|
|
p = strchr(name, ':');
|
|
if (p != NULL)
|
|
*p++ = '\0';
|
|
|
|
rv = OSSL_PARAM_allocate_from_text(kdata->p, defs, name, p,
|
|
p != NULL ? strlen(p) : 0, NULL);
|
|
*++kdata->p = OSSL_PARAM_construct_end();
|
|
if (!rv) {
|
|
t->err = "KDF_PARAM_ERROR";
|
|
OPENSSL_free(name);
|
|
return 0;
|
|
}
|
|
if (p != NULL && strcmp(name, "digest") == 0) {
|
|
/* If p has an OID and lookup fails assume disabled algorithm */
|
|
int nid = OBJ_sn2nid(p);
|
|
|
|
if (nid == NID_undef)
|
|
nid = OBJ_ln2nid(p);
|
|
if (nid != NID_undef && EVP_get_digestbynid(nid) == NULL)
|
|
t->skip = 1;
|
|
}
|
|
if (p != NULL && strcmp(name, "cipher") == 0) {
|
|
/* If p has an OID and lookup fails assume disabled algorithm */
|
|
int nid = OBJ_sn2nid(p);
|
|
|
|
if (nid == NID_undef)
|
|
nid = OBJ_ln2nid(p);
|
|
if (nid != NID_undef && EVP_get_cipherbynid(nid) == NULL)
|
|
t->skip = 1;
|
|
}
|
|
OPENSSL_free(name);
|
|
return 1;
|
|
}
|
|
|
|
static int kdf_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
KDF_DATA *kdata = t->data;
|
|
|
|
if (strcmp(keyword, "Output") == 0)
|
|
return parse_bin(value, &kdata->output, &kdata->output_len);
|
|
if (strncmp(keyword, "Ctrl", 4) == 0)
|
|
return kdf_test_ctrl(t, kdata->ctx, value);
|
|
return 0;
|
|
}
|
|
|
|
static int kdf_test_run(EVP_TEST *t)
|
|
{
|
|
KDF_DATA *expected = t->data;
|
|
unsigned char *got = NULL;
|
|
size_t got_len = expected->output_len;
|
|
|
|
if (!EVP_KDF_set_ctx_params(expected->ctx, expected->params)) {
|
|
t->err = "KDF_CTRL_ERROR";
|
|
return 1;
|
|
}
|
|
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
|
|
t->err = "INTERNAL_ERROR";
|
|
goto err;
|
|
}
|
|
if (EVP_KDF_derive(expected->ctx, got, got_len) <= 0) {
|
|
t->err = "KDF_DERIVE_ERROR";
|
|
goto err;
|
|
}
|
|
if (!memory_err_compare(t, "KDF_MISMATCH",
|
|
expected->output, expected->output_len,
|
|
got, got_len))
|
|
goto err;
|
|
|
|
t->err = NULL;
|
|
|
|
err:
|
|
OPENSSL_free(got);
|
|
return 1;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD kdf_test_method = {
|
|
"KDF",
|
|
kdf_test_init,
|
|
kdf_test_cleanup,
|
|
kdf_test_parse,
|
|
kdf_test_run
|
|
};
|
|
|
|
|
|
/**
|
|
*** PKEY KDF TESTS
|
|
**/
|
|
|
|
typedef struct pkey_kdf_data_st {
|
|
/* Context for this operation */
|
|
EVP_PKEY_CTX *ctx;
|
|
/* Expected output */
|
|
unsigned char *output;
|
|
size_t output_len;
|
|
} PKEY_KDF_DATA;
|
|
|
|
/*
|
|
* Perform public key operation setup: lookup key, allocated ctx and call
|
|
* the appropriate initialisation function
|
|
*/
|
|
static int pkey_kdf_test_init(EVP_TEST *t, const char *name)
|
|
{
|
|
PKEY_KDF_DATA *kdata;
|
|
int kdf_nid = OBJ_sn2nid(name);
|
|
|
|
#ifdef OPENSSL_NO_SCRYPT
|
|
if (strcmp(name, "scrypt") == 0) {
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
#endif /* OPENSSL_NO_SCRYPT */
|
|
|
|
#ifdef OPENSSL_NO_CMS
|
|
if (strcmp(name, "X942KDF") == 0) {
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
#endif /* OPENSSL_NO_CMS */
|
|
|
|
if (kdf_nid == NID_undef)
|
|
kdf_nid = OBJ_ln2nid(name);
|
|
|
|
if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
|
|
return 0;
|
|
kdata->ctx = EVP_PKEY_CTX_new_id(kdf_nid, NULL);
|
|
if (kdata->ctx == NULL) {
|
|
OPENSSL_free(kdata);
|
|
return 0;
|
|
}
|
|
if (EVP_PKEY_derive_init(kdata->ctx) <= 0) {
|
|
EVP_PKEY_CTX_free(kdata->ctx);
|
|
OPENSSL_free(kdata);
|
|
return 0;
|
|
}
|
|
t->data = kdata;
|
|
return 1;
|
|
}
|
|
|
|
static void pkey_kdf_test_cleanup(EVP_TEST *t)
|
|
{
|
|
PKEY_KDF_DATA *kdata = t->data;
|
|
|
|
OPENSSL_free(kdata->output);
|
|
EVP_PKEY_CTX_free(kdata->ctx);
|
|
}
|
|
|
|
static int pkey_kdf_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
PKEY_KDF_DATA *kdata = t->data;
|
|
|
|
if (strcmp(keyword, "Output") == 0)
|
|
return parse_bin(value, &kdata->output, &kdata->output_len);
|
|
if (strncmp(keyword, "Ctrl", 4) == 0)
|
|
return pkey_test_ctrl(t, kdata->ctx, value);
|
|
return 0;
|
|
}
|
|
|
|
static int pkey_kdf_test_run(EVP_TEST *t)
|
|
{
|
|
PKEY_KDF_DATA *expected = t->data;
|
|
unsigned char *got = NULL;
|
|
size_t got_len = expected->output_len;
|
|
|
|
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
|
|
t->err = "INTERNAL_ERROR";
|
|
goto err;
|
|
}
|
|
if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
|
|
t->err = "KDF_DERIVE_ERROR";
|
|
goto err;
|
|
}
|
|
if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) {
|
|
t->err = "KDF_MISMATCH";
|
|
goto err;
|
|
}
|
|
t->err = NULL;
|
|
|
|
err:
|
|
OPENSSL_free(got);
|
|
return 1;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD pkey_kdf_test_method = {
|
|
"PKEYKDF",
|
|
pkey_kdf_test_init,
|
|
pkey_kdf_test_cleanup,
|
|
pkey_kdf_test_parse,
|
|
pkey_kdf_test_run
|
|
};
|
|
|
|
|
|
/**
|
|
*** KEYPAIR TESTS
|
|
**/
|
|
|
|
typedef struct keypair_test_data_st {
|
|
EVP_PKEY *privk;
|
|
EVP_PKEY *pubk;
|
|
} KEYPAIR_TEST_DATA;
|
|
|
|
static int keypair_test_init(EVP_TEST *t, const char *pair)
|
|
{
|
|
KEYPAIR_TEST_DATA *data;
|
|
int rv = 0;
|
|
EVP_PKEY *pk = NULL, *pubk = NULL;
|
|
char *pub, *priv = NULL;
|
|
|
|
/* Split private and public names. */
|
|
if (!TEST_ptr(priv = OPENSSL_strdup(pair))
|
|
|| !TEST_ptr(pub = strchr(priv, ':'))) {
|
|
t->err = "PARSING_ERROR";
|
|
goto end;
|
|
}
|
|
*pub++ = '\0';
|
|
|
|
if (!TEST_true(find_key(&pk, priv, private_keys))) {
|
|
TEST_info("Can't find private key: %s", priv);
|
|
t->err = "MISSING_PRIVATE_KEY";
|
|
goto end;
|
|
}
|
|
if (!TEST_true(find_key(&pubk, pub, public_keys))) {
|
|
TEST_info("Can't find public key: %s", pub);
|
|
t->err = "MISSING_PUBLIC_KEY";
|
|
goto end;
|
|
}
|
|
|
|
if (pk == NULL && pubk == NULL) {
|
|
/* Both keys are listed but unsupported: skip this test */
|
|
t->skip = 1;
|
|
rv = 1;
|
|
goto end;
|
|
}
|
|
|
|
if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
|
|
goto end;
|
|
data->privk = pk;
|
|
data->pubk = pubk;
|
|
t->data = data;
|
|
rv = 1;
|
|
t->err = NULL;
|
|
|
|
end:
|
|
OPENSSL_free(priv);
|
|
return rv;
|
|
}
|
|
|
|
static void keypair_test_cleanup(EVP_TEST *t)
|
|
{
|
|
OPENSSL_free(t->data);
|
|
t->data = NULL;
|
|
}
|
|
|
|
/*
|
|
* For tests that do not accept any custom keywords.
|
|
*/
|
|
static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int keypair_test_run(EVP_TEST *t)
|
|
{
|
|
int rv = 0;
|
|
const KEYPAIR_TEST_DATA *pair = t->data;
|
|
|
|
if (pair->privk == NULL || pair->pubk == NULL) {
|
|
/*
|
|
* this can only happen if only one of the keys is not set
|
|
* which means that one of them was unsupported while the
|
|
* other isn't: hence a key type mismatch.
|
|
*/
|
|
t->err = "KEYPAIR_TYPE_MISMATCH";
|
|
rv = 1;
|
|
goto end;
|
|
}
|
|
|
|
if ((rv = EVP_PKEY_eq(pair->privk, pair->pubk)) != 1 ) {
|
|
if ( 0 == rv ) {
|
|
t->err = "KEYPAIR_MISMATCH";
|
|
} else if ( -1 == rv ) {
|
|
t->err = "KEYPAIR_TYPE_MISMATCH";
|
|
} else if ( -2 == rv ) {
|
|
t->err = "UNSUPPORTED_KEY_COMPARISON";
|
|
} else {
|
|
TEST_error("Unexpected error in key comparison");
|
|
rv = 0;
|
|
goto end;
|
|
}
|
|
rv = 1;
|
|
goto end;
|
|
}
|
|
|
|
rv = 1;
|
|
t->err = NULL;
|
|
|
|
end:
|
|
return rv;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD keypair_test_method = {
|
|
"PrivPubKeyPair",
|
|
keypair_test_init,
|
|
keypair_test_cleanup,
|
|
void_test_parse,
|
|
keypair_test_run
|
|
};
|
|
|
|
/**
|
|
*** KEYGEN TEST
|
|
**/
|
|
|
|
typedef struct keygen_test_data_st {
|
|
EVP_PKEY_CTX *genctx; /* Keygen context to use */
|
|
char *keyname; /* Key name to store key or NULL */
|
|
} KEYGEN_TEST_DATA;
|
|
|
|
static int keygen_test_init(EVP_TEST *t, const char *alg)
|
|
{
|
|
KEYGEN_TEST_DATA *data;
|
|
EVP_PKEY_CTX *genctx;
|
|
int nid = OBJ_sn2nid(alg);
|
|
|
|
if (nid == NID_undef) {
|
|
nid = OBJ_ln2nid(alg);
|
|
if (nid == NID_undef)
|
|
return 0;
|
|
}
|
|
|
|
if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_id(nid, NULL))) {
|
|
/* assume algorithm disabled */
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
|
|
if (EVP_PKEY_keygen_init(genctx) <= 0) {
|
|
t->err = "KEYGEN_INIT_ERROR";
|
|
goto err;
|
|
}
|
|
|
|
if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
|
|
goto err;
|
|
data->genctx = genctx;
|
|
data->keyname = NULL;
|
|
t->data = data;
|
|
t->err = NULL;
|
|
return 1;
|
|
|
|
err:
|
|
EVP_PKEY_CTX_free(genctx);
|
|
return 0;
|
|
}
|
|
|
|
static void keygen_test_cleanup(EVP_TEST *t)
|
|
{
|
|
KEYGEN_TEST_DATA *keygen = t->data;
|
|
|
|
EVP_PKEY_CTX_free(keygen->genctx);
|
|
OPENSSL_free(keygen->keyname);
|
|
OPENSSL_free(t->data);
|
|
t->data = NULL;
|
|
}
|
|
|
|
static int keygen_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
KEYGEN_TEST_DATA *keygen = t->data;
|
|
|
|
if (strcmp(keyword, "KeyName") == 0)
|
|
return TEST_ptr(keygen->keyname = OPENSSL_strdup(value));
|
|
if (strcmp(keyword, "Ctrl") == 0)
|
|
return pkey_test_ctrl(t, keygen->genctx, value);
|
|
return 0;
|
|
}
|
|
|
|
static int keygen_test_run(EVP_TEST *t)
|
|
{
|
|
KEYGEN_TEST_DATA *keygen = t->data;
|
|
EVP_PKEY *pkey = NULL;
|
|
int rv = 1;
|
|
|
|
if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) {
|
|
t->err = "KEYGEN_GENERATE_ERROR";
|
|
goto err;
|
|
}
|
|
|
|
if (keygen->keyname != NULL) {
|
|
KEY_LIST *key;
|
|
|
|
rv = 0;
|
|
if (find_key(NULL, keygen->keyname, private_keys)) {
|
|
TEST_info("Duplicate key %s", keygen->keyname);
|
|
goto err;
|
|
}
|
|
|
|
if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
|
|
goto err;
|
|
key->name = keygen->keyname;
|
|
keygen->keyname = NULL;
|
|
key->key = pkey;
|
|
key->next = private_keys;
|
|
private_keys = key;
|
|
rv = 1;
|
|
} else {
|
|
EVP_PKEY_free(pkey);
|
|
}
|
|
|
|
t->err = NULL;
|
|
|
|
err:
|
|
return rv;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD keygen_test_method = {
|
|
"KeyGen",
|
|
keygen_test_init,
|
|
keygen_test_cleanup,
|
|
keygen_test_parse,
|
|
keygen_test_run,
|
|
};
|
|
|
|
/**
|
|
*** DIGEST SIGN+VERIFY TESTS
|
|
**/
|
|
|
|
typedef struct {
|
|
int is_verify; /* Set to 1 if verifying */
|
|
int is_oneshot; /* Set to 1 for one shot operation */
|
|
const EVP_MD *md; /* Digest to use */
|
|
EVP_MD_CTX *ctx; /* Digest context */
|
|
EVP_PKEY_CTX *pctx;
|
|
STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */
|
|
unsigned char *osin; /* Input data if one shot */
|
|
size_t osin_len; /* Input length data if one shot */
|
|
unsigned char *output; /* Expected output */
|
|
size_t output_len; /* Expected output length */
|
|
} DIGESTSIGN_DATA;
|
|
|
|
static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify,
|
|
int is_oneshot)
|
|
{
|
|
const EVP_MD *md = NULL;
|
|
DIGESTSIGN_DATA *mdat;
|
|
|
|
if (strcmp(alg, "NULL") != 0) {
|
|
if ((md = EVP_get_digestbyname(alg)) == NULL) {
|
|
/* If alg has an OID assume disabled algorithm */
|
|
if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat))))
|
|
return 0;
|
|
mdat->md = md;
|
|
if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) {
|
|
OPENSSL_free(mdat);
|
|
return 0;
|
|
}
|
|
mdat->is_verify = is_verify;
|
|
mdat->is_oneshot = is_oneshot;
|
|
t->data = mdat;
|
|
return 1;
|
|
}
|
|
|
|
static int digestsign_test_init(EVP_TEST *t, const char *alg)
|
|
{
|
|
return digestsigver_test_init(t, alg, 0, 0);
|
|
}
|
|
|
|
static void digestsigver_test_cleanup(EVP_TEST *t)
|
|
{
|
|
DIGESTSIGN_DATA *mdata = t->data;
|
|
|
|
EVP_MD_CTX_free(mdata->ctx);
|
|
sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free);
|
|
OPENSSL_free(mdata->osin);
|
|
OPENSSL_free(mdata->output);
|
|
OPENSSL_free(mdata);
|
|
t->data = NULL;
|
|
}
|
|
|
|
static int digestsigver_test_parse(EVP_TEST *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
DIGESTSIGN_DATA *mdata = t->data;
|
|
|
|
if (strcmp(keyword, "Key") == 0) {
|
|
EVP_PKEY *pkey = NULL;
|
|
int rv = 0;
|
|
|
|
if (mdata->is_verify)
|
|
rv = find_key(&pkey, value, public_keys);
|
|
if (rv == 0)
|
|
rv = find_key(&pkey, value, private_keys);
|
|
if (rv == 0 || pkey == NULL) {
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
if (mdata->is_verify) {
|
|
if (!EVP_DigestVerifyInit(mdata->ctx, &mdata->pctx, mdata->md,
|
|
NULL, pkey))
|
|
t->err = "DIGESTVERIFYINIT_ERROR";
|
|
return 1;
|
|
}
|
|
if (!EVP_DigestSignInit(mdata->ctx, &mdata->pctx, mdata->md, NULL,
|
|
pkey))
|
|
t->err = "DIGESTSIGNINIT_ERROR";
|
|
return 1;
|
|
}
|
|
|
|
if (strcmp(keyword, "Input") == 0) {
|
|
if (mdata->is_oneshot)
|
|
return parse_bin(value, &mdata->osin, &mdata->osin_len);
|
|
return evp_test_buffer_append(value, &mdata->input);
|
|
}
|
|
if (strcmp(keyword, "Output") == 0)
|
|
return parse_bin(value, &mdata->output, &mdata->output_len);
|
|
|
|
if (!mdata->is_oneshot) {
|
|
if (strcmp(keyword, "Count") == 0)
|
|
return evp_test_buffer_set_count(value, mdata->input);
|
|
if (strcmp(keyword, "Ncopy") == 0)
|
|
return evp_test_buffer_ncopy(value, mdata->input);
|
|
}
|
|
if (strcmp(keyword, "Ctrl") == 0) {
|
|
if (mdata->pctx == NULL)
|
|
return -1;
|
|
return pkey_test_ctrl(t, mdata->pctx, value);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int digestsign_update_fn(void *ctx, const unsigned char *buf,
|
|
size_t buflen)
|
|
{
|
|
return EVP_DigestSignUpdate(ctx, buf, buflen);
|
|
}
|
|
|
|
static int digestsign_test_run(EVP_TEST *t)
|
|
{
|
|
DIGESTSIGN_DATA *expected = t->data;
|
|
unsigned char *got = NULL;
|
|
size_t got_len;
|
|
|
|
if (!evp_test_buffer_do(expected->input, digestsign_update_fn,
|
|
expected->ctx)) {
|
|
t->err = "DIGESTUPDATE_ERROR";
|
|
goto err;
|
|
}
|
|
|
|
if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) {
|
|
t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
|
|
goto err;
|
|
}
|
|
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
|
|
t->err = "MALLOC_FAILURE";
|
|
goto err;
|
|
}
|
|
if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) {
|
|
t->err = "DIGESTSIGNFINAL_ERROR";
|
|
goto err;
|
|
}
|
|
if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
|
|
expected->output, expected->output_len,
|
|
got, got_len))
|
|
goto err;
|
|
|
|
t->err = NULL;
|
|
err:
|
|
OPENSSL_free(got);
|
|
return 1;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD digestsign_test_method = {
|
|
"DigestSign",
|
|
digestsign_test_init,
|
|
digestsigver_test_cleanup,
|
|
digestsigver_test_parse,
|
|
digestsign_test_run
|
|
};
|
|
|
|
static int digestverify_test_init(EVP_TEST *t, const char *alg)
|
|
{
|
|
return digestsigver_test_init(t, alg, 1, 0);
|
|
}
|
|
|
|
static int digestverify_update_fn(void *ctx, const unsigned char *buf,
|
|
size_t buflen)
|
|
{
|
|
return EVP_DigestVerifyUpdate(ctx, buf, buflen);
|
|
}
|
|
|
|
static int digestverify_test_run(EVP_TEST *t)
|
|
{
|
|
DIGESTSIGN_DATA *mdata = t->data;
|
|
|
|
if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) {
|
|
t->err = "DIGESTUPDATE_ERROR";
|
|
return 1;
|
|
}
|
|
|
|
if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output,
|
|
mdata->output_len) <= 0)
|
|
t->err = "VERIFY_ERROR";
|
|
return 1;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD digestverify_test_method = {
|
|
"DigestVerify",
|
|
digestverify_test_init,
|
|
digestsigver_test_cleanup,
|
|
digestsigver_test_parse,
|
|
digestverify_test_run
|
|
};
|
|
|
|
static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg)
|
|
{
|
|
return digestsigver_test_init(t, alg, 0, 1);
|
|
}
|
|
|
|
static int oneshot_digestsign_test_run(EVP_TEST *t)
|
|
{
|
|
DIGESTSIGN_DATA *expected = t->data;
|
|
unsigned char *got = NULL;
|
|
size_t got_len;
|
|
|
|
if (!EVP_DigestSign(expected->ctx, NULL, &got_len,
|
|
expected->osin, expected->osin_len)) {
|
|
t->err = "DIGESTSIGN_LENGTH_ERROR";
|
|
goto err;
|
|
}
|
|
if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
|
|
t->err = "MALLOC_FAILURE";
|
|
goto err;
|
|
}
|
|
if (!EVP_DigestSign(expected->ctx, got, &got_len,
|
|
expected->osin, expected->osin_len)) {
|
|
t->err = "DIGESTSIGN_ERROR";
|
|
goto err;
|
|
}
|
|
if (!memory_err_compare(t, "SIGNATURE_MISMATCH",
|
|
expected->output, expected->output_len,
|
|
got, got_len))
|
|
goto err;
|
|
|
|
t->err = NULL;
|
|
err:
|
|
OPENSSL_free(got);
|
|
return 1;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD oneshot_digestsign_test_method = {
|
|
"OneShotDigestSign",
|
|
oneshot_digestsign_test_init,
|
|
digestsigver_test_cleanup,
|
|
digestsigver_test_parse,
|
|
oneshot_digestsign_test_run
|
|
};
|
|
|
|
static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg)
|
|
{
|
|
return digestsigver_test_init(t, alg, 1, 1);
|
|
}
|
|
|
|
static int oneshot_digestverify_test_run(EVP_TEST *t)
|
|
{
|
|
DIGESTSIGN_DATA *mdata = t->data;
|
|
|
|
if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len,
|
|
mdata->osin, mdata->osin_len) <= 0)
|
|
t->err = "VERIFY_ERROR";
|
|
return 1;
|
|
}
|
|
|
|
static const EVP_TEST_METHOD oneshot_digestverify_test_method = {
|
|
"OneShotDigestVerify",
|
|
oneshot_digestverify_test_init,
|
|
digestsigver_test_cleanup,
|
|
digestsigver_test_parse,
|
|
oneshot_digestverify_test_run
|
|
};
|
|
|
|
|
|
/**
|
|
*** PARSING AND DISPATCH
|
|
**/
|
|
|
|
static const EVP_TEST_METHOD *evp_test_list[] = {
|
|
&rand_test_method,
|
|
&cipher_test_method,
|
|
&digest_test_method,
|
|
&digestsign_test_method,
|
|
&digestverify_test_method,
|
|
&encode_test_method,
|
|
&kdf_test_method,
|
|
&pkey_kdf_test_method,
|
|
&keypair_test_method,
|
|
&keygen_test_method,
|
|
&mac_test_method,
|
|
&oneshot_digestsign_test_method,
|
|
&oneshot_digestverify_test_method,
|
|
&pbe_test_method,
|
|
&pdecrypt_test_method,
|
|
&pderive_test_method,
|
|
&psign_test_method,
|
|
&pverify_recover_test_method,
|
|
&pverify_test_method,
|
|
NULL
|
|
};
|
|
|
|
static const EVP_TEST_METHOD *find_test(const char *name)
|
|
{
|
|
const EVP_TEST_METHOD **tt;
|
|
|
|
for (tt = evp_test_list; *tt; tt++) {
|
|
if (strcmp(name, (*tt)->name) == 0)
|
|
return *tt;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void clear_test(EVP_TEST *t)
|
|
{
|
|
test_clearstanza(&t->s);
|
|
ERR_clear_error();
|
|
if (t->data != NULL) {
|
|
if (t->meth != NULL)
|
|
t->meth->cleanup(t);
|
|
OPENSSL_free(t->data);
|
|
t->data = NULL;
|
|
}
|
|
OPENSSL_free(t->expected_err);
|
|
t->expected_err = NULL;
|
|
OPENSSL_free(t->reason);
|
|
t->reason = NULL;
|
|
|
|
/* Text literal. */
|
|
t->err = NULL;
|
|
t->skip = 0;
|
|
t->meth = NULL;
|
|
}
|
|
|
|
/*
|
|
* Check for errors in the test structure; return 1 if okay, else 0.
|
|
*/
|
|
static int check_test_error(EVP_TEST *t)
|
|
{
|
|
unsigned long err;
|
|
const char *reason;
|
|
|
|
if (t->err == NULL && t->expected_err == NULL)
|
|
return 1;
|
|
if (t->err != NULL && t->expected_err == NULL) {
|
|
if (t->aux_err != NULL) {
|
|
TEST_info("%s:%d: Source of above error (%s); unexpected error %s",
|
|
t->s.test_file, t->s.start, t->aux_err, t->err);
|
|
} else {
|
|
TEST_info("%s:%d: Source of above error; unexpected error %s",
|
|
t->s.test_file, t->s.start, t->err);
|
|
}
|
|
return 0;
|
|
}
|
|
if (t->err == NULL && t->expected_err != NULL) {
|
|
TEST_info("%s:%d: Succeeded but was expecting %s",
|
|
t->s.test_file, t->s.start, t->expected_err);
|
|
return 0;
|
|
}
|
|
|
|
if (strcmp(t->err, t->expected_err) != 0) {
|
|
TEST_info("%s:%d: Expected %s got %s",
|
|
t->s.test_file, t->s.start, t->expected_err, t->err);
|
|
return 0;
|
|
}
|
|
|
|
if (t->reason == NULL)
|
|
return 1;
|
|
|
|
if (t->reason == NULL) {
|
|
TEST_info("%s:%d: Test is missing function or reason code",
|
|
t->s.test_file, t->s.start);
|
|
return 0;
|
|
}
|
|
|
|
err = ERR_peek_error();
|
|
if (err == 0) {
|
|
TEST_info("%s:%d: Expected error \"%s\" not set",
|
|
t->s.test_file, t->s.start, t->reason);
|
|
return 0;
|
|
}
|
|
|
|
reason = ERR_reason_error_string(err);
|
|
if (reason == NULL) {
|
|
TEST_info("%s:%d: Expected error \"%s\", no strings available."
|
|
" Assuming ok.",
|
|
t->s.test_file, t->s.start, t->reason);
|
|
return 1;
|
|
}
|
|
|
|
if (strcmp(reason, t->reason) == 0)
|
|
return 1;
|
|
|
|
TEST_info("%s:%d: Expected error \"%s\", got \"%s\"",
|
|
t->s.test_file, t->s.start, t->reason, reason);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Run a parsed test. Log a message and return 0 on error.
|
|
*/
|
|
static int run_test(EVP_TEST *t)
|
|
{
|
|
if (t->meth == NULL)
|
|
return 1;
|
|
t->s.numtests++;
|
|
if (t->skip) {
|
|
t->s.numskip++;
|
|
} else {
|
|
/* run the test */
|
|
if (t->err == NULL && t->meth->run_test(t) != 1) {
|
|
TEST_info("%s:%d %s error",
|
|
t->s.test_file, t->s.start, t->meth->name);
|
|
return 0;
|
|
}
|
|
if (!check_test_error(t)) {
|
|
TEST_openssl_errors();
|
|
t->s.errors++;
|
|
}
|
|
}
|
|
|
|
/* clean it up */
|
|
return 1;
|
|
}
|
|
|
|
static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst)
|
|
{
|
|
for (; lst != NULL; lst = lst->next) {
|
|
if (strcmp(lst->name, name) == 0) {
|
|
if (ppk != NULL)
|
|
*ppk = lst->key;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void free_key_list(KEY_LIST *lst)
|
|
{
|
|
while (lst != NULL) {
|
|
KEY_LIST *next = lst->next;
|
|
|
|
EVP_PKEY_free(lst->key);
|
|
OPENSSL_free(lst->name);
|
|
OPENSSL_free(lst);
|
|
lst = next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Is the key type an unsupported algorithm?
|
|
*/
|
|
static int key_unsupported(void)
|
|
{
|
|
long err = ERR_peek_error();
|
|
|
|
if (ERR_GET_LIB(err) == ERR_LIB_EVP
|
|
&& (ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM
|
|
|| ERR_GET_REASON(err) == EVP_R_FETCH_FAILED)) {
|
|
ERR_clear_error();
|
|
return 1;
|
|
}
|
|
#ifndef OPENSSL_NO_EC
|
|
/*
|
|
* If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an
|
|
* hint to an unsupported algorithm/curve (e.g. if binary EC support is
|
|
* disabled).
|
|
*/
|
|
if (ERR_GET_LIB(err) == ERR_LIB_EC
|
|
&& ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP) {
|
|
ERR_clear_error();
|
|
return 1;
|
|
}
|
|
#endif /* OPENSSL_NO_EC */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* NULL out the value from |pp| but return it. This "steals" a pointer.
|
|
*/
|
|
static char *take_value(PAIR *pp)
|
|
{
|
|
char *p = pp->value;
|
|
|
|
pp->value = NULL;
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* Return 1 if one of the providers named in the string is available.
|
|
* The provider names are separated with whitespace.
|
|
* NOTE: destructive function, it inserts '\0' after each provider name.
|
|
*/
|
|
static int prov_available(char *providers)
|
|
{
|
|
char *p;
|
|
int more = 1;
|
|
|
|
while (more) {
|
|
for (; isspace(*providers); providers++)
|
|
continue;
|
|
if (*providers == '\0')
|
|
break; /* End of the road */
|
|
for (p = providers; *p != '\0' && !isspace(*p); p++)
|
|
continue;
|
|
if (*p == '\0')
|
|
more = 0;
|
|
else
|
|
*p = '\0';
|
|
if (OSSL_PROVIDER_available(NULL, providers))
|
|
return 1; /* Found one */
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read and parse one test. Return 0 if failure, 1 if okay.
|
|
*/
|
|
static int parse(EVP_TEST *t)
|
|
{
|
|
KEY_LIST *key, **klist;
|
|
EVP_PKEY *pkey;
|
|
PAIR *pp;
|
|
int i;
|
|
|
|
top:
|
|
do {
|
|
if (BIO_eof(t->s.fp))
|
|
return EOF;
|
|
clear_test(t);
|
|
if (!test_readstanza(&t->s))
|
|
return 0;
|
|
} while (t->s.numpairs == 0);
|
|
pp = &t->s.pairs[0];
|
|
|
|
/* Are we adding a key? */
|
|
klist = NULL;
|
|
pkey = NULL;
|
|
if (strcmp(pp->key, "PrivateKey") == 0) {
|
|
pkey = PEM_read_bio_PrivateKey(t->s.key, NULL, 0, NULL);
|
|
if (pkey == NULL && !key_unsupported()) {
|
|
EVP_PKEY_free(pkey);
|
|
TEST_info("Can't read private key %s", pp->value);
|
|
TEST_openssl_errors();
|
|
return 0;
|
|
}
|
|
klist = &private_keys;
|
|
} else if (strcmp(pp->key, "PublicKey") == 0) {
|
|
pkey = PEM_read_bio_PUBKEY(t->s.key, NULL, 0, NULL);
|
|
if (pkey == NULL && !key_unsupported()) {
|
|
EVP_PKEY_free(pkey);
|
|
TEST_info("Can't read public key %s", pp->value);
|
|
TEST_openssl_errors();
|
|
return 0;
|
|
}
|
|
klist = &public_keys;
|
|
} else if (strcmp(pp->key, "PrivateKeyRaw") == 0
|
|
|| strcmp(pp->key, "PublicKeyRaw") == 0 ) {
|
|
char *strnid = NULL, *keydata = NULL;
|
|
unsigned char *keybin;
|
|
size_t keylen;
|
|
int nid;
|
|
|
|
if (strcmp(pp->key, "PrivateKeyRaw") == 0)
|
|
klist = &private_keys;
|
|
else
|
|
klist = &public_keys;
|
|
|
|
strnid = strchr(pp->value, ':');
|
|
if (strnid != NULL) {
|
|
*strnid++ = '\0';
|
|
keydata = strchr(strnid, ':');
|
|
if (keydata != NULL)
|
|
*keydata++ = '\0';
|
|
}
|
|
if (keydata == NULL) {
|
|
TEST_info("Failed to parse %s value", pp->key);
|
|
return 0;
|
|
}
|
|
|
|
nid = OBJ_txt2nid(strnid);
|
|
if (nid == NID_undef) {
|
|
TEST_info("Uncrecognised algorithm NID");
|
|
return 0;
|
|
}
|
|
if (!parse_bin(keydata, &keybin, &keylen)) {
|
|
TEST_info("Failed to create binary key");
|
|
return 0;
|
|
}
|
|
if (klist == &private_keys)
|
|
pkey = EVP_PKEY_new_raw_private_key(nid, NULL, keybin, keylen);
|
|
else
|
|
pkey = EVP_PKEY_new_raw_public_key(nid, NULL, keybin, keylen);
|
|
if (pkey == NULL && !key_unsupported()) {
|
|
TEST_info("Can't read %s data", pp->key);
|
|
OPENSSL_free(keybin);
|
|
TEST_openssl_errors();
|
|
return 0;
|
|
}
|
|
OPENSSL_free(keybin);
|
|
}
|
|
|
|
/* If we have a key add to list */
|
|
if (klist != NULL) {
|
|
if (find_key(NULL, pp->value, *klist)) {
|
|
TEST_info("Duplicate key %s", pp->value);
|
|
return 0;
|
|
}
|
|
if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))))
|
|
return 0;
|
|
key->name = take_value(pp);
|
|
key->key = pkey;
|
|
key->next = *klist;
|
|
*klist = key;
|
|
|
|
/* Go back and start a new stanza. */
|
|
if (t->s.numpairs != 1)
|
|
TEST_info("Line %d: missing blank line\n", t->s.curr);
|
|
goto top;
|
|
}
|
|
|
|
/* Find the test, based on first keyword. */
|
|
if (!TEST_ptr(t->meth = find_test(pp->key)))
|
|
return 0;
|
|
if (!t->meth->init(t, pp->value)) {
|
|
TEST_error("unknown %s: %s\n", pp->key, pp->value);
|
|
return 0;
|
|
}
|
|
if (t->skip == 1) {
|
|
/* TEST_info("skipping %s %s", pp->key, pp->value); */
|
|
return 0;
|
|
}
|
|
|
|
for (pp++, i = 1; i < t->s.numpairs; pp++, i++) {
|
|
if (strcmp(pp->key, "Availablein") == 0) {
|
|
if (!prov_available(pp->value)) {
|
|
TEST_info("skipping, providers not available: %s:%d",
|
|
t->s.test_file, t->s.start);
|
|
t->skip = 1;
|
|
return 0;
|
|
}
|
|
} else if (strcmp(pp->key, "Result") == 0) {
|
|
if (t->expected_err != NULL) {
|
|
TEST_info("Line %d: multiple result lines", t->s.curr);
|
|
return 0;
|
|
}
|
|
t->expected_err = take_value(pp);
|
|
} else if (strcmp(pp->key, "Function") == 0) {
|
|
/* Ignore old line. */
|
|
} else if (strcmp(pp->key, "Reason") == 0) {
|
|
if (t->reason != NULL) {
|
|
TEST_info("Line %d: multiple reason lines", t->s.curr);
|
|
return 0;
|
|
}
|
|
t->reason = take_value(pp);
|
|
} else {
|
|
/* Must be test specific line: try to parse it */
|
|
int rv = t->meth->parse(t, pp->key, pp->value);
|
|
|
|
if (rv == 0) {
|
|
TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key);
|
|
return 0;
|
|
}
|
|
if (rv < 0) {
|
|
TEST_info("Line %d: error processing keyword %s = %s\n",
|
|
t->s.curr, pp->key, pp->value);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int run_file_tests(int i)
|
|
{
|
|
EVP_TEST *t;
|
|
const char *testfile = test_get_argument(i);
|
|
int c;
|
|
|
|
if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t))))
|
|
return 0;
|
|
if (!test_start_file(&t->s, testfile)) {
|
|
OPENSSL_free(t);
|
|
return 0;
|
|
}
|
|
|
|
while (!BIO_eof(t->s.fp)) {
|
|
c = parse(t);
|
|
if (t->skip) {
|
|
t->s.numskip++;
|
|
continue;
|
|
}
|
|
if (c == 0 || !run_test(t)) {
|
|
t->s.errors++;
|
|
break;
|
|
}
|
|
}
|
|
test_end_file(&t->s);
|
|
clear_test(t);
|
|
|
|
free_key_list(public_keys);
|
|
free_key_list(private_keys);
|
|
BIO_free(t->s.key);
|
|
c = t->s.errors;
|
|
OPENSSL_free(t);
|
|
return c == 0;
|
|
}
|
|
|
|
OPT_TEST_DECLARE_USAGE("file...\n")
|
|
|
|
int setup_tests(void)
|
|
{
|
|
size_t n;
|
|
|
|
if (!test_skip_common_options()) {
|
|
TEST_error("Error parsing test options\n");
|
|
return 0;
|
|
}
|
|
|
|
n = test_get_argument_count();
|
|
if (n == 0)
|
|
return 0;
|
|
|
|
ADD_ALL_TESTS(run_file_tests, n);
|
|
return 1;
|
|
}
|