openssl/providers/implementations/ciphers/cipher_aes_xts_hw.c
Richard Levitte b646179229 Copyright year updates
Reviewed-by: Neil Horman <nhorman@openssl.org>
Release: yes
(cherry picked from commit 0ce7d1f355)

Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/24034)
2024-04-09 13:43:26 +02:00

307 lines
13 KiB
C

/*
* Copyright 2019-2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* This file uses the low level AES functions (which are deprecated for
* non-internal use) in order to implement provider AES ciphers.
*/
#include "internal/deprecated.h"
#include "cipher_aes_xts.h"
#define XTS_SET_KEY_FN(fn_set_enc_key, fn_set_dec_key, \
fn_block_enc, fn_block_dec, \
fn_stream_enc, fn_stream_dec) { \
size_t bytes = keylen / 2; \
size_t bits = bytes * 8; \
\
if (ctx->enc) { \
fn_set_enc_key(key, bits, &xctx->ks1.ks); \
xctx->xts.block1 = (block128_f)fn_block_enc; \
} else { \
fn_set_dec_key(key, bits, &xctx->ks1.ks); \
xctx->xts.block1 = (block128_f)fn_block_dec; \
} \
fn_set_enc_key(key + bytes, bits, &xctx->ks2.ks); \
xctx->xts.block2 = (block128_f)fn_block_enc; \
xctx->xts.key1 = &xctx->ks1; \
xctx->xts.key2 = &xctx->ks2; \
xctx->stream = ctx->enc ? fn_stream_enc : fn_stream_dec; \
}
static int cipher_hw_aes_xts_generic_initkey(PROV_CIPHER_CTX *ctx,
const unsigned char *key,
size_t keylen)
{
PROV_AES_XTS_CTX *xctx = (PROV_AES_XTS_CTX *)ctx;
OSSL_xts_stream_fn stream_enc = NULL;
OSSL_xts_stream_fn stream_dec = NULL;
#ifdef AES_XTS_ASM
stream_enc = AES_xts_encrypt;
stream_dec = AES_xts_decrypt;
#endif /* AES_XTS_ASM */
#ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) {
# ifdef HWAES_xts_encrypt
stream_enc = HWAES_xts_encrypt;
# endif /* HWAES_xts_encrypt */
# ifdef HWAES_xts_decrypt
stream_dec = HWAES_xts_decrypt;
# endif /* HWAES_xts_decrypt */
XTS_SET_KEY_FN(HWAES_set_encrypt_key, HWAES_set_decrypt_key,
HWAES_encrypt, HWAES_decrypt,
stream_enc, stream_dec);
return 1;
} else
#endif /* HWAES_CAPABLE */
#ifdef BSAES_CAPABLE
if (BSAES_CAPABLE) {
stream_enc = ossl_bsaes_xts_encrypt;
stream_dec = ossl_bsaes_xts_decrypt;
} else
#endif /* BSAES_CAPABLE */
#ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
XTS_SET_KEY_FN(vpaes_set_encrypt_key, vpaes_set_decrypt_key,
vpaes_encrypt, vpaes_decrypt, stream_enc, stream_dec);
return 1;
} else
#endif /* VPAES_CAPABLE */
{
(void)0;
}
{
XTS_SET_KEY_FN(AES_set_encrypt_key, AES_set_decrypt_key,
AES_encrypt, AES_decrypt, stream_enc, stream_dec);
}
return 1;
}
static void cipher_hw_aes_xts_copyctx(PROV_CIPHER_CTX *dst,
const PROV_CIPHER_CTX *src)
{
PROV_AES_XTS_CTX *sctx = (PROV_AES_XTS_CTX *)src;
PROV_AES_XTS_CTX *dctx = (PROV_AES_XTS_CTX *)dst;
*dctx = *sctx;
dctx->xts.key1 = &dctx->ks1.ks;
dctx->xts.key2 = &dctx->ks2.ks;
}
#if defined(AESNI_CAPABLE)
static int cipher_hw_aesni_xts_initkey(PROV_CIPHER_CTX *ctx,
const unsigned char *key, size_t keylen)
{
PROV_AES_XTS_CTX *xctx = (PROV_AES_XTS_CTX *)ctx;
XTS_SET_KEY_FN(aesni_set_encrypt_key, aesni_set_decrypt_key,
aesni_encrypt, aesni_decrypt,
aesni_xts_encrypt, aesni_xts_decrypt);
return 1;
}
# define PROV_CIPHER_HW_declare_xts() \
static const PROV_CIPHER_HW aesni_xts = { \
cipher_hw_aesni_xts_initkey, \
NULL, \
cipher_hw_aes_xts_copyctx \
};
# define PROV_CIPHER_HW_select_xts() \
if (AESNI_CAPABLE) \
return &aesni_xts;
# elif defined(SPARC_AES_CAPABLE)
static int cipher_hw_aes_xts_t4_initkey(PROV_CIPHER_CTX *ctx,
const unsigned char *key, size_t keylen)
{
PROV_AES_XTS_CTX *xctx = (PROV_AES_XTS_CTX *)ctx;
OSSL_xts_stream_fn stream_enc = NULL;
OSSL_xts_stream_fn stream_dec = NULL;
/* Note: keylen is the size of 2 keys */
switch (keylen) {
case 32:
stream_enc = aes128_t4_xts_encrypt;
stream_dec = aes128_t4_xts_decrypt;
break;
case 64:
stream_enc = aes256_t4_xts_encrypt;
stream_dec = aes256_t4_xts_decrypt;
break;
default:
return 0;
}
XTS_SET_KEY_FN(aes_t4_set_encrypt_key, aes_t4_set_decrypt_key,
aes_t4_encrypt, aes_t4_decrypt,
stream_enc, stream_dec);
return 1;
}
# define PROV_CIPHER_HW_declare_xts() \
static const PROV_CIPHER_HW aes_xts_t4 = { \
cipher_hw_aes_xts_t4_initkey, \
NULL, \
cipher_hw_aes_xts_copyctx \
};
# define PROV_CIPHER_HW_select_xts() \
if (SPARC_AES_CAPABLE) \
return &aes_xts_t4;
#elif defined(OPENSSL_CPUID_OBJ) && defined(__riscv) && __riscv_xlen == 64
static int cipher_hw_aes_xts_rv64i_zknd_zkne_initkey(PROV_CIPHER_CTX *ctx,
const unsigned char *key,
size_t keylen)
{
PROV_AES_XTS_CTX *xctx = (PROV_AES_XTS_CTX *)ctx;
OSSL_xts_stream_fn stream_enc = NULL;
OSSL_xts_stream_fn stream_dec = NULL;
XTS_SET_KEY_FN(rv64i_zkne_set_encrypt_key, rv64i_zknd_set_decrypt_key,
rv64i_zkne_encrypt, rv64i_zknd_decrypt,
stream_enc, stream_dec);
return 1;
}
static int cipher_hw_aes_xts_rv64i_zvbb_zvkg_zvkned_initkey(
PROV_CIPHER_CTX *ctx, const unsigned char *key, size_t keylen)
{
PROV_AES_XTS_CTX *xctx = (PROV_AES_XTS_CTX *)ctx;
OSSL_xts_stream_fn stream_enc = NULL;
OSSL_xts_stream_fn stream_dec = NULL;
/* Zvkned only supports 128 and 256 bit keys. */
if (keylen * 8 == 128 * 2 || keylen * 8 == 256 * 2) {
XTS_SET_KEY_FN(rv64i_zvkned_set_encrypt_key,
rv64i_zvkned_set_decrypt_key, rv64i_zvkned_encrypt,
rv64i_zvkned_decrypt,
rv64i_zvbb_zvkg_zvkned_aes_xts_encrypt,
rv64i_zvbb_zvkg_zvkned_aes_xts_decrypt);
} else {
XTS_SET_KEY_FN(AES_set_encrypt_key, AES_set_encrypt_key,
rv64i_zvkned_encrypt, rv64i_zvkned_decrypt,
stream_enc, stream_dec);
}
return 1;
}
static int cipher_hw_aes_xts_rv64i_zvkned_initkey(PROV_CIPHER_CTX *ctx,
const unsigned char *key,
size_t keylen)
{
PROV_AES_XTS_CTX *xctx = (PROV_AES_XTS_CTX *)ctx;
OSSL_xts_stream_fn stream_enc = NULL;
OSSL_xts_stream_fn stream_dec = NULL;
/* Zvkned only supports 128 and 256 bit keys. */
if (keylen * 8 == 128 * 2 || keylen * 8 == 256 * 2) {
XTS_SET_KEY_FN(rv64i_zvkned_set_encrypt_key,
rv64i_zvkned_set_decrypt_key,
rv64i_zvkned_encrypt, rv64i_zvkned_decrypt,
stream_enc, stream_dec);
} else {
XTS_SET_KEY_FN(AES_set_encrypt_key, AES_set_encrypt_key,
rv64i_zvkned_encrypt, rv64i_zvkned_decrypt,
stream_enc, stream_dec);
}
return 1;
}
# define PROV_CIPHER_HW_declare_xts() \
static const PROV_CIPHER_HW aes_xts_rv64i_zknd_zkne = { \
cipher_hw_aes_xts_rv64i_zknd_zkne_initkey, \
NULL, \
cipher_hw_aes_xts_copyctx \
}; \
static const PROV_CIPHER_HW aes_xts_rv64i_zvkned = { \
cipher_hw_aes_xts_rv64i_zvkned_initkey, \
NULL, \
cipher_hw_aes_xts_copyctx \
}; \
static const PROV_CIPHER_HW aes_xts_rv64i_zvbb_zvkg_zvkned = { \
cipher_hw_aes_xts_rv64i_zvbb_zvkg_zvkned_initkey, \
NULL, \
cipher_hw_aes_xts_copyctx \
};
# define PROV_CIPHER_HW_select_xts() \
if (RISCV_HAS_ZVBB() && RISCV_HAS_ZVKG() && RISCV_HAS_ZVKNED() && \
riscv_vlen() >= 128) \
return &aes_xts_rv64i_zvbb_zvkg_zvkned; \
if (RISCV_HAS_ZVKNED() && riscv_vlen() >= 128) \
return &aes_xts_rv64i_zvkned; \
else if (RISCV_HAS_ZKND_AND_ZKNE()) \
return &aes_xts_rv64i_zknd_zkne;
#elif defined(OPENSSL_CPUID_OBJ) && defined(__riscv) && __riscv_xlen == 32
static int cipher_hw_aes_xts_rv32i_zknd_zkne_initkey(PROV_CIPHER_CTX *ctx,
const unsigned char *key,
size_t keylen)
{
PROV_AES_XTS_CTX *xctx = (PROV_AES_XTS_CTX *)ctx;
XTS_SET_KEY_FN(rv32i_zkne_set_encrypt_key, rv32i_zknd_zkne_set_decrypt_key,
rv32i_zkne_encrypt, rv32i_zknd_decrypt,
NULL, NULL);
return 1;
}
static int cipher_hw_aes_xts_rv32i_zbkb_zknd_zkne_initkey(PROV_CIPHER_CTX *ctx,
const unsigned char *key,
size_t keylen)
{
PROV_AES_XTS_CTX *xctx = (PROV_AES_XTS_CTX *)ctx;
XTS_SET_KEY_FN(rv32i_zbkb_zkne_set_encrypt_key, rv32i_zbkb_zknd_zkne_set_decrypt_key,
rv32i_zkne_encrypt, rv32i_zknd_decrypt,
NULL, NULL);
return 1;
}
# define PROV_CIPHER_HW_declare_xts() \
static const PROV_CIPHER_HW aes_xts_rv32i_zknd_zkne = { \
cipher_hw_aes_xts_rv32i_zknd_zkne_initkey, \
NULL, \
cipher_hw_aes_xts_copyctx \
}; \
static const PROV_CIPHER_HW aes_xts_rv32i_zbkb_zknd_zkne = { \
cipher_hw_aes_xts_rv32i_zbkb_zknd_zkne_initkey, \
NULL, \
cipher_hw_aes_xts_copyctx \
};
# define PROV_CIPHER_HW_select_xts() \
if (RISCV_HAS_ZBKB_AND_ZKND_AND_ZKNE()) \
return &aes_xts_rv32i_zbkb_zknd_zkne; \
if (RISCV_HAS_ZKND_AND_ZKNE()) \
return &aes_xts_rv32i_zknd_zkne;
# else
/* The generic case */
# define PROV_CIPHER_HW_declare_xts()
# define PROV_CIPHER_HW_select_xts()
#endif
static const PROV_CIPHER_HW aes_generic_xts = {
cipher_hw_aes_xts_generic_initkey,
NULL,
cipher_hw_aes_xts_copyctx
};
PROV_CIPHER_HW_declare_xts()
const PROV_CIPHER_HW *ossl_prov_cipher_hw_aes_xts(size_t keybits)
{
PROV_CIPHER_HW_select_xts()
return &aes_generic_xts;
}