mirror of
https://github.com/openssl/openssl.git
synced 2024-12-03 05:41:46 +08:00
5a285addbf
Changed PKEY/KDF API to call the new API. Added wrappers for PKCS5_PBKDF2_HMAC() and EVP_PBE_scrypt() to call the new EVP KDF APIs. Documentation updated. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6674)
265 lines
7.1 KiB
C
265 lines
7.1 KiB
C
/*
|
|
* Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <openssl/hmac.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/kdf.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/evp_int.h"
|
|
#include "kdf_local.h"
|
|
|
|
static void kdf_pbkdf2_reset(EVP_KDF_IMPL *impl);
|
|
static void kdf_pbkdf2_init(EVP_KDF_IMPL *impl);
|
|
static int pkcs5_pbkdf2_alg(const char *pass, size_t passlen,
|
|
const unsigned char *salt, int saltlen, int iter,
|
|
const EVP_MD *digest, unsigned char *key,
|
|
size_t keylen);
|
|
|
|
struct evp_kdf_impl_st {
|
|
unsigned char *pass;
|
|
size_t pass_len;
|
|
unsigned char *salt;
|
|
size_t salt_len;
|
|
int iter;
|
|
const EVP_MD *md;
|
|
};
|
|
|
|
static EVP_KDF_IMPL *kdf_pbkdf2_new(void)
|
|
{
|
|
EVP_KDF_IMPL *impl;
|
|
|
|
impl = OPENSSL_zalloc(sizeof(*impl));
|
|
if (impl == NULL) {
|
|
KDFerr(KDF_F_KDF_PBKDF2_NEW, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
kdf_pbkdf2_init(impl);
|
|
return impl;
|
|
}
|
|
|
|
static void kdf_pbkdf2_free(EVP_KDF_IMPL *impl)
|
|
{
|
|
kdf_pbkdf2_reset(impl);
|
|
OPENSSL_free(impl);
|
|
}
|
|
|
|
static void kdf_pbkdf2_reset(EVP_KDF_IMPL *impl)
|
|
{
|
|
OPENSSL_free(impl->salt);
|
|
OPENSSL_clear_free(impl->pass, impl->pass_len);
|
|
memset(impl, 0, sizeof(*impl));
|
|
kdf_pbkdf2_init(impl);
|
|
}
|
|
|
|
static void kdf_pbkdf2_init(EVP_KDF_IMPL *impl)
|
|
{
|
|
impl->iter = PKCS5_DEFAULT_ITER;
|
|
impl->md = EVP_sha1();
|
|
}
|
|
|
|
static int pbkdf2_set_membuf(unsigned char **buffer, size_t *buflen,
|
|
const unsigned char *new_buffer,
|
|
size_t new_buflen)
|
|
{
|
|
if (new_buffer == NULL)
|
|
return 1;
|
|
|
|
OPENSSL_clear_free(*buffer, *buflen);
|
|
|
|
if (new_buflen > 0) {
|
|
*buffer = OPENSSL_memdup(new_buffer, new_buflen);
|
|
} else {
|
|
*buffer = OPENSSL_malloc(1);
|
|
}
|
|
if (*buffer == NULL) {
|
|
KDFerr(KDF_F_PBKDF2_SET_MEMBUF, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
*buflen = new_buflen;
|
|
return 1;
|
|
}
|
|
|
|
static int kdf_pbkdf2_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
|
|
{
|
|
int iter;
|
|
const unsigned char *p;
|
|
size_t len;
|
|
const EVP_MD *md;
|
|
|
|
switch (cmd) {
|
|
case EVP_KDF_CTRL_SET_PASS:
|
|
p = va_arg(args, const unsigned char *);
|
|
len = va_arg(args, size_t);
|
|
return pbkdf2_set_membuf(&impl->pass, &impl->pass_len, p, len);
|
|
|
|
case EVP_KDF_CTRL_SET_SALT:
|
|
p = va_arg(args, const unsigned char *);
|
|
len = va_arg(args, size_t);
|
|
return pbkdf2_set_membuf(&impl->salt, &impl->salt_len, p, len);
|
|
|
|
case EVP_KDF_CTRL_SET_ITER:
|
|
iter = va_arg(args, int);
|
|
if (iter < 1)
|
|
return 0;
|
|
|
|
impl->iter = iter;
|
|
return 1;
|
|
|
|
case EVP_KDF_CTRL_SET_MD:
|
|
md = va_arg(args, const EVP_MD *);
|
|
if (md == NULL)
|
|
return 0;
|
|
|
|
impl->md = md;
|
|
return 1;
|
|
|
|
default:
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
static int kdf_pbkdf2_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
|
|
const char *value)
|
|
{
|
|
if (value == NULL) {
|
|
KDFerr(KDF_F_KDF_PBKDF2_CTRL_STR, KDF_R_VALUE_MISSING);
|
|
return 0;
|
|
}
|
|
|
|
if (strcmp(type, "pass") == 0)
|
|
return kdf_str2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_PASS,
|
|
value);
|
|
|
|
if (strcmp(type, "hexpass") == 0)
|
|
return kdf_hex2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_PASS,
|
|
value);
|
|
|
|
if (strcmp(type, "salt") == 0)
|
|
return kdf_str2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_SALT,
|
|
value);
|
|
|
|
if (strcmp(type, "hexsalt") == 0)
|
|
return kdf_hex2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_SALT,
|
|
value);
|
|
|
|
if (strcmp(type, "iter") == 0)
|
|
return call_ctrl(kdf_pbkdf2_ctrl, impl, EVP_KDF_CTRL_SET_ITER,
|
|
atoi(value));
|
|
|
|
if (strcmp(type, "digest") == 0)
|
|
return kdf_md2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_MD, value);
|
|
|
|
return -2;
|
|
}
|
|
|
|
static int kdf_pbkdf2_derive(EVP_KDF_IMPL *impl, unsigned char *key,
|
|
size_t keylen)
|
|
{
|
|
if (impl->pass == NULL) {
|
|
KDFerr(KDF_F_KDF_PBKDF2_DERIVE, KDF_R_MISSING_PASS);
|
|
return 0;
|
|
}
|
|
|
|
if (impl->salt == NULL) {
|
|
KDFerr(KDF_F_KDF_PBKDF2_DERIVE, KDF_R_MISSING_SALT);
|
|
return 0;
|
|
}
|
|
|
|
return pkcs5_pbkdf2_alg((char *)impl->pass, impl->pass_len,
|
|
impl->salt, impl->salt_len, impl->iter,
|
|
impl->md, key, keylen);
|
|
}
|
|
|
|
const EVP_KDF_METHOD pbkdf2_kdf_meth = {
|
|
EVP_KDF_PBKDF2,
|
|
kdf_pbkdf2_new,
|
|
kdf_pbkdf2_free,
|
|
kdf_pbkdf2_reset,
|
|
kdf_pbkdf2_ctrl,
|
|
kdf_pbkdf2_ctrl_str,
|
|
NULL,
|
|
kdf_pbkdf2_derive
|
|
};
|
|
|
|
/*
|
|
* This is an implementation of PKCS#5 v2.0 password based encryption key
|
|
* derivation function PBKDF2. SHA1 version verified against test vectors
|
|
* posted by Peter Gutmann to the PKCS-TNG mailing list.
|
|
*/
|
|
|
|
static int pkcs5_pbkdf2_alg(const char *pass, size_t passlen,
|
|
const unsigned char *salt, int saltlen, int iter,
|
|
const EVP_MD *digest, unsigned char *key,
|
|
size_t keylen)
|
|
{
|
|
int ret = 0;
|
|
unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4];
|
|
int cplen, j, k, tkeylen, mdlen;
|
|
unsigned long i = 1;
|
|
HMAC_CTX *hctx_tpl = NULL, *hctx = NULL;
|
|
|
|
mdlen = EVP_MD_size(digest);
|
|
if (mdlen < 0)
|
|
return 0;
|
|
|
|
hctx_tpl = HMAC_CTX_new();
|
|
if (hctx_tpl == NULL)
|
|
return 0;
|
|
p = key;
|
|
tkeylen = keylen;
|
|
if (!HMAC_Init_ex(hctx_tpl, pass, passlen, digest, NULL))
|
|
goto err;
|
|
hctx = HMAC_CTX_new();
|
|
if (hctx == NULL)
|
|
goto err;
|
|
while (tkeylen) {
|
|
if (tkeylen > mdlen)
|
|
cplen = mdlen;
|
|
else
|
|
cplen = tkeylen;
|
|
/*
|
|
* We are unlikely to ever use more than 256 blocks (5120 bits!) but
|
|
* just in case...
|
|
*/
|
|
itmp[0] = (unsigned char)((i >> 24) & 0xff);
|
|
itmp[1] = (unsigned char)((i >> 16) & 0xff);
|
|
itmp[2] = (unsigned char)((i >> 8) & 0xff);
|
|
itmp[3] = (unsigned char)(i & 0xff);
|
|
if (!HMAC_CTX_copy(hctx, hctx_tpl))
|
|
goto err;
|
|
if (!HMAC_Update(hctx, salt, saltlen)
|
|
|| !HMAC_Update(hctx, itmp, 4)
|
|
|| !HMAC_Final(hctx, digtmp, NULL))
|
|
goto err;
|
|
memcpy(p, digtmp, cplen);
|
|
for (j = 1; j < iter; j++) {
|
|
if (!HMAC_CTX_copy(hctx, hctx_tpl))
|
|
goto err;
|
|
if (!HMAC_Update(hctx, digtmp, mdlen)
|
|
|| !HMAC_Final(hctx, digtmp, NULL))
|
|
goto err;
|
|
for (k = 0; k < cplen; k++)
|
|
p[k] ^= digtmp[k];
|
|
}
|
|
tkeylen -= cplen;
|
|
i++;
|
|
p += cplen;
|
|
}
|
|
ret = 1;
|
|
|
|
err:
|
|
HMAC_CTX_free(hctx);
|
|
HMAC_CTX_free(hctx_tpl);
|
|
return ret;
|
|
}
|