openssl/providers/implementations/kem/ecx_kem.c
slontis f5981c9629 Add utility function ossl_param_is_empty()
Changed all provider implementations that have a set_ctx_params()
to call this function instead of just testing (params == NULL).This
detects the case wherean OSSL_PARAM array contains just a terminator
entry.

Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tom Cosgrove <tom.cosgrove@arm.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/25499)
2024-10-09 11:13:46 +02:00

705 lines
22 KiB
C

/*
* Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* The following implementation is part of RFC 9180 related to DHKEM using
* ECX keys (i.e. X25519 and X448)
* References to Sections in the comments below refer to RFC 9180.
*/
#include "internal/deprecated.h"
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/evp.h>
#include <openssl/core_dispatch.h>
#include <openssl/core_names.h>
#include <openssl/params.h>
#include <openssl/kdf.h>
#include <openssl/err.h>
#include <openssl/sha.h>
#include <openssl/rand.h>
#include <openssl/proverr.h>
#include "prov/provider_ctx.h"
#include "prov/implementations.h"
#include "prov/securitycheck.h"
#include "prov/providercommon.h"
#include "prov/ecx.h"
#include "crypto/ecx.h"
#include <openssl/hpke.h>
#include "internal/hpke_util.h"
#include "eckem.h"
#define MAX_ECX_KEYLEN X448_KEYLEN
/* KEM identifiers from Section 7.1 "Table 2 KEM IDs" */
#define KEMID_X25519_HKDF_SHA256 0x20
#define KEMID_X448_HKDF_SHA512 0x21
/* ASCII: "KEM", in hex for EBCDIC compatibility */
static const char LABEL_KEM[] = "\x4b\x45\x4d";
typedef struct {
ECX_KEY *recipient_key;
ECX_KEY *sender_authkey;
OSSL_LIB_CTX *libctx;
char *propq;
unsigned int mode;
unsigned int op;
unsigned char *ikm;
size_t ikmlen;
const char *kdfname;
const OSSL_HPKE_KEM_INFO *info;
} PROV_ECX_CTX;
static OSSL_FUNC_kem_newctx_fn ecxkem_newctx;
static OSSL_FUNC_kem_encapsulate_init_fn ecxkem_encapsulate_init;
static OSSL_FUNC_kem_encapsulate_fn ecxkem_encapsulate;
static OSSL_FUNC_kem_decapsulate_init_fn ecxkem_decapsulate_init;
static OSSL_FUNC_kem_decapsulate_fn ecxkem_decapsulate;
static OSSL_FUNC_kem_freectx_fn ecxkem_freectx;
static OSSL_FUNC_kem_set_ctx_params_fn ecxkem_set_ctx_params;
static OSSL_FUNC_kem_auth_encapsulate_init_fn ecxkem_auth_encapsulate_init;
static OSSL_FUNC_kem_auth_decapsulate_init_fn ecxkem_auth_decapsulate_init;
/*
* Set KEM values as specified in Section 7.1 "Table 2 KEM IDs"
* There is only one set of values for X25519 and X448.
* Additional values could be set via set_params if required.
*/
static const OSSL_HPKE_KEM_INFO *get_kem_info(ECX_KEY *ecx)
{
const char *name = NULL;
if (ecx->type == ECX_KEY_TYPE_X25519)
name = SN_X25519;
else
name = SN_X448;
return ossl_HPKE_KEM_INFO_find_curve(name);
}
/*
* Set the recipient key, and free any existing key.
* ecx can be NULL. The ecx key may have only a private or public component.
*/
static int recipient_key_set(PROV_ECX_CTX *ctx, ECX_KEY *ecx)
{
ossl_ecx_key_free(ctx->recipient_key);
ctx->recipient_key = NULL;
if (ecx != NULL) {
ctx->info = get_kem_info(ecx);
if (ctx->info == NULL)
return -2;
ctx->kdfname = "HKDF";
if (!ossl_ecx_key_up_ref(ecx))
return 0;
ctx->recipient_key = ecx;
}
return 1;
}
/*
* Set the senders auth key, and free any existing auth key.
* ecx can be NULL.
*/
static int sender_authkey_set(PROV_ECX_CTX *ctx, ECX_KEY *ecx)
{
ossl_ecx_key_free(ctx->sender_authkey);
ctx->sender_authkey = NULL;
if (ecx != NULL) {
if (!ossl_ecx_key_up_ref(ecx))
return 0;
ctx->sender_authkey = ecx;
}
return 1;
}
/*
* Serialize a public key from byte array's for the encoded public keys.
* ctx is used to access the key type.
* Returns: The created ECX_KEY or NULL on error.
*/
static ECX_KEY *ecxkey_pubfromdata(PROV_ECX_CTX *ctx,
const unsigned char *pubbuf, size_t pubbuflen)
{
ECX_KEY *ecx = NULL;
OSSL_PARAM params[2], *p = params;
*p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,
(char *)pubbuf, pubbuflen);
*p = OSSL_PARAM_construct_end();
ecx = ossl_ecx_key_new(ctx->libctx, ctx->recipient_key->type, 1, ctx->propq);
if (ecx == NULL)
return NULL;
if (ossl_ecx_key_fromdata(ecx, params, 0) <= 0) {
ossl_ecx_key_free(ecx);
ecx = NULL;
}
return ecx;
}
static unsigned char *ecx_pubkey(ECX_KEY *ecx)
{
if (ecx == NULL || !ecx->haspubkey) {
ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PUBLIC_KEY);
return 0;
}
return ecx->pubkey;
}
static void *ecxkem_newctx(void *provctx)
{
PROV_ECX_CTX *ctx = OPENSSL_zalloc(sizeof(PROV_ECX_CTX));
if (ctx == NULL)
return NULL;
ctx->libctx = PROV_LIBCTX_OF(provctx);
return ctx;
}
static void ecxkem_freectx(void *vectx)
{
PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vectx;
OPENSSL_clear_free(ctx->ikm, ctx->ikmlen);
recipient_key_set(ctx, NULL);
sender_authkey_set(ctx, NULL);
OPENSSL_free(ctx);
}
static int ecx_match_params(const ECX_KEY *key1, const ECX_KEY *key2)
{
return (key1->type == key2->type && key1->keylen == key2->keylen);
}
static int ecx_key_check(const ECX_KEY *ecx, int requires_privatekey)
{
if (ecx->privkey == NULL)
return (requires_privatekey == 0);
return 1;
}
static int ecxkem_init(void *vecxctx, int operation, void *vecx, void *vauth,
ossl_unused const OSSL_PARAM params[])
{
int rv;
PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vecxctx;
ECX_KEY *ecx = vecx;
ECX_KEY *auth = vauth;
if (!ossl_prov_is_running())
return 0;
if (!ecx_key_check(ecx, operation == EVP_PKEY_OP_DECAPSULATE))
return 0;
rv = recipient_key_set(ctx, ecx);
if (rv <= 0)
return rv;
if (auth != NULL) {
if (!ecx_match_params(auth, ctx->recipient_key)
|| !ecx_key_check(auth, operation == EVP_PKEY_OP_ENCAPSULATE)
|| !sender_authkey_set(ctx, auth))
return 0;
}
ctx->op = operation;
return ecxkem_set_ctx_params(vecxctx, params);
}
static int ecxkem_encapsulate_init(void *vecxctx, void *vecx,
const OSSL_PARAM params[])
{
return ecxkem_init(vecxctx, EVP_PKEY_OP_ENCAPSULATE, vecx, NULL, params);
}
static int ecxkem_decapsulate_init(void *vecxctx, void *vecx,
const OSSL_PARAM params[])
{
return ecxkem_init(vecxctx, EVP_PKEY_OP_DECAPSULATE, vecx, NULL, params);
}
static int ecxkem_auth_encapsulate_init(void *vctx, void *vecx, void *vauthpriv,
const OSSL_PARAM params[])
{
return ecxkem_init(vctx, EVP_PKEY_OP_ENCAPSULATE, vecx, vauthpriv, params);
}
static int ecxkem_auth_decapsulate_init(void *vctx, void *vecx, void *vauthpub,
const OSSL_PARAM params[])
{
return ecxkem_init(vctx, EVP_PKEY_OP_DECAPSULATE, vecx, vauthpub, params);
}
static int ecxkem_set_ctx_params(void *vctx, const OSSL_PARAM params[])
{
PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vctx;
const OSSL_PARAM *p;
int mode;
if (ctx == NULL)
return 0;
if (ossl_param_is_empty(params))
return 1;
p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_IKME);
if (p != NULL) {
void *tmp = NULL;
size_t tmplen = 0;
if (p->data != NULL && p->data_size != 0) {
if (!OSSL_PARAM_get_octet_string(p, &tmp, 0, &tmplen))
return 0;
}
OPENSSL_clear_free(ctx->ikm, ctx->ikmlen);
ctx->ikm = tmp;
ctx->ikmlen = tmplen;
}
p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION);
if (p != NULL) {
if (p->data_type != OSSL_PARAM_UTF8_STRING)
return 0;
mode = ossl_eckem_modename2id(p->data);
if (mode == KEM_MODE_UNDEFINED)
return 0;
ctx->mode = mode;
}
return 1;
}
static const OSSL_PARAM known_settable_ecxkem_ctx_params[] = {
OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0),
OSSL_PARAM_octet_string(OSSL_KEM_PARAM_IKME, NULL, 0),
OSSL_PARAM_END
};
static const OSSL_PARAM *ecxkem_settable_ctx_params(ossl_unused void *vctx,
ossl_unused void *provctx)
{
return known_settable_ecxkem_ctx_params;
}
/*
* See Section 4.1 DH-Based KEM (DHKEM) ExtractAndExpand
*/
static int dhkem_extract_and_expand(EVP_KDF_CTX *kctx,
unsigned char *okm, size_t okmlen,
uint16_t kemid,
const unsigned char *dhkm, size_t dhkmlen,
const unsigned char *kemctx,
size_t kemctxlen)
{
uint8_t suiteid[2];
uint8_t prk[EVP_MAX_MD_SIZE];
size_t prklen = okmlen; /* Nh */
int ret;
if (prklen > sizeof(prk))
return 0;
suiteid[0] = (kemid >> 8) &0xff;
suiteid[1] = kemid & 0xff;
ret = ossl_hpke_labeled_extract(kctx, prk, prklen,
NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid),
OSSL_DHKEM_LABEL_EAE_PRK, dhkm, dhkmlen)
&& ossl_hpke_labeled_expand(kctx, okm, okmlen, prk, prklen,
LABEL_KEM, suiteid, sizeof(suiteid),
OSSL_DHKEM_LABEL_SHARED_SECRET,
kemctx, kemctxlen);
OPENSSL_cleanse(prk, prklen);
return ret;
}
/*
* See Section 7.1.3 DeriveKeyPair.
*
* This function is used by ecx keygen.
* (For this reason it does not use any of the state stored in PROV_ECX_CTX).
*
* Params:
* ecx An initialized ecx key.
* privout The buffer to store the generated private key into (it is assumed
* this is of length ecx->keylen).
* ikm buffer containing the input key material (seed). This must be non NULL.
* ikmlen size of the ikm buffer in bytes
* Returns:
* 1 if successful or 0 otherwise.
*/
int ossl_ecx_dhkem_derive_private(ECX_KEY *ecx, unsigned char *privout,
const unsigned char *ikm, size_t ikmlen)
{
int ret = 0;
EVP_KDF_CTX *kdfctx = NULL;
unsigned char prk[EVP_MAX_MD_SIZE];
uint8_t suiteid[2];
const OSSL_HPKE_KEM_INFO *info = get_kem_info(ecx);
/* ikmlen should have a length of at least Nsk */
if (ikmlen < info->Nsk) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_INPUT_LENGTH,
"ikm length is :%zu, should be at least %zu",
ikmlen, info->Nsk);
goto err;
}
kdfctx = ossl_kdf_ctx_create("HKDF", info->mdname, ecx->libctx, ecx->propq);
if (kdfctx == NULL)
return 0;
suiteid[0] = info->kem_id / 256;
suiteid[1] = info->kem_id % 256;
if (!ossl_hpke_labeled_extract(kdfctx, prk, info->Nsecret,
NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid),
OSSL_DHKEM_LABEL_DKP_PRK, ikm, ikmlen))
goto err;
if (!ossl_hpke_labeled_expand(kdfctx, privout, info->Nsk, prk, info->Nsecret,
LABEL_KEM, suiteid, sizeof(suiteid),
OSSL_DHKEM_LABEL_SK, NULL, 0))
goto err;
ret = 1;
err:
OPENSSL_cleanse(prk, sizeof(prk));
EVP_KDF_CTX_free(kdfctx);
return ret;
}
/*
* Do a keygen operation without having to use EVP_PKEY.
* Params:
* ctx Context object
* ikm The seed material - if this is NULL, then a random seed is used.
* Returns:
* The generated ECX key, or NULL on failure.
*/
static ECX_KEY *derivekey(PROV_ECX_CTX *ctx,
const unsigned char *ikm, size_t ikmlen)
{
int ok = 0;
ECX_KEY *key;
unsigned char *privkey;
unsigned char *seed = (unsigned char *)ikm;
size_t seedlen = ikmlen;
unsigned char tmpbuf[OSSL_HPKE_MAX_PRIVATE];
const OSSL_HPKE_KEM_INFO *info = ctx->info;
key = ossl_ecx_key_new(ctx->libctx, ctx->recipient_key->type, 0, ctx->propq);
if (key == NULL)
return NULL;
privkey = ossl_ecx_key_allocate_privkey(key);
if (privkey == NULL)
goto err;
/* Generate a random seed if there is no input ikm */
if (seed == NULL || seedlen == 0) {
if (info->Nsk > sizeof(tmpbuf))
goto err;
if (RAND_priv_bytes_ex(ctx->libctx, tmpbuf, info->Nsk, 0) <= 0)
goto err;
seed = tmpbuf;
seedlen = info->Nsk;
}
if (!ossl_ecx_dhkem_derive_private(key, privkey, seed, seedlen))
goto err;
if (!ossl_ecx_public_from_private(key))
goto err;
key->haspubkey = 1;
ok = 1;
err:
if (!ok) {
ossl_ecx_key_free(key);
key = NULL;
}
if (seed != ikm)
OPENSSL_cleanse(seed, seedlen);
return key;
}
/*
* Do an ecxdh key exchange.
* dhkm = DH(sender, peer)
*
* NOTE: Instead of using EVP_PKEY_derive() API's, we use ECX_KEY operations
* to avoid messy conversions back to EVP_PKEY.
*
* Returns the size of the secret if successful, or 0 otherwise,
*/
static int generate_ecxdhkm(const ECX_KEY *sender, const ECX_KEY *peer,
unsigned char *out, size_t maxout,
unsigned int secretsz)
{
size_t len = 0;
/* NOTE: ossl_ecx_compute_key checks for shared secret being all zeros */
return ossl_ecx_compute_key((ECX_KEY *)peer, (ECX_KEY *)sender,
sender->keylen, out, &len, maxout);
}
/*
* Derive a secret using ECXDH (code is shared by the encap and decap)
*
* dhkm = Concat(ecxdh(privkey1, peerkey1), ecdh(privkey2, peerkey2)
* kemctx = Concat(sender_pub, recipient_pub, ctx->sender_authkey)
* secret = dhkem_extract_and_expand(kemid, dhkm, kemctx);
*
* Params:
* ctx Object that contains algorithm state and constants.
* secret The returned secret (with a length ctx->alg->secretlen bytes).
* privkey1 A private key used for ECXDH key derivation.
* peerkey1 A public key used for ECXDH key derivation with privkey1
* privkey2 A optional private key used for a second ECXDH key derivation.
* It can be NULL.
* peerkey2 A optional public key used for a second ECXDH key derivation
* with privkey2,. It can be NULL.
* sender_pub The senders public key in encoded form.
* recipient_pub The recipients public key in encoded form.
* Notes:
* The second ecdh() is only used for the HPKE auth modes when both privkey2
* and peerkey2 are non NULL (i.e. ctx->sender_authkey is not NULL).
*/
static int derive_secret(PROV_ECX_CTX *ctx, unsigned char *secret,
const ECX_KEY *privkey1, const ECX_KEY *peerkey1,
const ECX_KEY *privkey2, const ECX_KEY *peerkey2,
const unsigned char *sender_pub,
const unsigned char *recipient_pub)
{
int ret = 0;
EVP_KDF_CTX *kdfctx = NULL;
unsigned char *sender_authpub = NULL;
unsigned char dhkm[MAX_ECX_KEYLEN * 2];
unsigned char kemctx[MAX_ECX_KEYLEN * 3];
size_t kemctxlen = 0, dhkmlen = 0;
const OSSL_HPKE_KEM_INFO *info = ctx->info;
int auth = ctx->sender_authkey != NULL;
size_t encodedkeylen = info->Npk;
if (!generate_ecxdhkm(privkey1, peerkey1, dhkm, sizeof(dhkm), encodedkeylen))
goto err;
dhkmlen = encodedkeylen;
/* Concat the optional second ECXDH (used for Auth) */
if (auth) {
if (!generate_ecxdhkm(privkey2, peerkey2,
dhkm + dhkmlen, sizeof(dhkm) - dhkmlen,
encodedkeylen))
goto err;
/* Get the public key of the auth sender in encoded form */
sender_authpub = ecx_pubkey(ctx->sender_authkey);
if (sender_authpub == NULL)
goto err;
dhkmlen += encodedkeylen;
}
kemctxlen = encodedkeylen + dhkmlen;
if (kemctxlen > sizeof(kemctx))
goto err;
/* kemctx is the concat of both sides encoded public key */
memcpy(kemctx, sender_pub, encodedkeylen);
memcpy(kemctx + encodedkeylen, recipient_pub, encodedkeylen);
if (auth)
memcpy(kemctx + 2 * encodedkeylen, sender_authpub, encodedkeylen);
kdfctx = ossl_kdf_ctx_create(ctx->kdfname, info->mdname,
ctx->libctx, ctx->propq);
if (kdfctx == NULL)
goto err;
if (!dhkem_extract_and_expand(kdfctx, secret, info->Nsecret,
info->kem_id, dhkm, dhkmlen,
kemctx, kemctxlen))
goto err;
ret = 1;
err:
OPENSSL_cleanse(dhkm, dhkmlen);
EVP_KDF_CTX_free(kdfctx);
return ret;
}
/*
* Do a DHKEM encapsulate operation.
*
* See Section 4.1 Encap() and AuthEncap()
*
* Params:
* ctx A context object holding the recipients public key and the
* optional senders auth private key.
* enc A buffer to return the senders ephemeral public key.
* Setting this to NULL allows the enclen and secretlen to return
* values, without calculating the secret.
* enclen Passes in the max size of the enc buffer and returns the
* encoded public key length.
* secret A buffer to return the calculated shared secret.
* secretlen Passes in the max size of the secret buffer and returns the
* secret length.
* Returns: 1 on success or 0 otherwise.
*/
static int dhkem_encap(PROV_ECX_CTX *ctx,
unsigned char *enc, size_t *enclen,
unsigned char *secret, size_t *secretlen)
{
int ret = 0;
ECX_KEY *sender_ephemkey = NULL;
unsigned char *sender_ephempub, *recipient_pub;
const OSSL_HPKE_KEM_INFO *info = ctx->info;
if (enc == NULL) {
if (enclen == NULL && secretlen == NULL)
return 0;
if (enclen != NULL)
*enclen = info->Nenc;
if (secretlen != NULL)
*secretlen = info->Nsecret;
return 1;
}
if (*secretlen < info->Nsecret) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small");
return 0;
}
if (*enclen < info->Nenc) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*enclen too small");
return 0;
}
/* Create an ephemeral key */
sender_ephemkey = derivekey(ctx, ctx->ikm, ctx->ikmlen);
sender_ephempub = ecx_pubkey(sender_ephemkey);
recipient_pub = ecx_pubkey(ctx->recipient_key);
if (sender_ephempub == NULL || recipient_pub == NULL)
goto err;
if (!derive_secret(ctx, secret,
sender_ephemkey, ctx->recipient_key,
ctx->sender_authkey, ctx->recipient_key,
sender_ephempub, recipient_pub))
goto err;
/* Return the public part of the ephemeral key */
memcpy(enc, sender_ephempub, info->Nenc);
*enclen = info->Nenc;
*secretlen = info->Nsecret;
ret = 1;
err:
ossl_ecx_key_free(sender_ephemkey);
return ret;
}
/*
* Do a DHKEM decapsulate operation.
* See Section 4.1 Decap() and Auth Decap()
*
* Params:
* ctx A context object holding the recipients private key and the
* optional senders auth public key.
* secret A buffer to return the calculated shared secret. Setting this to
* NULL can be used to return the secretlen.
* secretlen Passes in the max size of the secret buffer and returns the
* secret length.
* enc A buffer containing the senders ephemeral public key that was returned
* from dhkem_encap().
* enclen The length in bytes of enc.
* Returns: 1 If the shared secret is returned or 0 on error.
*/
static int dhkem_decap(PROV_ECX_CTX *ctx,
unsigned char *secret, size_t *secretlen,
const unsigned char *enc, size_t enclen)
{
int ret = 0;
ECX_KEY *recipient_privkey = ctx->recipient_key;
ECX_KEY *sender_ephempubkey = NULL;
const OSSL_HPKE_KEM_INFO *info = ctx->info;
unsigned char *recipient_pub;
if (secret == NULL) {
*secretlen = info->Nsecret;
return 1;
}
if (*secretlen < info->Nsecret) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small");
return 0;
}
if (enclen != info->Nenc) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "Invalid enc public key");
return 0;
}
/* Get the public part of the ephemeral key created by encap */
sender_ephempubkey = ecxkey_pubfromdata(ctx, enc, enclen);
if (sender_ephempubkey == NULL)
goto err;
recipient_pub = ecx_pubkey(recipient_privkey);
if (recipient_pub == NULL)
goto err;
if (!derive_secret(ctx, secret,
ctx->recipient_key, sender_ephempubkey,
ctx->recipient_key, ctx->sender_authkey,
enc, recipient_pub))
goto err;
*secretlen = info->Nsecret;
ret = 1;
err:
ossl_ecx_key_free(sender_ephempubkey);
return ret;
}
static int ecxkem_encapsulate(void *vctx, unsigned char *out, size_t *outlen,
unsigned char *secret, size_t *secretlen)
{
PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vctx;
switch (ctx->mode) {
case KEM_MODE_DHKEM:
return dhkem_encap(ctx, out, outlen, secret, secretlen);
default:
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE);
return -2;
}
}
static int ecxkem_decapsulate(void *vctx, unsigned char *out, size_t *outlen,
const unsigned char *in, size_t inlen)
{
PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vctx;
switch (ctx->mode) {
case KEM_MODE_DHKEM:
return dhkem_decap(vctx, out, outlen, in, inlen);
default:
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE);
return -2;
}
}
const OSSL_DISPATCH ossl_ecx_asym_kem_functions[] = {
{ OSSL_FUNC_KEM_NEWCTX, (void (*)(void))ecxkem_newctx },
{ OSSL_FUNC_KEM_ENCAPSULATE_INIT,
(void (*)(void))ecxkem_encapsulate_init },
{ OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))ecxkem_encapsulate },
{ OSSL_FUNC_KEM_DECAPSULATE_INIT,
(void (*)(void))ecxkem_decapsulate_init },
{ OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))ecxkem_decapsulate },
{ OSSL_FUNC_KEM_FREECTX, (void (*)(void))ecxkem_freectx },
{ OSSL_FUNC_KEM_SET_CTX_PARAMS,
(void (*)(void))ecxkem_set_ctx_params },
{ OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS,
(void (*)(void))ecxkem_settable_ctx_params },
{ OSSL_FUNC_KEM_AUTH_ENCAPSULATE_INIT,
(void (*)(void))ecxkem_auth_encapsulate_init },
{ OSSL_FUNC_KEM_AUTH_DECAPSULATE_INIT,
(void (*)(void))ecxkem_auth_decapsulate_init },
OSSL_DISPATCH_END
};