mirror of
https://github.com/openssl/openssl.git
synced 2025-01-06 13:26:43 +08:00
f198cc43a0
Even though it's hard to imagine, it turned out that upper half of arguments passed to V8+ subroutine can be non-zero. ["n" pseudo-instructions, such as srln being srl in 32-bit case and srlx in 64-bit one, were implemented in binutils 2.10. It's assumed that Solaris assembler implemented it around same time, i.e. 2000.] Reviewed-by: Richard Levitte <levitte@openssl.org>
582 lines
13 KiB
Raku
582 lines
13 KiB
Raku
#! /usr/bin/env perl
|
||
# Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the OpenSSL license (the "License"). You may not use
|
||
# this file except in compliance with the License. You can obtain a copy
|
||
# in the file LICENSE in the source distribution or at
|
||
# https://www.openssl.org/source/license.html
|
||
|
||
|
||
# ====================================================================
|
||
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
||
# project. The module is, however, dual licensed under OpenSSL and
|
||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||
# ====================================================================
|
||
|
||
# March 2010
|
||
#
|
||
# The module implements "4-bit" GCM GHASH function and underlying
|
||
# single multiplication operation in GF(2^128). "4-bit" means that it
|
||
# uses 256 bytes per-key table [+128 bytes shared table]. Performance
|
||
# results are for streamed GHASH subroutine on UltraSPARC pre-Tx CPU
|
||
# and are expressed in cycles per processed byte, less is better:
|
||
#
|
||
# gcc 3.3.x cc 5.2 this assembler
|
||
#
|
||
# 32-bit build 81.4 43.3 12.6 (+546%/+244%)
|
||
# 64-bit build 20.2 21.2 12.6 (+60%/+68%)
|
||
#
|
||
# Here is data collected on UltraSPARC T1 system running Linux:
|
||
#
|
||
# gcc 4.4.1 this assembler
|
||
#
|
||
# 32-bit build 566 50 (+1000%)
|
||
# 64-bit build 56 50 (+12%)
|
||
#
|
||
# I don't quite understand why difference between 32-bit and 64-bit
|
||
# compiler-generated code is so big. Compilers *were* instructed to
|
||
# generate code for UltraSPARC and should have used 64-bit registers
|
||
# for Z vector (see C code) even in 32-bit build... Oh well, it only
|
||
# means more impressive improvement coefficients for this assembler
|
||
# module;-) Loops are aggressively modulo-scheduled in respect to
|
||
# references to input data and Z.hi updates to achieve 12 cycles
|
||
# timing. To anchor to something else, sha1-sparcv9.pl spends 11.6
|
||
# cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1.
|
||
#
|
||
# October 2012
|
||
#
|
||
# Add VIS3 lookup-table-free implementation using polynomial
|
||
# multiplication xmulx[hi] and extended addition addxc[cc]
|
||
# instructions. 4.52/7.63x improvement on T3/T4 or in absolute
|
||
# terms 7.90/2.14 cycles per byte. On T4 multi-process benchmark
|
||
# saturates at ~15.5x single-process result on 8-core processor,
|
||
# or ~20.5GBps per 2.85GHz socket.
|
||
|
||
$output=pop;
|
||
open STDOUT,">$output";
|
||
|
||
$frame="STACK_FRAME";
|
||
$bias="STACK_BIAS";
|
||
|
||
$Zhi="%o0"; # 64-bit values
|
||
$Zlo="%o1";
|
||
$Thi="%o2";
|
||
$Tlo="%o3";
|
||
$rem="%o4";
|
||
$tmp="%o5";
|
||
|
||
$nhi="%l0"; # small values and pointers
|
||
$nlo="%l1";
|
||
$xi0="%l2";
|
||
$xi1="%l3";
|
||
$rem_4bit="%l4";
|
||
$remi="%l5";
|
||
$Htblo="%l6";
|
||
$cnt="%l7";
|
||
|
||
$Xi="%i0"; # input argument block
|
||
$Htbl="%i1";
|
||
$inp="%i2";
|
||
$len="%i3";
|
||
|
||
$code.=<<___;
|
||
#include "sparc_arch.h"
|
||
|
||
#ifdef __arch64__
|
||
.register %g2,#scratch
|
||
.register %g3,#scratch
|
||
#endif
|
||
|
||
.section ".text",#alloc,#execinstr
|
||
|
||
.align 64
|
||
rem_4bit:
|
||
.long `0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0
|
||
.long `0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0
|
||
.long `0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0
|
||
.long `0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0
|
||
.type rem_4bit,#object
|
||
.size rem_4bit,(.-rem_4bit)
|
||
|
||
.globl gcm_ghash_4bit
|
||
.align 32
|
||
gcm_ghash_4bit:
|
||
save %sp,-$frame,%sp
|
||
ldub [$inp+15],$nlo
|
||
ldub [$Xi+15],$xi0
|
||
ldub [$Xi+14],$xi1
|
||
add $len,$inp,$len
|
||
add $Htbl,8,$Htblo
|
||
|
||
1: call .+8
|
||
add %o7,rem_4bit-1b,$rem_4bit
|
||
|
||
.Louter:
|
||
xor $xi0,$nlo,$nlo
|
||
and $nlo,0xf0,$nhi
|
||
and $nlo,0x0f,$nlo
|
||
sll $nlo,4,$nlo
|
||
ldx [$Htblo+$nlo],$Zlo
|
||
ldx [$Htbl+$nlo],$Zhi
|
||
|
||
ldub [$inp+14],$nlo
|
||
|
||
ldx [$Htblo+$nhi],$Tlo
|
||
and $Zlo,0xf,$remi
|
||
ldx [$Htbl+$nhi],$Thi
|
||
sll $remi,3,$remi
|
||
ldx [$rem_4bit+$remi],$rem
|
||
srlx $Zlo,4,$Zlo
|
||
mov 13,$cnt
|
||
sllx $Zhi,60,$tmp
|
||
xor $Tlo,$Zlo,$Zlo
|
||
srlx $Zhi,4,$Zhi
|
||
xor $Zlo,$tmp,$Zlo
|
||
|
||
xor $xi1,$nlo,$nlo
|
||
and $Zlo,0xf,$remi
|
||
and $nlo,0xf0,$nhi
|
||
and $nlo,0x0f,$nlo
|
||
ba .Lghash_inner
|
||
sll $nlo,4,$nlo
|
||
.align 32
|
||
.Lghash_inner:
|
||
ldx [$Htblo+$nlo],$Tlo
|
||
sll $remi,3,$remi
|
||
xor $Thi,$Zhi,$Zhi
|
||
ldx [$Htbl+$nlo],$Thi
|
||
srlx $Zlo,4,$Zlo
|
||
xor $rem,$Zhi,$Zhi
|
||
ldx [$rem_4bit+$remi],$rem
|
||
sllx $Zhi,60,$tmp
|
||
xor $Tlo,$Zlo,$Zlo
|
||
ldub [$inp+$cnt],$nlo
|
||
srlx $Zhi,4,$Zhi
|
||
xor $Zlo,$tmp,$Zlo
|
||
ldub [$Xi+$cnt],$xi1
|
||
xor $Thi,$Zhi,$Zhi
|
||
and $Zlo,0xf,$remi
|
||
|
||
ldx [$Htblo+$nhi],$Tlo
|
||
sll $remi,3,$remi
|
||
xor $rem,$Zhi,$Zhi
|
||
ldx [$Htbl+$nhi],$Thi
|
||
srlx $Zlo,4,$Zlo
|
||
ldx [$rem_4bit+$remi],$rem
|
||
sllx $Zhi,60,$tmp
|
||
xor $xi1,$nlo,$nlo
|
||
srlx $Zhi,4,$Zhi
|
||
and $nlo,0xf0,$nhi
|
||
addcc $cnt,-1,$cnt
|
||
xor $Zlo,$tmp,$Zlo
|
||
and $nlo,0x0f,$nlo
|
||
xor $Tlo,$Zlo,$Zlo
|
||
sll $nlo,4,$nlo
|
||
blu .Lghash_inner
|
||
and $Zlo,0xf,$remi
|
||
|
||
ldx [$Htblo+$nlo],$Tlo
|
||
sll $remi,3,$remi
|
||
xor $Thi,$Zhi,$Zhi
|
||
ldx [$Htbl+$nlo],$Thi
|
||
srlx $Zlo,4,$Zlo
|
||
xor $rem,$Zhi,$Zhi
|
||
ldx [$rem_4bit+$remi],$rem
|
||
sllx $Zhi,60,$tmp
|
||
xor $Tlo,$Zlo,$Zlo
|
||
srlx $Zhi,4,$Zhi
|
||
xor $Zlo,$tmp,$Zlo
|
||
xor $Thi,$Zhi,$Zhi
|
||
|
||
add $inp,16,$inp
|
||
cmp $inp,$len
|
||
be,pn SIZE_T_CC,.Ldone
|
||
and $Zlo,0xf,$remi
|
||
|
||
ldx [$Htblo+$nhi],$Tlo
|
||
sll $remi,3,$remi
|
||
xor $rem,$Zhi,$Zhi
|
||
ldx [$Htbl+$nhi],$Thi
|
||
srlx $Zlo,4,$Zlo
|
||
ldx [$rem_4bit+$remi],$rem
|
||
sllx $Zhi,60,$tmp
|
||
xor $Tlo,$Zlo,$Zlo
|
||
ldub [$inp+15],$nlo
|
||
srlx $Zhi,4,$Zhi
|
||
xor $Zlo,$tmp,$Zlo
|
||
xor $Thi,$Zhi,$Zhi
|
||
stx $Zlo,[$Xi+8]
|
||
xor $rem,$Zhi,$Zhi
|
||
stx $Zhi,[$Xi]
|
||
srl $Zlo,8,$xi1
|
||
and $Zlo,0xff,$xi0
|
||
ba .Louter
|
||
and $xi1,0xff,$xi1
|
||
.align 32
|
||
.Ldone:
|
||
ldx [$Htblo+$nhi],$Tlo
|
||
sll $remi,3,$remi
|
||
xor $rem,$Zhi,$Zhi
|
||
ldx [$Htbl+$nhi],$Thi
|
||
srlx $Zlo,4,$Zlo
|
||
ldx [$rem_4bit+$remi],$rem
|
||
sllx $Zhi,60,$tmp
|
||
xor $Tlo,$Zlo,$Zlo
|
||
srlx $Zhi,4,$Zhi
|
||
xor $Zlo,$tmp,$Zlo
|
||
xor $Thi,$Zhi,$Zhi
|
||
stx $Zlo,[$Xi+8]
|
||
xor $rem,$Zhi,$Zhi
|
||
stx $Zhi,[$Xi]
|
||
|
||
ret
|
||
restore
|
||
.type gcm_ghash_4bit,#function
|
||
.size gcm_ghash_4bit,(.-gcm_ghash_4bit)
|
||
___
|
||
|
||
undef $inp;
|
||
undef $len;
|
||
|
||
$code.=<<___;
|
||
.globl gcm_gmult_4bit
|
||
.align 32
|
||
gcm_gmult_4bit:
|
||
save %sp,-$frame,%sp
|
||
ldub [$Xi+15],$nlo
|
||
add $Htbl,8,$Htblo
|
||
|
||
1: call .+8
|
||
add %o7,rem_4bit-1b,$rem_4bit
|
||
|
||
and $nlo,0xf0,$nhi
|
||
and $nlo,0x0f,$nlo
|
||
sll $nlo,4,$nlo
|
||
ldx [$Htblo+$nlo],$Zlo
|
||
ldx [$Htbl+$nlo],$Zhi
|
||
|
||
ldub [$Xi+14],$nlo
|
||
|
||
ldx [$Htblo+$nhi],$Tlo
|
||
and $Zlo,0xf,$remi
|
||
ldx [$Htbl+$nhi],$Thi
|
||
sll $remi,3,$remi
|
||
ldx [$rem_4bit+$remi],$rem
|
||
srlx $Zlo,4,$Zlo
|
||
mov 13,$cnt
|
||
sllx $Zhi,60,$tmp
|
||
xor $Tlo,$Zlo,$Zlo
|
||
srlx $Zhi,4,$Zhi
|
||
xor $Zlo,$tmp,$Zlo
|
||
|
||
and $Zlo,0xf,$remi
|
||
and $nlo,0xf0,$nhi
|
||
and $nlo,0x0f,$nlo
|
||
ba .Lgmult_inner
|
||
sll $nlo,4,$nlo
|
||
.align 32
|
||
.Lgmult_inner:
|
||
ldx [$Htblo+$nlo],$Tlo
|
||
sll $remi,3,$remi
|
||
xor $Thi,$Zhi,$Zhi
|
||
ldx [$Htbl+$nlo],$Thi
|
||
srlx $Zlo,4,$Zlo
|
||
xor $rem,$Zhi,$Zhi
|
||
ldx [$rem_4bit+$remi],$rem
|
||
sllx $Zhi,60,$tmp
|
||
xor $Tlo,$Zlo,$Zlo
|
||
ldub [$Xi+$cnt],$nlo
|
||
srlx $Zhi,4,$Zhi
|
||
xor $Zlo,$tmp,$Zlo
|
||
xor $Thi,$Zhi,$Zhi
|
||
and $Zlo,0xf,$remi
|
||
|
||
ldx [$Htblo+$nhi],$Tlo
|
||
sll $remi,3,$remi
|
||
xor $rem,$Zhi,$Zhi
|
||
ldx [$Htbl+$nhi],$Thi
|
||
srlx $Zlo,4,$Zlo
|
||
ldx [$rem_4bit+$remi],$rem
|
||
sllx $Zhi,60,$tmp
|
||
srlx $Zhi,4,$Zhi
|
||
and $nlo,0xf0,$nhi
|
||
addcc $cnt,-1,$cnt
|
||
xor $Zlo,$tmp,$Zlo
|
||
and $nlo,0x0f,$nlo
|
||
xor $Tlo,$Zlo,$Zlo
|
||
sll $nlo,4,$nlo
|
||
blu .Lgmult_inner
|
||
and $Zlo,0xf,$remi
|
||
|
||
ldx [$Htblo+$nlo],$Tlo
|
||
sll $remi,3,$remi
|
||
xor $Thi,$Zhi,$Zhi
|
||
ldx [$Htbl+$nlo],$Thi
|
||
srlx $Zlo,4,$Zlo
|
||
xor $rem,$Zhi,$Zhi
|
||
ldx [$rem_4bit+$remi],$rem
|
||
sllx $Zhi,60,$tmp
|
||
xor $Tlo,$Zlo,$Zlo
|
||
srlx $Zhi,4,$Zhi
|
||
xor $Zlo,$tmp,$Zlo
|
||
xor $Thi,$Zhi,$Zhi
|
||
and $Zlo,0xf,$remi
|
||
|
||
ldx [$Htblo+$nhi],$Tlo
|
||
sll $remi,3,$remi
|
||
xor $rem,$Zhi,$Zhi
|
||
ldx [$Htbl+$nhi],$Thi
|
||
srlx $Zlo,4,$Zlo
|
||
ldx [$rem_4bit+$remi],$rem
|
||
sllx $Zhi,60,$tmp
|
||
xor $Tlo,$Zlo,$Zlo
|
||
srlx $Zhi,4,$Zhi
|
||
xor $Zlo,$tmp,$Zlo
|
||
xor $Thi,$Zhi,$Zhi
|
||
stx $Zlo,[$Xi+8]
|
||
xor $rem,$Zhi,$Zhi
|
||
stx $Zhi,[$Xi]
|
||
|
||
ret
|
||
restore
|
||
.type gcm_gmult_4bit,#function
|
||
.size gcm_gmult_4bit,(.-gcm_gmult_4bit)
|
||
___
|
||
|
||
{{{
|
||
# Straightforward 128x128-bit multiplication using Karatsuba algorithm
|
||
# followed by pair of 64-bit reductions [with a shortcut in first one,
|
||
# which allowed to break dependency between reductions and remove one
|
||
# multiplication from critical path]. While it might be suboptimal
|
||
# with regard to sheer number of multiplications, other methods [such
|
||
# as aggregate reduction] would require more 64-bit registers, which
|
||
# we don't have in 32-bit application context.
|
||
|
||
($Xip,$Htable,$inp,$len)=map("%i$_",(0..3));
|
||
|
||
($Hhl,$Hlo,$Hhi,$Xlo,$Xhi,$xE1,$sqr, $C0,$C1,$C2,$C3,$V)=
|
||
(map("%o$_",(0..5,7)),map("%g$_",(1..5)));
|
||
|
||
($shl,$shr)=map("%l$_",(0..7));
|
||
|
||
# For details regarding "twisted H" see ghash-x86.pl.
|
||
$code.=<<___;
|
||
.globl gcm_init_vis3
|
||
.align 32
|
||
gcm_init_vis3:
|
||
save %sp,-$frame,%sp
|
||
|
||
ldx [%i1+0],$Hhi
|
||
ldx [%i1+8],$Hlo
|
||
mov 0xE1,$Xhi
|
||
mov 1,$Xlo
|
||
sllx $Xhi,57,$Xhi
|
||
srax $Hhi,63,$C0 ! broadcast carry
|
||
addcc $Hlo,$Hlo,$Hlo ! H<<=1
|
||
addxc $Hhi,$Hhi,$Hhi
|
||
and $C0,$Xlo,$Xlo
|
||
and $C0,$Xhi,$Xhi
|
||
xor $Xlo,$Hlo,$Hlo
|
||
xor $Xhi,$Hhi,$Hhi
|
||
stx $Hlo,[%i0+8] ! save twisted H
|
||
stx $Hhi,[%i0+0]
|
||
|
||
sethi %hi(0xA0406080),$V
|
||
sethi %hi(0x20C0E000),%l0
|
||
or $V,%lo(0xA0406080),$V
|
||
or %l0,%lo(0x20C0E000),%l0
|
||
sllx $V,32,$V
|
||
or %l0,$V,$V ! (0xE0·i)&0xff=0xA040608020C0E000
|
||
stx $V,[%i0+16]
|
||
|
||
ret
|
||
restore
|
||
.type gcm_init_vis3,#function
|
||
.size gcm_init_vis3,.-gcm_init_vis3
|
||
|
||
.globl gcm_gmult_vis3
|
||
.align 32
|
||
gcm_gmult_vis3:
|
||
save %sp,-$frame,%sp
|
||
|
||
ldx [$Xip+8],$Xlo ! load Xi
|
||
ldx [$Xip+0],$Xhi
|
||
ldx [$Htable+8],$Hlo ! load twisted H
|
||
ldx [$Htable+0],$Hhi
|
||
|
||
mov 0xE1,%l7
|
||
sllx %l7,57,$xE1 ! 57 is not a typo
|
||
ldx [$Htable+16],$V ! (0xE0·i)&0xff=0xA040608020C0E000
|
||
|
||
xor $Hhi,$Hlo,$Hhl ! Karatsuba pre-processing
|
||
xmulx $Xlo,$Hlo,$C0
|
||
xor $Xlo,$Xhi,$C2 ! Karatsuba pre-processing
|
||
xmulx $C2,$Hhl,$C1
|
||
xmulxhi $Xlo,$Hlo,$Xlo
|
||
xmulxhi $C2,$Hhl,$C2
|
||
xmulxhi $Xhi,$Hhi,$C3
|
||
xmulx $Xhi,$Hhi,$Xhi
|
||
|
||
sll $C0,3,$sqr
|
||
srlx $V,$sqr,$sqr ! ·0xE0 [implicit &(7<<3)]
|
||
xor $C0,$sqr,$sqr
|
||
sllx $sqr,57,$sqr ! ($C0·0xE1)<<1<<56 [implicit &0x7f]
|
||
|
||
xor $C0,$C1,$C1 ! Karatsuba post-processing
|
||
xor $Xlo,$C2,$C2
|
||
xor $sqr,$Xlo,$Xlo ! real destination is $C1
|
||
xor $C3,$C2,$C2
|
||
xor $Xlo,$C1,$C1
|
||
xor $Xhi,$C2,$C2
|
||
xor $Xhi,$C1,$C1
|
||
|
||
xmulxhi $C0,$xE1,$Xlo ! ·0xE1<<1<<56
|
||
xor $C0,$C2,$C2
|
||
xmulx $C1,$xE1,$C0
|
||
xor $C1,$C3,$C3
|
||
xmulxhi $C1,$xE1,$C1
|
||
|
||
xor $Xlo,$C2,$C2
|
||
xor $C0,$C2,$C2
|
||
xor $C1,$C3,$C3
|
||
|
||
stx $C2,[$Xip+8] ! save Xi
|
||
stx $C3,[$Xip+0]
|
||
|
||
ret
|
||
restore
|
||
.type gcm_gmult_vis3,#function
|
||
.size gcm_gmult_vis3,.-gcm_gmult_vis3
|
||
|
||
.globl gcm_ghash_vis3
|
||
.align 32
|
||
gcm_ghash_vis3:
|
||
save %sp,-$frame,%sp
|
||
nop
|
||
srln $len,0,$len ! needed on v8+, "nop" on v9
|
||
|
||
ldx [$Xip+8],$C2 ! load Xi
|
||
ldx [$Xip+0],$C3
|
||
ldx [$Htable+8],$Hlo ! load twisted H
|
||
ldx [$Htable+0],$Hhi
|
||
|
||
mov 0xE1,%l7
|
||
sllx %l7,57,$xE1 ! 57 is not a typo
|
||
ldx [$Htable+16],$V ! (0xE0·i)&0xff=0xA040608020C0E000
|
||
|
||
and $inp,7,$shl
|
||
andn $inp,7,$inp
|
||
sll $shl,3,$shl
|
||
prefetch [$inp+63], 20
|
||
sub %g0,$shl,$shr
|
||
|
||
xor $Hhi,$Hlo,$Hhl ! Karatsuba pre-processing
|
||
.Loop:
|
||
ldx [$inp+8],$Xlo
|
||
brz,pt $shl,1f
|
||
ldx [$inp+0],$Xhi
|
||
|
||
ldx [$inp+16],$C1 ! align data
|
||
srlx $Xlo,$shr,$C0
|
||
sllx $Xlo,$shl,$Xlo
|
||
sllx $Xhi,$shl,$Xhi
|
||
srlx $C1,$shr,$C1
|
||
or $C0,$Xhi,$Xhi
|
||
or $C1,$Xlo,$Xlo
|
||
1:
|
||
add $inp,16,$inp
|
||
sub $len,16,$len
|
||
xor $C2,$Xlo,$Xlo
|
||
xor $C3,$Xhi,$Xhi
|
||
prefetch [$inp+63], 20
|
||
|
||
xmulx $Xlo,$Hlo,$C0
|
||
xor $Xlo,$Xhi,$C2 ! Karatsuba pre-processing
|
||
xmulx $C2,$Hhl,$C1
|
||
xmulxhi $Xlo,$Hlo,$Xlo
|
||
xmulxhi $C2,$Hhl,$C2
|
||
xmulxhi $Xhi,$Hhi,$C3
|
||
xmulx $Xhi,$Hhi,$Xhi
|
||
|
||
sll $C0,3,$sqr
|
||
srlx $V,$sqr,$sqr ! ·0xE0 [implicit &(7<<3)]
|
||
xor $C0,$sqr,$sqr
|
||
sllx $sqr,57,$sqr ! ($C0·0xE1)<<1<<56 [implicit &0x7f]
|
||
|
||
xor $C0,$C1,$C1 ! Karatsuba post-processing
|
||
xor $Xlo,$C2,$C2
|
||
xor $sqr,$Xlo,$Xlo ! real destination is $C1
|
||
xor $C3,$C2,$C2
|
||
xor $Xlo,$C1,$C1
|
||
xor $Xhi,$C2,$C2
|
||
xor $Xhi,$C1,$C1
|
||
|
||
xmulxhi $C0,$xE1,$Xlo ! ·0xE1<<1<<56
|
||
xor $C0,$C2,$C2
|
||
xmulx $C1,$xE1,$C0
|
||
xor $C1,$C3,$C3
|
||
xmulxhi $C1,$xE1,$C1
|
||
|
||
xor $Xlo,$C2,$C2
|
||
xor $C0,$C2,$C2
|
||
brnz,pt $len,.Loop
|
||
xor $C1,$C3,$C3
|
||
|
||
stx $C2,[$Xip+8] ! save Xi
|
||
stx $C3,[$Xip+0]
|
||
|
||
ret
|
||
restore
|
||
.type gcm_ghash_vis3,#function
|
||
.size gcm_ghash_vis3,.-gcm_ghash_vis3
|
||
___
|
||
}}}
|
||
$code.=<<___;
|
||
.asciz "GHASH for SPARCv9/VIS3, CRYPTOGAMS by <appro\@openssl.org>"
|
||
.align 4
|
||
___
|
||
|
||
|
||
# Purpose of these subroutines is to explicitly encode VIS instructions,
|
||
# so that one can compile the module without having to specify VIS
|
||
# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
|
||
# Idea is to reserve for option to produce "universal" binary and let
|
||
# programmer detect if current CPU is VIS capable at run-time.
|
||
sub unvis3 {
|
||
my ($mnemonic,$rs1,$rs2,$rd)=@_;
|
||
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
|
||
my ($ref,$opf);
|
||
my %visopf = ( "addxc" => 0x011,
|
||
"addxccc" => 0x013,
|
||
"xmulx" => 0x115,
|
||
"xmulxhi" => 0x116 );
|
||
|
||
$ref = "$mnemonic\t$rs1,$rs2,$rd";
|
||
|
||
if ($opf=$visopf{$mnemonic}) {
|
||
foreach ($rs1,$rs2,$rd) {
|
||
return $ref if (!/%([goli])([0-9])/);
|
||
$_=$bias{$1}+$2;
|
||
}
|
||
|
||
return sprintf ".word\t0x%08x !%s",
|
||
0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
|
||
$ref;
|
||
} else {
|
||
return $ref;
|
||
}
|
||
}
|
||
|
||
foreach (split("\n",$code)) {
|
||
s/\`([^\`]*)\`/eval $1/ge;
|
||
|
||
s/\b(xmulx[hi]*|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
|
||
&unvis3($1,$2,$3,$4)
|
||
/ge;
|
||
|
||
print $_,"\n";
|
||
}
|
||
|
||
close STDOUT;
|