mirror of
https://github.com/openssl/openssl.git
synced 2025-01-12 13:36:28 +08:00
ef39dd058b
Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Tom Cosgrove <tom.cosgrove@arm.com> (Merged from https://github.com/openssl/openssl/pull/25868)
693 lines
22 KiB
C
693 lines
22 KiB
C
/*
|
|
* Copyright 2005-2024 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include "../ssl_local.h"
|
|
#include <openssl/evp.h>
|
|
#include <openssl/buffer.h>
|
|
#include "record_local.h"
|
|
#include "internal/packet.h"
|
|
#include "internal/cryptlib.h"
|
|
|
|
int DTLS_RECORD_LAYER_new(RECORD_LAYER *rl)
|
|
{
|
|
DTLS_RECORD_LAYER *d;
|
|
|
|
if ((d = OPENSSL_malloc(sizeof(*d))) == NULL)
|
|
return 0;
|
|
|
|
rl->d = d;
|
|
|
|
d->buffered_app_data = pqueue_new();
|
|
|
|
if (d->buffered_app_data == NULL) {
|
|
OPENSSL_free(d);
|
|
rl->d = NULL;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void DTLS_RECORD_LAYER_free(RECORD_LAYER *rl)
|
|
{
|
|
if (rl->d == NULL)
|
|
return;
|
|
|
|
DTLS_RECORD_LAYER_clear(rl);
|
|
pqueue_free(rl->d->buffered_app_data);
|
|
OPENSSL_free(rl->d);
|
|
rl->d = NULL;
|
|
}
|
|
|
|
void DTLS_RECORD_LAYER_clear(RECORD_LAYER *rl)
|
|
{
|
|
DTLS_RECORD_LAYER *d;
|
|
pitem *item = NULL;
|
|
TLS_RECORD *rec;
|
|
pqueue *buffered_app_data;
|
|
|
|
d = rl->d;
|
|
|
|
while ((item = pqueue_pop(d->buffered_app_data)) != NULL) {
|
|
rec = (TLS_RECORD *)item->data;
|
|
|
|
if (rl->s->options & SSL_OP_CLEANSE_PLAINTEXT)
|
|
OPENSSL_cleanse(rec->allocdata, rec->length);
|
|
OPENSSL_free(rec->allocdata);
|
|
OPENSSL_free(item->data);
|
|
pitem_free(item);
|
|
}
|
|
|
|
buffered_app_data = d->buffered_app_data;
|
|
memset(d, 0, sizeof(*d));
|
|
d->buffered_app_data = buffered_app_data;
|
|
}
|
|
|
|
static int dtls_buffer_record(SSL_CONNECTION *s, TLS_RECORD *rec)
|
|
{
|
|
TLS_RECORD *rdata;
|
|
pitem *item;
|
|
struct pqueue_st *queue = s->rlayer.d->buffered_app_data;
|
|
|
|
/* Limit the size of the queue to prevent DOS attacks */
|
|
if (pqueue_size(queue) >= 100)
|
|
return 0;
|
|
|
|
/* We don't buffer partially read records */
|
|
if (!ossl_assert(rec->off == 0))
|
|
return -1;
|
|
|
|
rdata = OPENSSL_malloc(sizeof(*rdata));
|
|
item = pitem_new(rec->seq_num, rdata);
|
|
if (rdata == NULL || item == NULL) {
|
|
OPENSSL_free(rdata);
|
|
pitem_free(item);
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
}
|
|
|
|
*rdata = *rec;
|
|
/*
|
|
* We will release the record from the record layer soon, so we take a copy
|
|
* now. Copying data isn't good - but this should be infrequent so we
|
|
* accept it here.
|
|
*/
|
|
rdata->data = rdata->allocdata = OPENSSL_memdup(rec->data, rec->length);
|
|
if (rdata->data == NULL) {
|
|
OPENSSL_free(rdata);
|
|
pitem_free(item);
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB);
|
|
return -1;
|
|
}
|
|
/*
|
|
* We use a NULL rechandle to indicate that the data field has been
|
|
* allocated by us.
|
|
*/
|
|
rdata->rechandle = NULL;
|
|
|
|
item->data = rdata;
|
|
|
|
#ifndef OPENSSL_NO_SCTP
|
|
/* Store bio_dgram_sctp_rcvinfo struct */
|
|
if (BIO_dgram_is_sctp(s->rbio) &&
|
|
(ossl_statem_get_state(s) == TLS_ST_SR_FINISHED
|
|
|| ossl_statem_get_state(s) == TLS_ST_CR_FINISHED)) {
|
|
BIO_ctrl(s->rbio, BIO_CTRL_DGRAM_SCTP_GET_RCVINFO,
|
|
sizeof(rdata->recordinfo), &rdata->recordinfo);
|
|
}
|
|
#endif
|
|
|
|
if (pqueue_insert(queue, item) == NULL) {
|
|
/* Must be a duplicate so ignore it */
|
|
OPENSSL_free(rdata->allocdata);
|
|
OPENSSL_free(rdata);
|
|
pitem_free(item);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Unbuffer a previously buffered TLS_RECORD structure if any */
|
|
static void dtls_unbuffer_record(SSL_CONNECTION *s)
|
|
{
|
|
TLS_RECORD *rdata;
|
|
pitem *item;
|
|
|
|
/* If we already have records to handle then do nothing */
|
|
if (s->rlayer.curr_rec < s->rlayer.num_recs)
|
|
return;
|
|
|
|
item = pqueue_pop(s->rlayer.d->buffered_app_data);
|
|
if (item != NULL) {
|
|
rdata = (TLS_RECORD *)item->data;
|
|
|
|
s->rlayer.tlsrecs[0] = *rdata;
|
|
s->rlayer.num_recs = 1;
|
|
s->rlayer.curr_rec = 0;
|
|
|
|
#ifndef OPENSSL_NO_SCTP
|
|
/* Restore bio_dgram_sctp_rcvinfo struct */
|
|
if (BIO_dgram_is_sctp(s->rbio)) {
|
|
BIO_ctrl(s->rbio, BIO_CTRL_DGRAM_SCTP_SET_RCVINFO,
|
|
sizeof(rdata->recordinfo), &rdata->recordinfo);
|
|
}
|
|
#endif
|
|
|
|
OPENSSL_free(item->data);
|
|
pitem_free(item);
|
|
}
|
|
}
|
|
|
|
/*-
|
|
* Return up to 'len' payload bytes received in 'type' records.
|
|
* 'type' is one of the following:
|
|
*
|
|
* - SSL3_RT_HANDSHAKE
|
|
* - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us)
|
|
* - 0 (during a shutdown, no data has to be returned)
|
|
*
|
|
* If we don't have stored data to work from, read an SSL/TLS record first
|
|
* (possibly multiple records if we still don't have anything to return).
|
|
*
|
|
* This function must handle any surprises the peer may have for us, such as
|
|
* Alert records (e.g. close_notify) or renegotiation requests. ChangeCipherSpec
|
|
* messages are treated as if they were handshake messages *if* the |recd_type|
|
|
* argument is non NULL.
|
|
* Also if record payloads contain fragments too small to process, we store
|
|
* them until there is enough for the respective protocol (the record protocol
|
|
* may use arbitrary fragmentation and even interleaving):
|
|
* Change cipher spec protocol
|
|
* just 1 byte needed, no need for keeping anything stored
|
|
* Alert protocol
|
|
* 2 bytes needed (AlertLevel, AlertDescription)
|
|
* Handshake protocol
|
|
* 4 bytes needed (HandshakeType, uint24 length) -- we just have
|
|
* to detect unexpected Client Hello and Hello Request messages
|
|
* here, anything else is handled by higher layers
|
|
* Application data protocol
|
|
* none of our business
|
|
*/
|
|
int dtls1_read_bytes(SSL *s, uint8_t type, uint8_t *recvd_type,
|
|
unsigned char *buf, size_t len,
|
|
int peek, size_t *readbytes)
|
|
{
|
|
int i, j, ret;
|
|
size_t n;
|
|
TLS_RECORD *rr;
|
|
void (*cb) (const SSL *ssl, int type2, int val) = NULL;
|
|
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
|
|
|
|
if (sc == NULL)
|
|
return -1;
|
|
|
|
if ((type && (type != SSL3_RT_APPLICATION_DATA) &&
|
|
(type != SSL3_RT_HANDSHAKE)) ||
|
|
(peek && (type != SSL3_RT_APPLICATION_DATA))) {
|
|
SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
}
|
|
|
|
if (!ossl_statem_get_in_handshake(sc) && SSL_in_init(s)) {
|
|
/* type == SSL3_RT_APPLICATION_DATA */
|
|
i = sc->handshake_func(s);
|
|
/* SSLfatal() already called if appropriate */
|
|
if (i < 0)
|
|
return i;
|
|
if (i == 0)
|
|
return -1;
|
|
}
|
|
|
|
start:
|
|
sc->rwstate = SSL_NOTHING;
|
|
|
|
/*
|
|
* We are not handshaking and have no data yet, so process data buffered
|
|
* during the last handshake in advance, if any.
|
|
*/
|
|
if (SSL_is_init_finished(s))
|
|
dtls_unbuffer_record(sc);
|
|
|
|
/* Check for timeout */
|
|
if (dtls1_handle_timeout(sc) > 0) {
|
|
goto start;
|
|
} else if (ossl_statem_in_error(sc)) {
|
|
/* dtls1_handle_timeout() has failed with a fatal error */
|
|
return -1;
|
|
}
|
|
|
|
/* get new packet if necessary */
|
|
if (sc->rlayer.curr_rec >= sc->rlayer.num_recs) {
|
|
sc->rlayer.curr_rec = sc->rlayer.num_recs = 0;
|
|
do {
|
|
rr = &sc->rlayer.tlsrecs[sc->rlayer.num_recs];
|
|
|
|
ret = HANDLE_RLAYER_READ_RETURN(sc,
|
|
sc->rlayer.rrlmethod->read_record(sc->rlayer.rrl,
|
|
&rr->rechandle,
|
|
&rr->version, &rr->type,
|
|
&rr->data, &rr->length,
|
|
&rr->epoch, rr->seq_num));
|
|
if (ret <= 0) {
|
|
ret = dtls1_read_failed(sc, ret);
|
|
/*
|
|
* Anything other than a timeout is an error. SSLfatal() already
|
|
* called if appropriate.
|
|
*/
|
|
if (ret <= 0)
|
|
return ret;
|
|
else
|
|
goto start;
|
|
}
|
|
rr->off = 0;
|
|
sc->rlayer.num_recs++;
|
|
} while (sc->rlayer.rrlmethod->processed_read_pending(sc->rlayer.rrl)
|
|
&& sc->rlayer.num_recs < SSL_MAX_PIPELINES);
|
|
}
|
|
rr = &sc->rlayer.tlsrecs[sc->rlayer.curr_rec];
|
|
|
|
/*
|
|
* Reset the count of consecutive warning alerts if we've got a non-empty
|
|
* record that isn't an alert.
|
|
*/
|
|
if (rr->type != SSL3_RT_ALERT && rr->length != 0)
|
|
sc->rlayer.alert_count = 0;
|
|
|
|
/* we now have a packet which can be read and processed */
|
|
|
|
if (sc->s3.change_cipher_spec /* set when we receive ChangeCipherSpec,
|
|
* reset by ssl3_get_finished */
|
|
&& (rr->type != SSL3_RT_HANDSHAKE)) {
|
|
/*
|
|
* We now have application data between CCS and Finished. Most likely
|
|
* the packets were reordered on their way, so buffer the application
|
|
* data for later processing rather than dropping the connection.
|
|
*/
|
|
if (dtls_buffer_record(sc, rr) < 0) {
|
|
/* SSLfatal() already called */
|
|
return -1;
|
|
}
|
|
if (!ssl_release_record(sc, rr, 0))
|
|
return -1;
|
|
goto start;
|
|
}
|
|
|
|
/*
|
|
* If the other end has shut down, throw anything we read away (even in
|
|
* 'peek' mode)
|
|
*/
|
|
if (sc->shutdown & SSL_RECEIVED_SHUTDOWN) {
|
|
if (!ssl_release_record(sc, rr, 0))
|
|
return -1;
|
|
sc->rwstate = SSL_NOTHING;
|
|
return 0;
|
|
}
|
|
|
|
if (type == rr->type
|
|
|| (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC
|
|
&& type == SSL3_RT_HANDSHAKE && recvd_type != NULL)) {
|
|
/*
|
|
* SSL3_RT_APPLICATION_DATA or
|
|
* SSL3_RT_HANDSHAKE or
|
|
* SSL3_RT_CHANGE_CIPHER_SPEC
|
|
*/
|
|
/*
|
|
* make sure that we are not getting application data when we are
|
|
* doing a handshake for the first time
|
|
*/
|
|
if (SSL_in_init(s) && (type == SSL3_RT_APPLICATION_DATA)
|
|
&& (SSL_IS_FIRST_HANDSHAKE(sc))) {
|
|
SSLfatal(sc, SSL_AD_UNEXPECTED_MESSAGE,
|
|
SSL_R_APP_DATA_IN_HANDSHAKE);
|
|
return -1;
|
|
}
|
|
|
|
if (recvd_type != NULL)
|
|
*recvd_type = rr->type;
|
|
|
|
if (len == 0) {
|
|
/*
|
|
* Release a zero length record. This ensures multiple calls to
|
|
* SSL_read() with a zero length buffer will eventually cause
|
|
* SSL_pending() to report data as being available.
|
|
*/
|
|
if (rr->length == 0 && !ssl_release_record(sc, rr, 0))
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
if (len > rr->length)
|
|
n = rr->length;
|
|
else
|
|
n = len;
|
|
|
|
memcpy(buf, &(rr->data[rr->off]), n);
|
|
if (peek) {
|
|
if (rr->length == 0 && !ssl_release_record(sc, rr, 0))
|
|
return -1;
|
|
} else {
|
|
if (!ssl_release_record(sc, rr, n))
|
|
return -1;
|
|
}
|
|
#ifndef OPENSSL_NO_SCTP
|
|
/*
|
|
* We might had to delay a close_notify alert because of reordered
|
|
* app data. If there was an alert and there is no message to read
|
|
* anymore, finally set shutdown.
|
|
*/
|
|
if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
|
|
sc->d1->shutdown_received
|
|
&& BIO_dgram_sctp_msg_waiting(SSL_get_rbio(s)) <= 0) {
|
|
sc->shutdown |= SSL_RECEIVED_SHUTDOWN;
|
|
return 0;
|
|
}
|
|
#endif
|
|
*readbytes = n;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If we get here, then type != rr->type; if we have a handshake message,
|
|
* then it was unexpected (Hello Request or Client Hello).
|
|
*/
|
|
|
|
if (rr->type == SSL3_RT_ALERT) {
|
|
unsigned int alert_level, alert_descr;
|
|
const unsigned char *alert_bytes = rr->data + rr->off;
|
|
PACKET alert;
|
|
|
|
if (!PACKET_buf_init(&alert, alert_bytes, rr->length)
|
|
|| !PACKET_get_1(&alert, &alert_level)
|
|
|| !PACKET_get_1(&alert, &alert_descr)
|
|
|| PACKET_remaining(&alert) != 0) {
|
|
SSLfatal(sc, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_INVALID_ALERT);
|
|
return -1;
|
|
}
|
|
|
|
if (sc->msg_callback)
|
|
sc->msg_callback(0, sc->version, SSL3_RT_ALERT, alert_bytes, 2, s,
|
|
sc->msg_callback_arg);
|
|
|
|
if (sc->info_callback != NULL)
|
|
cb = sc->info_callback;
|
|
else if (s->ctx->info_callback != NULL)
|
|
cb = s->ctx->info_callback;
|
|
|
|
if (cb != NULL) {
|
|
j = (alert_level << 8) | alert_descr;
|
|
cb(s, SSL_CB_READ_ALERT, j);
|
|
}
|
|
|
|
if (alert_level == SSL3_AL_WARNING) {
|
|
sc->s3.warn_alert = alert_descr;
|
|
if (!ssl_release_record(sc, rr, 0))
|
|
return -1;
|
|
|
|
sc->rlayer.alert_count++;
|
|
if (sc->rlayer.alert_count == MAX_WARN_ALERT_COUNT) {
|
|
SSLfatal(sc, SSL_AD_UNEXPECTED_MESSAGE,
|
|
SSL_R_TOO_MANY_WARN_ALERTS);
|
|
return -1;
|
|
}
|
|
|
|
if (alert_descr == SSL_AD_CLOSE_NOTIFY) {
|
|
#ifndef OPENSSL_NO_SCTP
|
|
/*
|
|
* With SCTP and streams the socket may deliver app data
|
|
* after a close_notify alert. We have to check this first so
|
|
* that nothing gets discarded.
|
|
*/
|
|
if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
|
|
BIO_dgram_sctp_msg_waiting(SSL_get_rbio(s)) > 0) {
|
|
sc->d1->shutdown_received = 1;
|
|
sc->rwstate = SSL_READING;
|
|
BIO_clear_retry_flags(SSL_get_rbio(s));
|
|
BIO_set_retry_read(SSL_get_rbio(s));
|
|
return -1;
|
|
}
|
|
#endif
|
|
sc->shutdown |= SSL_RECEIVED_SHUTDOWN;
|
|
return 0;
|
|
}
|
|
} else if (alert_level == SSL3_AL_FATAL) {
|
|
sc->rwstate = SSL_NOTHING;
|
|
sc->s3.fatal_alert = alert_descr;
|
|
SSLfatal_data(sc, SSL_AD_NO_ALERT,
|
|
SSL_AD_REASON_OFFSET + alert_descr,
|
|
"SSL alert number %d", alert_descr);
|
|
sc->shutdown |= SSL_RECEIVED_SHUTDOWN;
|
|
if (!ssl_release_record(sc, rr, 0))
|
|
return -1;
|
|
SSL_CTX_remove_session(sc->session_ctx, sc->session);
|
|
return 0;
|
|
} else {
|
|
SSLfatal(sc, SSL_AD_ILLEGAL_PARAMETER, SSL_R_UNKNOWN_ALERT_TYPE);
|
|
return -1;
|
|
}
|
|
|
|
goto start;
|
|
}
|
|
|
|
if (sc->shutdown & SSL_SENT_SHUTDOWN) { /* but we have not received a
|
|
* shutdown */
|
|
sc->rwstate = SSL_NOTHING;
|
|
if (!ssl_release_record(sc, rr, 0))
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
if (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC) {
|
|
/*
|
|
* We can't process a CCS now, because previous handshake messages
|
|
* are still missing, so just drop it.
|
|
*/
|
|
if (!ssl_release_record(sc, rr, 0))
|
|
return -1;
|
|
goto start;
|
|
}
|
|
|
|
/*
|
|
* Unexpected handshake message (Client Hello, or protocol violation)
|
|
*/
|
|
if (rr->type == SSL3_RT_HANDSHAKE && !ossl_statem_get_in_handshake(sc)) {
|
|
struct hm_header_st msg_hdr;
|
|
|
|
/*
|
|
* This may just be a stale retransmit. Also sanity check that we have
|
|
* at least enough record bytes for a message header
|
|
*/
|
|
if (rr->epoch != sc->rlayer.d->r_epoch
|
|
|| rr->length < DTLS1_HM_HEADER_LENGTH) {
|
|
if (!ssl_release_record(sc, rr, 0))
|
|
return -1;
|
|
goto start;
|
|
}
|
|
|
|
dtls1_get_message_header(rr->data, &msg_hdr);
|
|
|
|
/*
|
|
* If we are server, we may have a repeated FINISHED of the client
|
|
* here, then retransmit our CCS and FINISHED.
|
|
*/
|
|
if (msg_hdr.type == SSL3_MT_FINISHED) {
|
|
if (dtls1_check_timeout_num(sc) < 0) {
|
|
/* SSLfatal) already called */
|
|
return -1;
|
|
}
|
|
|
|
if (dtls1_retransmit_buffered_messages(sc) <= 0) {
|
|
/* Fail if we encountered a fatal error */
|
|
if (ossl_statem_in_error(sc))
|
|
return -1;
|
|
}
|
|
if (!ssl_release_record(sc, rr, 0))
|
|
return -1;
|
|
if (!(sc->mode & SSL_MODE_AUTO_RETRY)) {
|
|
if (!sc->rlayer.rrlmethod->unprocessed_read_pending(sc->rlayer.rrl)) {
|
|
/* no read-ahead left? */
|
|
BIO *bio;
|
|
|
|
sc->rwstate = SSL_READING;
|
|
bio = SSL_get_rbio(s);
|
|
BIO_clear_retry_flags(bio);
|
|
BIO_set_retry_read(bio);
|
|
return -1;
|
|
}
|
|
}
|
|
goto start;
|
|
}
|
|
|
|
/*
|
|
* To get here we must be trying to read app data but found handshake
|
|
* data. But if we're trying to read app data, and we're not in init
|
|
* (which is tested for at the top of this function) then init must be
|
|
* finished
|
|
*/
|
|
if (!ossl_assert(SSL_is_init_finished(s))) {
|
|
SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
}
|
|
|
|
/* We found handshake data, so we're going back into init */
|
|
ossl_statem_set_in_init(sc, 1);
|
|
|
|
i = sc->handshake_func(s);
|
|
/* SSLfatal() called if appropriate */
|
|
if (i < 0)
|
|
return i;
|
|
if (i == 0)
|
|
return -1;
|
|
|
|
if (!(sc->mode & SSL_MODE_AUTO_RETRY)) {
|
|
if (!sc->rlayer.rrlmethod->unprocessed_read_pending(sc->rlayer.rrl)) {
|
|
/* no read-ahead left? */
|
|
BIO *bio;
|
|
/*
|
|
* In the case where we try to read application data, but we
|
|
* trigger an SSL handshake, we return -1 with the retry
|
|
* option set. Otherwise renegotiation may cause nasty
|
|
* problems in the blocking world
|
|
*/
|
|
sc->rwstate = SSL_READING;
|
|
bio = SSL_get_rbio(s);
|
|
BIO_clear_retry_flags(bio);
|
|
BIO_set_retry_read(bio);
|
|
return -1;
|
|
}
|
|
}
|
|
goto start;
|
|
}
|
|
|
|
switch (rr->type) {
|
|
default:
|
|
SSLfatal(sc, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD);
|
|
return -1;
|
|
case SSL3_RT_CHANGE_CIPHER_SPEC:
|
|
case SSL3_RT_ALERT:
|
|
case SSL3_RT_HANDSHAKE:
|
|
/*
|
|
* we already handled all of these, with the possible exception of
|
|
* SSL3_RT_HANDSHAKE when ossl_statem_get_in_handshake(s) is true, but
|
|
* that should not happen when type != rr->type
|
|
*/
|
|
SSLfatal(sc, SSL_AD_UNEXPECTED_MESSAGE, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
case SSL3_RT_APPLICATION_DATA:
|
|
/*
|
|
* At this point, we were expecting handshake data, but have
|
|
* application data. If the library was running inside ssl3_read()
|
|
* (i.e. in_read_app_data is set) and it makes sense to read
|
|
* application data at this point (session renegotiation not yet
|
|
* started), we will indulge it.
|
|
*/
|
|
if (sc->s3.in_read_app_data &&
|
|
(sc->s3.total_renegotiations != 0) &&
|
|
ossl_statem_app_data_allowed(sc)) {
|
|
sc->s3.in_read_app_data = 2;
|
|
return -1;
|
|
} else {
|
|
SSLfatal(sc, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD);
|
|
return -1;
|
|
}
|
|
}
|
|
/* not reached */
|
|
}
|
|
|
|
/*
|
|
* Call this to write data in records of type 'type' It will return <= 0 if
|
|
* not all data has been sent or non-blocking IO.
|
|
*/
|
|
int dtls1_write_bytes(SSL_CONNECTION *s, uint8_t type, const void *buf,
|
|
size_t len, size_t *written)
|
|
{
|
|
int i;
|
|
|
|
if (!ossl_assert(len <= SSL3_RT_MAX_PLAIN_LENGTH)) {
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
}
|
|
s->rwstate = SSL_NOTHING;
|
|
i = do_dtls1_write(s, type, buf, len, written);
|
|
return i;
|
|
}
|
|
|
|
int do_dtls1_write(SSL_CONNECTION *sc, uint8_t type, const unsigned char *buf,
|
|
size_t len, size_t *written)
|
|
{
|
|
int i;
|
|
OSSL_RECORD_TEMPLATE tmpl;
|
|
SSL *s = SSL_CONNECTION_GET_SSL(sc);
|
|
int ret;
|
|
|
|
/* If we have an alert to send, lets send it */
|
|
if (sc->s3.alert_dispatch > 0) {
|
|
i = s->method->ssl_dispatch_alert(s);
|
|
if (i <= 0)
|
|
return i;
|
|
/* if it went, fall through and send more stuff */
|
|
}
|
|
|
|
if (len == 0)
|
|
return 0;
|
|
|
|
if (len > ssl_get_max_send_fragment(sc)) {
|
|
SSLfatal(sc, SSL_AD_INTERNAL_ERROR, SSL_R_EXCEEDS_MAX_FRAGMENT_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
tmpl.type = type;
|
|
/*
|
|
* Special case: for hello verify request, client version 1.0 and we
|
|
* haven't decided which version to use yet send back using version 1.0
|
|
* header: otherwise some clients will ignore it.
|
|
*/
|
|
if (s->method->version == DTLS_ANY_VERSION
|
|
&& sc->max_proto_version != DTLS1_BAD_VER)
|
|
tmpl.version = DTLS1_VERSION;
|
|
else
|
|
tmpl.version = sc->version;
|
|
tmpl.buf = buf;
|
|
tmpl.buflen = len;
|
|
|
|
ret = HANDLE_RLAYER_WRITE_RETURN(sc,
|
|
sc->rlayer.wrlmethod->write_records(sc->rlayer.wrl, &tmpl, 1));
|
|
|
|
if (ret > 0)
|
|
*written = (int)len;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void dtls1_increment_epoch(SSL_CONNECTION *s, int rw)
|
|
{
|
|
if (rw & SSL3_CC_READ) {
|
|
s->rlayer.d->r_epoch++;
|
|
|
|
/*
|
|
* We must not use any buffered messages received from the previous
|
|
* epoch
|
|
*/
|
|
dtls1_clear_received_buffer(s);
|
|
} else {
|
|
s->rlayer.d->w_epoch++;
|
|
}
|
|
}
|
|
|
|
uint16_t dtls1_get_epoch(SSL_CONNECTION *s, int rw) {
|
|
uint16_t epoch;
|
|
|
|
if (rw & SSL3_CC_READ)
|
|
epoch = s->rlayer.d->r_epoch;
|
|
else
|
|
epoch = s->rlayer.d->w_epoch;
|
|
|
|
return epoch;
|
|
}
|