mirror of
https://github.com/openssl/openssl.git
synced 2025-01-24 13:55:42 +08:00
e70185883e
Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Shane Lontis <shane.lontis@oracle.com> (Merged from https://github.com/openssl/openssl/pull/8994)
441 lines
12 KiB
C
441 lines
12 KiB
C
/*
|
|
* Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <openssl/hmac.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/kdf.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/numbers.h"
|
|
#include "internal/evp_int.h"
|
|
#include "kdf_local.h"
|
|
|
|
#define HKDF_MAXBUF 1024
|
|
|
|
static void kdf_hkdf_reset(EVP_KDF_IMPL *impl);
|
|
static int HKDF(const EVP_MD *evp_md,
|
|
const unsigned char *salt, size_t salt_len,
|
|
const unsigned char *key, size_t key_len,
|
|
const unsigned char *info, size_t info_len,
|
|
unsigned char *okm, size_t okm_len);
|
|
static int HKDF_Extract(const EVP_MD *evp_md,
|
|
const unsigned char *salt, size_t salt_len,
|
|
const unsigned char *ikm, size_t ikm_len,
|
|
unsigned char *prk, size_t prk_len);
|
|
static int HKDF_Expand(const EVP_MD *evp_md,
|
|
const unsigned char *prk, size_t prk_len,
|
|
const unsigned char *info, size_t info_len,
|
|
unsigned char *okm, size_t okm_len);
|
|
|
|
struct evp_kdf_impl_st {
|
|
int mode;
|
|
const EVP_MD *md;
|
|
unsigned char *salt;
|
|
size_t salt_len;
|
|
unsigned char *key;
|
|
size_t key_len;
|
|
unsigned char info[HKDF_MAXBUF];
|
|
size_t info_len;
|
|
};
|
|
|
|
static EVP_KDF_IMPL *kdf_hkdf_new(void)
|
|
{
|
|
EVP_KDF_IMPL *impl;
|
|
|
|
if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
|
|
KDFerr(KDF_F_KDF_HKDF_NEW, ERR_R_MALLOC_FAILURE);
|
|
return impl;
|
|
}
|
|
|
|
static void kdf_hkdf_free(EVP_KDF_IMPL *impl)
|
|
{
|
|
kdf_hkdf_reset(impl);
|
|
OPENSSL_free(impl);
|
|
}
|
|
|
|
static void kdf_hkdf_reset(EVP_KDF_IMPL *impl)
|
|
{
|
|
OPENSSL_free(impl->salt);
|
|
OPENSSL_clear_free(impl->key, impl->key_len);
|
|
OPENSSL_cleanse(impl->info, impl->info_len);
|
|
memset(impl, 0, sizeof(*impl));
|
|
}
|
|
|
|
static int kdf_hkdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
|
|
{
|
|
const unsigned char *p;
|
|
size_t len;
|
|
const EVP_MD *md;
|
|
|
|
switch (cmd) {
|
|
case EVP_KDF_CTRL_SET_MD:
|
|
md = va_arg(args, const EVP_MD *);
|
|
if (md == NULL)
|
|
return 0;
|
|
|
|
impl->md = md;
|
|
return 1;
|
|
|
|
case EVP_KDF_CTRL_SET_HKDF_MODE:
|
|
impl->mode = va_arg(args, int);
|
|
return 1;
|
|
|
|
case EVP_KDF_CTRL_SET_SALT:
|
|
p = va_arg(args, const unsigned char *);
|
|
len = va_arg(args, size_t);
|
|
if (len == 0 || p == NULL)
|
|
return 1;
|
|
|
|
OPENSSL_free(impl->salt);
|
|
impl->salt = OPENSSL_memdup(p, len);
|
|
if (impl->salt == NULL)
|
|
return 0;
|
|
|
|
impl->salt_len = len;
|
|
return 1;
|
|
|
|
case EVP_KDF_CTRL_SET_KEY:
|
|
p = va_arg(args, const unsigned char *);
|
|
len = va_arg(args, size_t);
|
|
OPENSSL_clear_free(impl->key, impl->key_len);
|
|
impl->key = OPENSSL_memdup(p, len);
|
|
if (impl->key == NULL)
|
|
return 0;
|
|
|
|
impl->key_len = len;
|
|
return 1;
|
|
|
|
case EVP_KDF_CTRL_RESET_HKDF_INFO:
|
|
OPENSSL_cleanse(impl->info, impl->info_len);
|
|
impl->info_len = 0;
|
|
return 1;
|
|
|
|
case EVP_KDF_CTRL_ADD_HKDF_INFO:
|
|
p = va_arg(args, const unsigned char *);
|
|
len = va_arg(args, size_t);
|
|
if (len == 0 || p == NULL)
|
|
return 1;
|
|
|
|
if (len > (HKDF_MAXBUF - impl->info_len))
|
|
return 0;
|
|
|
|
memcpy(impl->info + impl->info_len, p, len);
|
|
impl->info_len += len;
|
|
return 1;
|
|
|
|
default:
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
static int kdf_hkdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
|
|
const char *value)
|
|
{
|
|
if (strcmp(type, "mode") == 0) {
|
|
int mode;
|
|
|
|
if (strcmp(value, "EXTRACT_AND_EXPAND") == 0)
|
|
mode = EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND;
|
|
else if (strcmp(value, "EXTRACT_ONLY") == 0)
|
|
mode = EVP_KDF_HKDF_MODE_EXTRACT_ONLY;
|
|
else if (strcmp(value, "EXPAND_ONLY") == 0)
|
|
mode = EVP_KDF_HKDF_MODE_EXPAND_ONLY;
|
|
else
|
|
return 0;
|
|
|
|
return call_ctrl(kdf_hkdf_ctrl, impl, EVP_KDF_CTRL_SET_HKDF_MODE, mode);
|
|
}
|
|
|
|
if (strcmp(type, "digest") == 0)
|
|
return kdf_md2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_MD, value);
|
|
|
|
if (strcmp(type, "salt") == 0)
|
|
return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
|
|
|
|
if (strcmp(type, "hexsalt") == 0)
|
|
return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
|
|
|
|
if (strcmp(type, "key") == 0)
|
|
return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_KEY, value);
|
|
|
|
if (strcmp(type, "hexkey") == 0)
|
|
return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_KEY, value);
|
|
|
|
if (strcmp(type, "info") == 0)
|
|
return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_ADD_HKDF_INFO,
|
|
value);
|
|
|
|
if (strcmp(type, "hexinfo") == 0)
|
|
return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_ADD_HKDF_INFO,
|
|
value);
|
|
|
|
return -2;
|
|
}
|
|
|
|
static size_t kdf_hkdf_size(EVP_KDF_IMPL *impl)
|
|
{
|
|
int sz;
|
|
|
|
if (impl->mode != EVP_KDF_HKDF_MODE_EXTRACT_ONLY)
|
|
return SIZE_MAX;
|
|
|
|
if (impl->md == NULL) {
|
|
KDFerr(KDF_F_KDF_HKDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST);
|
|
return 0;
|
|
}
|
|
sz = EVP_MD_size(impl->md);
|
|
if (sz < 0)
|
|
return 0;
|
|
|
|
return sz;
|
|
}
|
|
|
|
static int kdf_hkdf_derive(EVP_KDF_IMPL *impl, unsigned char *key,
|
|
size_t keylen)
|
|
{
|
|
if (impl->md == NULL) {
|
|
KDFerr(KDF_F_KDF_HKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
|
|
return 0;
|
|
}
|
|
if (impl->key == NULL) {
|
|
KDFerr(KDF_F_KDF_HKDF_DERIVE, KDF_R_MISSING_KEY);
|
|
return 0;
|
|
}
|
|
|
|
switch (impl->mode) {
|
|
case EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND:
|
|
return HKDF(impl->md, impl->salt, impl->salt_len, impl->key,
|
|
impl->key_len, impl->info, impl->info_len, key,
|
|
keylen);
|
|
|
|
case EVP_KDF_HKDF_MODE_EXTRACT_ONLY:
|
|
return HKDF_Extract(impl->md, impl->salt, impl->salt_len, impl->key,
|
|
impl->key_len, key, keylen);
|
|
|
|
case EVP_KDF_HKDF_MODE_EXPAND_ONLY:
|
|
return HKDF_Expand(impl->md, impl->key, impl->key_len, impl->info,
|
|
impl->info_len, key, keylen);
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
const EVP_KDF hkdf_kdf_meth = {
|
|
EVP_KDF_HKDF,
|
|
kdf_hkdf_new,
|
|
kdf_hkdf_free,
|
|
kdf_hkdf_reset,
|
|
kdf_hkdf_ctrl,
|
|
kdf_hkdf_ctrl_str,
|
|
kdf_hkdf_size,
|
|
kdf_hkdf_derive
|
|
};
|
|
|
|
/*
|
|
* Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"
|
|
* Section 2 (https://tools.ietf.org/html/rfc5869#section-2) and
|
|
* "Cryptographic Extraction and Key Derivation: The HKDF Scheme"
|
|
* Section 4.2 (https://eprint.iacr.org/2010/264.pdf).
|
|
*
|
|
* From the paper:
|
|
* The scheme HKDF is specified as:
|
|
* HKDF(XTS, SKM, CTXinfo, L) = K(1) | K(2) | ... | K(t)
|
|
*
|
|
* where:
|
|
* SKM is source key material
|
|
* XTS is extractor salt (which may be null or constant)
|
|
* CTXinfo is context information (may be null)
|
|
* L is the number of key bits to be produced by KDF
|
|
* k is the output length in bits of the hash function used with HMAC
|
|
* t = ceil(L/k)
|
|
* the value K(t) is truncated to its first d = L mod k bits.
|
|
*
|
|
* From RFC 5869:
|
|
* 2.2. Step 1: Extract
|
|
* HKDF-Extract(salt, IKM) -> PRK
|
|
* 2.3. Step 2: Expand
|
|
* HKDF-Expand(PRK, info, L) -> OKM
|
|
*/
|
|
static int HKDF(const EVP_MD *evp_md,
|
|
const unsigned char *salt, size_t salt_len,
|
|
const unsigned char *ikm, size_t ikm_len,
|
|
const unsigned char *info, size_t info_len,
|
|
unsigned char *okm, size_t okm_len)
|
|
{
|
|
unsigned char prk[EVP_MAX_MD_SIZE];
|
|
int ret, sz;
|
|
size_t prk_len;
|
|
|
|
sz = EVP_MD_size(evp_md);
|
|
if (sz < 0)
|
|
return 0;
|
|
prk_len = (size_t)sz;
|
|
|
|
/* Step 1: HKDF-Extract(salt, IKM) -> PRK */
|
|
if (!HKDF_Extract(evp_md, salt, salt_len, ikm, ikm_len, prk, prk_len))
|
|
return 0;
|
|
|
|
/* Step 2: HKDF-Expand(PRK, info, L) -> OKM */
|
|
ret = HKDF_Expand(evp_md, prk, prk_len, info, info_len, okm, okm_len);
|
|
OPENSSL_cleanse(prk, sizeof(prk));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"
|
|
* Section 2.2 (https://tools.ietf.org/html/rfc5869#section-2.2).
|
|
*
|
|
* 2.2. Step 1: Extract
|
|
*
|
|
* HKDF-Extract(salt, IKM) -> PRK
|
|
*
|
|
* Options:
|
|
* Hash a hash function; HashLen denotes the length of the
|
|
* hash function output in octets
|
|
*
|
|
* Inputs:
|
|
* salt optional salt value (a non-secret random value);
|
|
* if not provided, it is set to a string of HashLen zeros.
|
|
* IKM input keying material
|
|
*
|
|
* Output:
|
|
* PRK a pseudorandom key (of HashLen octets)
|
|
*
|
|
* The output PRK is calculated as follows:
|
|
*
|
|
* PRK = HMAC-Hash(salt, IKM)
|
|
*/
|
|
static int HKDF_Extract(const EVP_MD *evp_md,
|
|
const unsigned char *salt, size_t salt_len,
|
|
const unsigned char *ikm, size_t ikm_len,
|
|
unsigned char *prk, size_t prk_len)
|
|
{
|
|
int sz = EVP_MD_size(evp_md);
|
|
|
|
if (sz < 0)
|
|
return 0;
|
|
if (prk_len != (size_t)sz) {
|
|
KDFerr(KDF_F_HKDF_EXTRACT, KDF_R_WRONG_OUTPUT_BUFFER_SIZE);
|
|
return 0;
|
|
}
|
|
/* calc: PRK = HMAC-Hash(salt, IKM) */
|
|
return HMAC(evp_md, salt, salt_len, ikm, ikm_len, prk, NULL) != NULL;
|
|
}
|
|
|
|
/*
|
|
* Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"
|
|
* Section 2.3 (https://tools.ietf.org/html/rfc5869#section-2.3).
|
|
*
|
|
* 2.3. Step 2: Expand
|
|
*
|
|
* HKDF-Expand(PRK, info, L) -> OKM
|
|
*
|
|
* Options:
|
|
* Hash a hash function; HashLen denotes the length of the
|
|
* hash function output in octets
|
|
*
|
|
* Inputs:
|
|
* PRK a pseudorandom key of at least HashLen octets
|
|
* (usually, the output from the extract step)
|
|
* info optional context and application specific information
|
|
* (can be a zero-length string)
|
|
* L length of output keying material in octets
|
|
* (<= 255*HashLen)
|
|
*
|
|
* Output:
|
|
* OKM output keying material (of L octets)
|
|
*
|
|
* The output OKM is calculated as follows:
|
|
*
|
|
* N = ceil(L/HashLen)
|
|
* T = T(1) | T(2) | T(3) | ... | T(N)
|
|
* OKM = first L octets of T
|
|
*
|
|
* where:
|
|
* T(0) = empty string (zero length)
|
|
* T(1) = HMAC-Hash(PRK, T(0) | info | 0x01)
|
|
* T(2) = HMAC-Hash(PRK, T(1) | info | 0x02)
|
|
* T(3) = HMAC-Hash(PRK, T(2) | info | 0x03)
|
|
* ...
|
|
*
|
|
* (where the constant concatenated to the end of each T(n) is a
|
|
* single octet.)
|
|
*/
|
|
static int HKDF_Expand(const EVP_MD *evp_md,
|
|
const unsigned char *prk, size_t prk_len,
|
|
const unsigned char *info, size_t info_len,
|
|
unsigned char *okm, size_t okm_len)
|
|
{
|
|
HMAC_CTX *hmac;
|
|
int ret = 0, sz;
|
|
unsigned int i;
|
|
unsigned char prev[EVP_MAX_MD_SIZE];
|
|
size_t done_len = 0, dig_len, n;
|
|
|
|
sz = EVP_MD_size(evp_md);
|
|
if (sz <= 0)
|
|
return 0;
|
|
dig_len = (size_t)sz;
|
|
|
|
/* calc: N = ceil(L/HashLen) */
|
|
n = okm_len / dig_len;
|
|
if (okm_len % dig_len)
|
|
n++;
|
|
|
|
if (n > 255 || okm == NULL)
|
|
return 0;
|
|
|
|
if ((hmac = HMAC_CTX_new()) == NULL)
|
|
return 0;
|
|
|
|
if (!HMAC_Init_ex(hmac, prk, prk_len, evp_md, NULL))
|
|
goto err;
|
|
|
|
for (i = 1; i <= n; i++) {
|
|
size_t copy_len;
|
|
const unsigned char ctr = i;
|
|
|
|
/* calc: T(i) = HMAC-Hash(PRK, T(i - 1) | info | i) */
|
|
if (i > 1) {
|
|
if (!HMAC_Init_ex(hmac, NULL, 0, NULL, NULL))
|
|
goto err;
|
|
|
|
if (!HMAC_Update(hmac, prev, dig_len))
|
|
goto err;
|
|
}
|
|
|
|
if (!HMAC_Update(hmac, info, info_len))
|
|
goto err;
|
|
|
|
if (!HMAC_Update(hmac, &ctr, 1))
|
|
goto err;
|
|
|
|
if (!HMAC_Final(hmac, prev, NULL))
|
|
goto err;
|
|
|
|
copy_len = (done_len + dig_len > okm_len) ?
|
|
okm_len - done_len :
|
|
dig_len;
|
|
|
|
memcpy(okm + done_len, prev, copy_len);
|
|
|
|
done_len += copy_len;
|
|
}
|
|
ret = 1;
|
|
|
|
err:
|
|
OPENSSL_cleanse(prev, sizeof(prev));
|
|
HMAC_CTX_free(hmac);
|
|
return ret;
|
|
}
|