openssl/crypto/rsa/rsa_lib.c
Cesar Pereida Garcia d2baf88c43 [crypto/rsa] Set the constant-time flag in multi-prime RSA too
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9779)
2019-09-06 16:11:27 +01:00

616 lines
15 KiB
C

/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <openssl/crypto.h>
#include "internal/cryptlib.h"
#include "internal/refcount.h"
#include "internal/bn_int.h"
#include <openssl/engine.h>
#include <openssl/evp.h>
#include "internal/evp_int.h"
#include "rsa_locl.h"
RSA *RSA_new(void)
{
return RSA_new_method(NULL);
}
const RSA_METHOD *RSA_get_method(const RSA *rsa)
{
return rsa->meth;
}
int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
{
/*
* NB: The caller is specifically setting a method, so it's not up to us
* to deal with which ENGINE it comes from.
*/
const RSA_METHOD *mtmp;
mtmp = rsa->meth;
if (mtmp->finish)
mtmp->finish(rsa);
#ifndef OPENSSL_NO_ENGINE
ENGINE_finish(rsa->engine);
rsa->engine = NULL;
#endif
rsa->meth = meth;
if (meth->init)
meth->init(rsa);
return 1;
}
RSA *RSA_new_method(ENGINE *engine)
{
RSA *ret = OPENSSL_zalloc(sizeof(*ret));
if (ret == NULL) {
RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_MALLOC_FAILURE);
return NULL;
}
ret->references = 1;
ret->lock = CRYPTO_THREAD_lock_new();
if (ret->lock == NULL) {
RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_MALLOC_FAILURE);
OPENSSL_free(ret);
return NULL;
}
ret->meth = RSA_get_default_method();
#ifndef OPENSSL_NO_ENGINE
ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
if (engine) {
if (!ENGINE_init(engine)) {
RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_ENGINE_LIB);
goto err;
}
ret->engine = engine;
} else {
ret->engine = ENGINE_get_default_RSA();
}
if (ret->engine) {
ret->meth = ENGINE_get_RSA(ret->engine);
if (ret->meth == NULL) {
RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_ENGINE_LIB);
goto err;
}
}
#endif
ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) {
goto err;
}
if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_INIT_FAIL);
goto err;
}
return ret;
err:
RSA_free(ret);
return NULL;
}
void RSA_free(RSA *r)
{
int i;
if (r == NULL)
return;
CRYPTO_DOWN_REF(&r->references, &i, r->lock);
REF_PRINT_COUNT("RSA", r);
if (i > 0)
return;
REF_ASSERT_ISNT(i < 0);
if (r->meth != NULL && r->meth->finish != NULL)
r->meth->finish(r);
#ifndef OPENSSL_NO_ENGINE
ENGINE_finish(r->engine);
#endif
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);
CRYPTO_THREAD_lock_free(r->lock);
BN_free(r->n);
BN_free(r->e);
BN_clear_free(r->d);
BN_clear_free(r->p);
BN_clear_free(r->q);
BN_clear_free(r->dmp1);
BN_clear_free(r->dmq1);
BN_clear_free(r->iqmp);
RSA_PSS_PARAMS_free(r->pss);
sk_RSA_PRIME_INFO_pop_free(r->prime_infos, rsa_multip_info_free);
BN_BLINDING_free(r->blinding);
BN_BLINDING_free(r->mt_blinding);
OPENSSL_free(r->bignum_data);
OPENSSL_free(r);
}
int RSA_up_ref(RSA *r)
{
int i;
if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0)
return 0;
REF_PRINT_COUNT("RSA", r);
REF_ASSERT_ISNT(i < 2);
return i > 1 ? 1 : 0;
}
int RSA_set_ex_data(RSA *r, int idx, void *arg)
{
return CRYPTO_set_ex_data(&r->ex_data, idx, arg);
}
void *RSA_get_ex_data(const RSA *r, int idx)
{
return CRYPTO_get_ex_data(&r->ex_data, idx);
}
/*
* Define a scaling constant for our fixed point arithmetic.
* This value must be a power of two because the base two logarithm code
* makes this assumption. The exponent must also be a multiple of three so
* that the scale factor has an exact cube root. Finally, the scale factor
* should not be so large that a multiplication of two scaled numbers
* overflows a 64 bit unsigned integer.
*/
static const unsigned int scale = 1 << 18;
static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
/* Define some constants, none exceed 32 bits */
static const unsigned int log_2 = 0x02c5c8; /* scale * log(2) */
static const unsigned int log_e = 0x05c551; /* scale * log2(M_E) */
static const unsigned int c1_923 = 0x07b126; /* scale * 1.923 */
static const unsigned int c4_690 = 0x12c28f; /* scale * 4.690 */
/*
* Multiply two scaled integers together and rescale the result.
*/
static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
{
return a * b / scale;
}
/*
* Calculate the cube root of a 64 bit scaled integer.
* Although the cube root of a 64 bit number does fit into a 32 bit unsigned
* integer, this is not guaranteed after scaling, so this function has a
* 64 bit return. This uses the shifting nth root algorithm with some
* algebraic simplifications.
*/
static uint64_t icbrt64(uint64_t x)
{
uint64_t r = 0;
uint64_t b;
int s;
for (s = 63; s >= 0; s -= 3) {
r <<= 1;
b = 3 * r * (r + 1) + 1;
if ((x >> s) >= b) {
x -= b << s;
r++;
}
}
return r * cbrt_scale;
}
/*
* Calculate the natural logarithm of a 64 bit scaled integer.
* This is done by calculating a base two logarithm and scaling.
* The maximum logarithm (base 2) is 64 and this reduces base e, so
* a 32 bit result should not overflow. The argument passed must be
* greater than unity so we don't need to handle negative results.
*/
static uint32_t ilog_e(uint64_t v)
{
uint32_t i, r = 0;
/*
* Scale down the value into the range 1 .. 2.
*
* If fractional numbers need to be processed, another loop needs
* to go here that checks v < scale and if so multiplies it by 2 and
* reduces r by scale. This also means making r signed.
*/
while (v >= 2 * scale) {
v >>= 1;
r += scale;
}
for (i = scale / 2; i != 0; i /= 2) {
v = mul2(v, v);
if (v >= 2 * scale) {
v >>= 1;
r += i;
}
}
r = (r * (uint64_t)scale) / log_e;
return r;
}
/*
* NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
* Modulus Lengths.
*
* E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
* \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
* The two cube roots are merged together here.
*/
uint16_t rsa_compute_security_bits(int n)
{
uint64_t x;
uint32_t lx;
uint16_t y;
/* Look for common values as listed in SP 800-56B rev 2 Appendix D */
switch (n) {
case 2048:
return 112;
case 3072:
return 128;
case 4096:
return 152;
case 6144:
return 176;
case 8192:
return 200;
}
/*
* The first incorrect result (i.e. not accurate or off by one low) occurs
* for n = 699668. The true value here is 1200. Instead of using this n
* as the check threshold, the smallest n such that the correct result is
* 1200 is used instead.
*/
if (n >= 687737)
return 1200;
if (n < 8)
return 0;
x = n * (uint64_t)log_2;
lx = ilog_e(x);
y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
/ log_2);
return (y + 4) & ~7;
}
int RSA_security_bits(const RSA *rsa)
{
int bits = BN_num_bits(rsa->n);
if (rsa->version == RSA_ASN1_VERSION_MULTI) {
/* This ought to mean that we have private key at hand. */
int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);
if (ex_primes <= 0 || (ex_primes + 2) > rsa_multip_cap(bits))
return 0;
}
return rsa_compute_security_bits(bits);
}
int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
{
/* If the fields n and e in r are NULL, the corresponding input
* parameters MUST be non-NULL for n and e. d may be
* left NULL (in case only the public key is used).
*/
if ((r->n == NULL && n == NULL)
|| (r->e == NULL && e == NULL))
return 0;
if (n != NULL) {
BN_free(r->n);
r->n = n;
}
if (e != NULL) {
BN_free(r->e);
r->e = e;
}
if (d != NULL) {
BN_clear_free(r->d);
r->d = d;
BN_set_flags(r->d, BN_FLG_CONSTTIME);
}
return 1;
}
int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
{
/* If the fields p and q in r are NULL, the corresponding input
* parameters MUST be non-NULL.
*/
if ((r->p == NULL && p == NULL)
|| (r->q == NULL && q == NULL))
return 0;
if (p != NULL) {
BN_clear_free(r->p);
r->p = p;
BN_set_flags(r->p, BN_FLG_CONSTTIME);
}
if (q != NULL) {
BN_clear_free(r->q);
r->q = q;
BN_set_flags(r->q, BN_FLG_CONSTTIME);
}
return 1;
}
int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
{
/* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input
* parameters MUST be non-NULL.
*/
if ((r->dmp1 == NULL && dmp1 == NULL)
|| (r->dmq1 == NULL && dmq1 == NULL)
|| (r->iqmp == NULL && iqmp == NULL))
return 0;
if (dmp1 != NULL) {
BN_clear_free(r->dmp1);
r->dmp1 = dmp1;
BN_set_flags(r->dmp1, BN_FLG_CONSTTIME);
}
if (dmq1 != NULL) {
BN_clear_free(r->dmq1);
r->dmq1 = dmq1;
BN_set_flags(r->dmq1, BN_FLG_CONSTTIME);
}
if (iqmp != NULL) {
BN_clear_free(r->iqmp);
r->iqmp = iqmp;
BN_set_flags(r->iqmp, BN_FLG_CONSTTIME);
}
return 1;
}
/*
* Is it better to export RSA_PRIME_INFO structure
* and related functions to let user pass a triplet?
*/
int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],
BIGNUM *coeffs[], int pnum)
{
STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;
RSA_PRIME_INFO *pinfo;
int i;
if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)
return 0;
prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
if (prime_infos == NULL)
return 0;
if (r->prime_infos != NULL)
old = r->prime_infos;
for (i = 0; i < pnum; i++) {
pinfo = rsa_multip_info_new();
if (pinfo == NULL)
goto err;
if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) {
BN_clear_free(pinfo->r);
BN_clear_free(pinfo->d);
BN_clear_free(pinfo->t);
pinfo->r = primes[i];
pinfo->d = exps[i];
pinfo->t = coeffs[i];
BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
} else {
rsa_multip_info_free(pinfo);
goto err;
}
(void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
}
r->prime_infos = prime_infos;
if (!rsa_multip_calc_product(r)) {
r->prime_infos = old;
goto err;
}
if (old != NULL) {
/*
* This is hard to deal with, since the old infos could
* also be set by this function and r, d, t should not
* be freed in that case. So currently, stay consistent
* with other *set0* functions: just free it...
*/
sk_RSA_PRIME_INFO_pop_free(old, rsa_multip_info_free);
}
r->version = RSA_ASN1_VERSION_MULTI;
return 1;
err:
/* r, d, t should not be freed */
sk_RSA_PRIME_INFO_pop_free(prime_infos, rsa_multip_info_free_ex);
return 0;
}
void RSA_get0_key(const RSA *r,
const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
{
if (n != NULL)
*n = r->n;
if (e != NULL)
*e = r->e;
if (d != NULL)
*d = r->d;
}
void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
{
if (p != NULL)
*p = r->p;
if (q != NULL)
*q = r->q;
}
int RSA_get_multi_prime_extra_count(const RSA *r)
{
int pnum;
pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);
if (pnum <= 0)
pnum = 0;
return pnum;
}
int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])
{
int pnum, i;
RSA_PRIME_INFO *pinfo;
if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
return 0;
/*
* return other primes
* it's caller's responsibility to allocate oth_primes[pnum]
*/
for (i = 0; i < pnum; i++) {
pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
primes[i] = pinfo->r;
}
return 1;
}
void RSA_get0_crt_params(const RSA *r,
const BIGNUM **dmp1, const BIGNUM **dmq1,
const BIGNUM **iqmp)
{
if (dmp1 != NULL)
*dmp1 = r->dmp1;
if (dmq1 != NULL)
*dmq1 = r->dmq1;
if (iqmp != NULL)
*iqmp = r->iqmp;
}
int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],
const BIGNUM *coeffs[])
{
int pnum;
if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
return 0;
/* return other primes */
if (exps != NULL || coeffs != NULL) {
RSA_PRIME_INFO *pinfo;
int i;
/* it's the user's job to guarantee the buffer length */
for (i = 0; i < pnum; i++) {
pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
if (exps != NULL)
exps[i] = pinfo->d;
if (coeffs != NULL)
coeffs[i] = pinfo->t;
}
}
return 1;
}
const BIGNUM *RSA_get0_n(const RSA *r)
{
return r->n;
}
const BIGNUM *RSA_get0_e(const RSA *r)
{
return r->e;
}
const BIGNUM *RSA_get0_d(const RSA *r)
{
return r->d;
}
const BIGNUM *RSA_get0_p(const RSA *r)
{
return r->p;
}
const BIGNUM *RSA_get0_q(const RSA *r)
{
return r->q;
}
const BIGNUM *RSA_get0_dmp1(const RSA *r)
{
return r->dmp1;
}
const BIGNUM *RSA_get0_dmq1(const RSA *r)
{
return r->dmq1;
}
const BIGNUM *RSA_get0_iqmp(const RSA *r)
{
return r->iqmp;
}
void RSA_clear_flags(RSA *r, int flags)
{
r->flags &= ~flags;
}
int RSA_test_flags(const RSA *r, int flags)
{
return r->flags & flags;
}
void RSA_set_flags(RSA *r, int flags)
{
r->flags |= flags;
}
int RSA_get_version(RSA *r)
{
/* { two-prime(0), multi(1) } */
return r->version;
}
ENGINE *RSA_get0_engine(const RSA *r)
{
return r->engine;
}
int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)
{
/* If key type not RSA or RSA-PSS return error */
if (ctx != NULL && ctx->pmeth != NULL
&& ctx->pmeth->pkey_id != EVP_PKEY_RSA
&& ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
return -1;
return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
}