openssl/crypto/evp/evp_rand.c
Dr. Matthias St. Pierre 363b1e5dae Make the naming scheme for dispatched functions more consistent
The new naming scheme consistently usese the `OSSL_FUNC_` prefix for all
functions which are dispatched between the core and providers.

This change includes in particular all up- and downcalls, i.e., the
dispatched functions passed from core to provider and vice versa.

- OSSL_core_  -> OSSL_FUNC_core_
- OSSL_provider_ -> OSSL_FUNC_core_

For operations and their function dispatch tables, the following convention
is used:

  Type                 | Name (evp_generic_fetch(3))       |
  ---------------------|-----------------------------------|
  operation            | OSSL_OP_FOO                       |
  function id          | OSSL_FUNC_FOO_FUNCTION_NAME       |
  function "name"      | OSSL_FUNC_foo_function_name       |
  function typedef     | OSSL_FUNC_foo_function_name_fn    |
  function ptr getter  | OSSL_FUNC_foo_function_name       |

Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12222)
2020-06-24 22:01:22 +02:00

560 lines
16 KiB
C

/*
* Copyright 2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/evp.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/engine.h>
#include <openssl/evp.h>
#include <openssl/x509v3.h>
#include <openssl/rand.h>
#include <openssl/core.h>
#include <openssl/core_names.h>
#include <openssl/crypto.h>
#include "crypto/asn1.h"
#include "crypto/evp.h"
#include "internal/cryptlib.h"
#include "internal/numbers.h"
#include "internal/provider.h"
#include "evp_local.h"
static int evp_rand_up_ref(void *vrand)
{
EVP_RAND *rand = (EVP_RAND *)vrand;
int ref = 0;
if (rand != NULL)
return CRYPTO_UP_REF(&rand->refcnt, &ref, rand->refcnt_lock);
return 1;
}
static void evp_rand_free(void *vrand){
EVP_RAND *rand = (EVP_RAND *)vrand;
int ref = 0;
if (rand != NULL) {
CRYPTO_DOWN_REF(&rand->refcnt, &ref, rand->refcnt_lock);
if (ref <= 0) {
ossl_provider_free(rand->prov);
CRYPTO_THREAD_lock_free(rand->refcnt_lock);
OPENSSL_free(rand);
}
}
}
static void *evp_rand_new(void)
{
EVP_RAND *rand = OPENSSL_zalloc(sizeof(*rand));
if (rand == NULL
|| (rand->refcnt_lock = CRYPTO_THREAD_lock_new()) == NULL) {
OPENSSL_free(rand);
return NULL;
}
rand->refcnt = 1;
return rand;
}
/* Enable locking of the underlying DRBG/RAND if available */
int EVP_RAND_enable_locking(EVP_RAND_CTX *rand)
{
if (rand->meth->enable_locking != NULL)
return rand->meth->enable_locking(rand->data);
EVPerr(0, EVP_R_LOCKING_NOT_SUPPORTED);
return 0;
}
/* Lock the underlying DRBG/RAND if available */
static int evp_rand_lock(EVP_RAND_CTX *rand)
{
if (rand->meth->lock != NULL)
return rand->meth->lock(rand->data);
return 1;
}
/* Unlock the underlying DRBG/RAND if available */
static void evp_rand_unlock(EVP_RAND_CTX *rand)
{
if (rand->meth->unlock != NULL)
rand->meth->unlock(rand->data);
}
static void *evp_rand_from_dispatch(int name_id,
const OSSL_DISPATCH *fns,
OSSL_PROVIDER *prov)
{
EVP_RAND *rand = NULL;
int fnrandcnt = 0, fnctxcnt = 0, fnlockcnt = 0;
#ifdef FIPS_MODULE
int fnzeroizecnt = 0;
#endif
if ((rand = evp_rand_new()) == NULL) {
EVPerr(0, ERR_R_MALLOC_FAILURE);
return NULL;
}
rand->name_id = name_id;
rand->dispatch = fns;
for (; fns->function_id != 0; fns++) {
switch (fns->function_id) {
case OSSL_FUNC_RAND_NEWCTX:
if (rand->newctx != NULL)
break;
rand->newctx = OSSL_FUNC_rand_newctx(fns);
fnctxcnt++;
break;
case OSSL_FUNC_RAND_FREECTX:
if (rand->freectx != NULL)
break;
rand->freectx = OSSL_FUNC_rand_freectx(fns);
fnctxcnt++;
break;
case OSSL_FUNC_RAND_INSTANTIATE:
if (rand->instantiate != NULL)
break;
rand->instantiate = OSSL_FUNC_rand_instantiate(fns);
fnrandcnt++;
break;
case OSSL_FUNC_RAND_UNINSTANTIATE:
if (rand->uninstantiate != NULL)
break;
rand->uninstantiate = OSSL_FUNC_rand_uninstantiate(fns);
fnrandcnt++;
break;
case OSSL_FUNC_RAND_GENERATE:
if (rand->generate != NULL)
break;
rand->generate = OSSL_FUNC_rand_generate(fns);
fnrandcnt++;
break;
case OSSL_FUNC_RAND_RESEED:
if (rand->reseed != NULL)
break;
rand->reseed = OSSL_FUNC_rand_reseed(fns);
break;
case OSSL_FUNC_RAND_NONCE:
if (rand->nonce != NULL)
break;
rand->nonce = OSSL_FUNC_rand_nonce(fns);
break;
case OSSL_FUNC_RAND_SET_CALLBACKS:
if (rand->set_callbacks != NULL)
break;
rand->set_callbacks = OSSL_FUNC_rand_set_callbacks(fns);
break;
case OSSL_FUNC_RAND_ENABLE_LOCKING:
if (rand->enable_locking != NULL)
break;
rand->enable_locking = OSSL_FUNC_rand_enable_locking(fns);
fnlockcnt++;
break;
case OSSL_FUNC_RAND_LOCK:
if (rand->lock != NULL)
break;
rand->lock = OSSL_FUNC_rand_lock(fns);
fnlockcnt++;
break;
case OSSL_FUNC_RAND_UNLOCK:
if (rand->unlock != NULL)
break;
rand->unlock = OSSL_FUNC_rand_unlock(fns);
fnlockcnt++;
break;
case OSSL_FUNC_RAND_GETTABLE_PARAMS:
if (rand->gettable_params != NULL)
break;
rand->gettable_params =
OSSL_FUNC_rand_gettable_params(fns);
break;
case OSSL_FUNC_RAND_GETTABLE_CTX_PARAMS:
if (rand->gettable_ctx_params != NULL)
break;
rand->gettable_ctx_params =
OSSL_FUNC_rand_gettable_ctx_params(fns);
break;
case OSSL_FUNC_RAND_SETTABLE_CTX_PARAMS:
if (rand->settable_ctx_params != NULL)
break;
rand->settable_ctx_params =
OSSL_FUNC_rand_settable_ctx_params(fns);
break;
case OSSL_FUNC_RAND_GET_PARAMS:
if (rand->get_params != NULL)
break;
rand->get_params = OSSL_FUNC_rand_get_params(fns);
break;
case OSSL_FUNC_RAND_GET_CTX_PARAMS:
if (rand->get_ctx_params != NULL)
break;
rand->get_ctx_params = OSSL_FUNC_rand_get_ctx_params(fns);
break;
case OSSL_FUNC_RAND_SET_CTX_PARAMS:
if (rand->set_ctx_params != NULL)
break;
rand->set_ctx_params = OSSL_FUNC_rand_set_ctx_params(fns);
break;
case OSSL_FUNC_RAND_VERIFY_ZEROIZATION:
if (rand->verify_zeroization != NULL)
break;
rand->verify_zeroization = OSSL_FUNC_rand_verify_zeroization(fns);
#ifdef FIPS_MODULE
fnzeroizecnt++;
#endif
break;
}
}
/*
* In order to be a consistent set of functions we must have at least
* a complete set of "rand" functions and a complete set of context
* management functions. In FIPS mode, we also require the zeroization
* verification function.
*
* In addition, if locking can be enabled, we need a complete set of
* locking functions.
*/
if (fnrandcnt != 3
|| fnctxcnt != 2
|| (fnlockcnt != 0 && fnlockcnt != 3)
#ifdef FIPS_MODULE
|| fnzeroizecnt != 1
#endif
) {
evp_rand_free(rand);
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_PROVIDER_FUNCTIONS);
return NULL;
}
if (prov != NULL && !ossl_provider_up_ref(prov)) {
evp_rand_free(rand);
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
return NULL;
}
rand->prov = prov;
return rand;
}
EVP_RAND *EVP_RAND_fetch(OPENSSL_CTX *libctx, const char *algorithm,
const char *properties)
{
return evp_generic_fetch(libctx, OSSL_OP_RAND, algorithm, properties,
evp_rand_from_dispatch, evp_rand_up_ref,
evp_rand_free);
}
int EVP_RAND_up_ref(EVP_RAND *rand)
{
return evp_rand_up_ref(rand);
}
void EVP_RAND_free(EVP_RAND *rand)
{
evp_rand_free(rand);
}
int EVP_RAND_number(const EVP_RAND *rand)
{
return rand->name_id;
}
const char *EVP_RAND_name(const EVP_RAND *rand)
{
return evp_first_name(rand->prov, rand->name_id);
}
int EVP_RAND_is_a(const EVP_RAND *rand, const char *name)
{
return evp_is_a(rand->prov, rand->name_id, NULL, name);
}
const OSSL_PROVIDER *EVP_RAND_provider(const EVP_RAND *rand)
{
return rand->prov;
}
int EVP_RAND_get_params(EVP_RAND *rand, OSSL_PARAM params[])
{
if (rand->get_params != NULL)
return rand->get_params(params);
return 1;
}
EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, EVP_RAND_CTX *parent)
{
EVP_RAND_CTX *ctx;
void *parent_ctx = NULL;
const OSSL_DISPATCH *parent_dispatch = NULL;
if (rand == NULL) {
EVPerr(0, EVP_R_INVALID_NULL_ALGORITHM);
return NULL;
}
ctx = OPENSSL_zalloc(sizeof(*ctx));
if (ctx == NULL) {
EVPerr(0, ERR_R_MALLOC_FAILURE);
return NULL;
}
if (parent != NULL) {
if (!EVP_RAND_enable_locking(parent)) {
EVPerr(0, EVP_R_UNABLE_TO_ENABLE_PARENT_LOCKING);
OPENSSL_free(ctx);
return NULL;
}
parent_ctx = parent->data;
parent_dispatch = parent->meth->dispatch;
}
if ((ctx->data = rand->newctx(ossl_provider_ctx(rand->prov), parent_ctx,
parent_dispatch)) == NULL
|| !EVP_RAND_up_ref(rand)) {
EVPerr(0, ERR_R_MALLOC_FAILURE);
rand->freectx(ctx->data);
OPENSSL_free(ctx);
return NULL;
}
ctx->meth = rand;
return ctx;
}
void EVP_RAND_CTX_free(EVP_RAND_CTX *ctx)
{
if (ctx != NULL) {
ctx->meth->freectx(ctx->data);
ctx->data = NULL;
EVP_RAND_free(ctx->meth);
OPENSSL_free(ctx);
}
}
EVP_RAND *EVP_RAND_CTX_rand(EVP_RAND_CTX *ctx)
{
return ctx->meth;
}
int EVP_RAND_get_ctx_params(EVP_RAND_CTX *ctx, OSSL_PARAM params[])
{
int res = 1;
if (ctx->meth->get_ctx_params != NULL) {
if (!evp_rand_lock(ctx))
return 0;
res = ctx->meth->get_ctx_params(ctx->data, params);
evp_rand_unlock(ctx);
}
return res;
}
int EVP_RAND_set_ctx_params(EVP_RAND_CTX *ctx, const OSSL_PARAM params[])
{
int res = 1;
if (ctx->meth->set_ctx_params != NULL) {
if (!evp_rand_lock(ctx))
return 0;
res = ctx->meth->set_ctx_params(ctx->data, params);
evp_rand_unlock(ctx);
/* Clear out the cache state because the values can change on a set */
ctx->strength = 0;
ctx->max_request = 0;
}
return res;
}
const OSSL_PARAM *EVP_RAND_gettable_params(const EVP_RAND *rand)
{
return rand->gettable_params == NULL ? NULL : rand->gettable_params();
}
const OSSL_PARAM *EVP_RAND_gettable_ctx_params(const EVP_RAND *rand)
{
return rand->gettable_ctx_params == NULL ? NULL
: rand->gettable_ctx_params();
}
const OSSL_PARAM *EVP_RAND_settable_ctx_params(const EVP_RAND *rand)
{
return rand->settable_ctx_params == NULL ? NULL
:rand->settable_ctx_params();
}
void EVP_RAND_do_all_provided(OPENSSL_CTX *libctx,
void (*fn)(EVP_RAND *rand, void *arg),
void *arg)
{
evp_generic_do_all(libctx, OSSL_OP_RAND,
(void (*)(void *, void *))fn, arg,
evp_rand_from_dispatch, evp_rand_free);
}
void EVP_RAND_names_do_all(const EVP_RAND *rand,
void (*fn)(const char *name, void *data),
void *data)
{
if (rand->prov != NULL)
evp_names_do_all(rand->prov, rand->name_id, fn, data);
}
int EVP_RAND_instantiate(EVP_RAND_CTX *ctx, unsigned int strength,
int prediction_resistance,
const unsigned char *pstr, size_t pstr_len)
{
int res;
if (!evp_rand_lock(ctx))
return 0;
res = ctx->meth->instantiate(ctx->data, strength, prediction_resistance,
pstr, pstr_len);
evp_rand_unlock(ctx);
return res;
}
int EVP_RAND_uninstantiate(EVP_RAND_CTX *ctx)
{
int res;
if (!evp_rand_lock(ctx))
return 0;
res = ctx->meth->uninstantiate(ctx->data);
evp_rand_unlock(ctx);
return res;
}
int EVP_RAND_generate(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen,
unsigned int strength, int prediction_resistance,
const unsigned char *addin, size_t addin_len)
{
size_t chunk;
OSSL_PARAM params[2];
int res = 0;
if (!evp_rand_lock(ctx))
return 0;
if (ctx->max_request == 0) {
params[0] = OSSL_PARAM_construct_size_t(OSSL_DRBG_PARAM_MAX_REQUEST,
&chunk);
params[1] = OSSL_PARAM_construct_end();
if (!EVP_RAND_get_ctx_params(ctx, params) || chunk == 0) {
EVPerr(0, EVP_R_UNABLE_TO_GET_MAXIMUM_REQUEST_SIZE);
goto err;
}
ctx->max_request = chunk;
}
for (; outlen > 0; outlen -= chunk, out += chunk) {
chunk = outlen > ctx->max_request ? ctx->max_request : outlen;
if (!ctx->meth->generate(ctx->data, out, chunk, strength,
prediction_resistance, addin, addin_len)) {
EVPerr(0, EVP_R_GENERATE_ERROR);
goto err;
}
/*
* Prediction resistance is only relevant the first time around,
* subsequently, the DRBG has already been properly reseeded.
*/
prediction_resistance = 0;
}
res = 1;
err:
evp_rand_unlock(ctx);
return res;
}
int EVP_RAND_reseed(EVP_RAND_CTX *ctx, int prediction_resistance,
const unsigned char *ent, size_t ent_len,
const unsigned char *addin, size_t addin_len)
{
int res = 1;
if (!evp_rand_lock(ctx))
return 0;
if (ctx->meth->reseed != NULL)
res = ctx->meth->reseed(ctx->data, prediction_resistance,
ent, ent_len, addin, addin_len);
evp_rand_unlock(ctx);
return res;
}
int EVP_RAND_nonce(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen)
{
int res = 1;
unsigned int str = EVP_RAND_strength(ctx);
if (!evp_rand_lock(ctx))
return 0;
if (ctx->meth->nonce == NULL
|| !ctx->meth->nonce(ctx->data, out, str, outlen, outlen))
res = ctx->meth->generate(ctx->data, out, outlen, str, 0, NULL, 0);
evp_rand_unlock(ctx);
return res;
}
unsigned int EVP_RAND_strength(EVP_RAND_CTX *ctx)
{
OSSL_PARAM params[2];
unsigned int t;
int res;
if (ctx->strength == 0) {
params[0] = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH, &t);
params[1] = OSSL_PARAM_construct_end();
if (!evp_rand_lock(ctx))
return 0;
res = EVP_RAND_get_ctx_params(ctx, params);
evp_rand_unlock(ctx);
if (!res)
return 0;
ctx->strength = t;
}
return ctx->strength;
}
int EVP_RAND_state(EVP_RAND_CTX *ctx)
{
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
int status, res;
params[0] = OSSL_PARAM_construct_int(OSSL_RAND_PARAM_STATE,
&status);
if (!evp_rand_lock(ctx))
return 0;
res = EVP_RAND_get_ctx_params(ctx, params);
evp_rand_unlock(ctx);
if (!res)
status = EVP_RAND_STATE_ERROR;
return status;
}
int EVP_RAND_set_callbacks(EVP_RAND_CTX *ctx,
OSSL_INOUT_CALLBACK *get_entropy,
OSSL_CALLBACK *cleanup_entropy,
OSSL_INOUT_CALLBACK *get_nonce,
OSSL_CALLBACK *cleanup_nonce, void *arg)
{
if (ctx->meth->set_callbacks == NULL) {
EVPerr(0, EVP_R_UNABLE_TO_SET_CALLBACKS);
return 0;
}
ctx->meth->set_callbacks(ctx->data, get_entropy, cleanup_entropy,
get_nonce, cleanup_nonce, arg);
return 1;
}
int EVP_RAND_verify_zeroization(EVP_RAND_CTX *ctx)
{
int res = 0;
if (ctx->meth->verify_zeroization != NULL) {
if (!evp_rand_lock(ctx))
return 0;
res = ctx->meth->verify_zeroization(ctx->data);
evp_rand_unlock(ctx);
}
return res;
}