openssl/crypto/evp/evp_rand.c
Richard Levitte 0388823329 EVP: Add EVP_<TYPE>_description()
The following operation types are covered:

EVP_MD, EVP_CIPHER, EVP_MAC, EVP_RAND, EVP_KEYMGMT, EVP_SIGNATURE,
EVP_ASYM_CIPHER, EVP_KEM, EVP_KEYEXCH, EVP_KDF.  Also EVP_PKEY.

For EVP_MD and EVP_CIPHER, OBJ_nid2ln() is used as a fallback for
legacy implementations.

For EVP_PKEY, the info field of the EVP_PKEY_ASN1_METHOD is used as a
fallback for legacy implementations.

Fixes #14514

Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14656)
2021-04-02 08:57:47 +02:00

678 lines
20 KiB
C

/*
* Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/evp.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/engine.h>
#include <openssl/evp.h>
#include <openssl/x509v3.h>
#include <openssl/rand.h>
#include <openssl/core.h>
#include <openssl/core_names.h>
#include <openssl/crypto.h>
#include "crypto/asn1.h"
#include "crypto/evp.h"
#include "internal/cryptlib.h"
#include "internal/numbers.h"
#include "internal/provider.h"
#include "evp_local.h"
struct evp_rand_st {
OSSL_PROVIDER *prov;
int name_id;
const char *description;
CRYPTO_REF_COUNT refcnt;
CRYPTO_RWLOCK *refcnt_lock;
const OSSL_DISPATCH *dispatch;
OSSL_FUNC_rand_newctx_fn *newctx;
OSSL_FUNC_rand_freectx_fn *freectx;
OSSL_FUNC_rand_instantiate_fn *instantiate;
OSSL_FUNC_rand_uninstantiate_fn *uninstantiate;
OSSL_FUNC_rand_generate_fn *generate;
OSSL_FUNC_rand_reseed_fn *reseed;
OSSL_FUNC_rand_nonce_fn *nonce;
OSSL_FUNC_rand_enable_locking_fn *enable_locking;
OSSL_FUNC_rand_lock_fn *lock;
OSSL_FUNC_rand_unlock_fn *unlock;
OSSL_FUNC_rand_gettable_params_fn *gettable_params;
OSSL_FUNC_rand_gettable_ctx_params_fn *gettable_ctx_params;
OSSL_FUNC_rand_settable_ctx_params_fn *settable_ctx_params;
OSSL_FUNC_rand_get_params_fn *get_params;
OSSL_FUNC_rand_get_ctx_params_fn *get_ctx_params;
OSSL_FUNC_rand_set_ctx_params_fn *set_ctx_params;
OSSL_FUNC_rand_verify_zeroization_fn *verify_zeroization;
} /* EVP_RAND */ ;
static int evp_rand_up_ref(void *vrand)
{
EVP_RAND *rand = (EVP_RAND *)vrand;
int ref = 0;
if (rand != NULL)
return CRYPTO_UP_REF(&rand->refcnt, &ref, rand->refcnt_lock);
return 1;
}
static void evp_rand_free(void *vrand){
EVP_RAND *rand = (EVP_RAND *)vrand;
int ref = 0;
if (rand != NULL) {
CRYPTO_DOWN_REF(&rand->refcnt, &ref, rand->refcnt_lock);
if (ref <= 0) {
ossl_provider_free(rand->prov);
CRYPTO_THREAD_lock_free(rand->refcnt_lock);
OPENSSL_free(rand);
}
}
}
static void *evp_rand_new(void)
{
EVP_RAND *rand = OPENSSL_zalloc(sizeof(*rand));
if (rand == NULL
|| (rand->refcnt_lock = CRYPTO_THREAD_lock_new()) == NULL) {
OPENSSL_free(rand);
return NULL;
}
rand->refcnt = 1;
return rand;
}
/* Enable locking of the underlying DRBG/RAND if available */
int EVP_RAND_enable_locking(EVP_RAND_CTX *rand)
{
if (rand->meth->enable_locking != NULL)
return rand->meth->enable_locking(rand->data);
ERR_raise(ERR_LIB_EVP, EVP_R_LOCKING_NOT_SUPPORTED);
return 0;
}
/* Lock the underlying DRBG/RAND if available */
static int evp_rand_lock(EVP_RAND_CTX *rand)
{
if (rand->meth->lock != NULL)
return rand->meth->lock(rand->data);
return 1;
}
/* Unlock the underlying DRBG/RAND if available */
static void evp_rand_unlock(EVP_RAND_CTX *rand)
{
if (rand->meth->unlock != NULL)
rand->meth->unlock(rand->data);
}
static void *evp_rand_from_algorithm(int name_id,
const OSSL_ALGORITHM *algodef,
OSSL_PROVIDER *prov)
{
const OSSL_DISPATCH *fns = algodef->implementation;
EVP_RAND *rand = NULL;
int fnrandcnt = 0, fnctxcnt = 0, fnlockcnt = 0, fnenablelockcnt = 0;
#ifdef FIPS_MODULE
int fnzeroizecnt = 0;
#endif
if ((rand = evp_rand_new()) == NULL) {
ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
return NULL;
}
rand->name_id = name_id;
rand->description = algodef->algorithm_description;
rand->dispatch = fns;
for (; fns->function_id != 0; fns++) {
switch (fns->function_id) {
case OSSL_FUNC_RAND_NEWCTX:
if (rand->newctx != NULL)
break;
rand->newctx = OSSL_FUNC_rand_newctx(fns);
fnctxcnt++;
break;
case OSSL_FUNC_RAND_FREECTX:
if (rand->freectx != NULL)
break;
rand->freectx = OSSL_FUNC_rand_freectx(fns);
fnctxcnt++;
break;
case OSSL_FUNC_RAND_INSTANTIATE:
if (rand->instantiate != NULL)
break;
rand->instantiate = OSSL_FUNC_rand_instantiate(fns);
fnrandcnt++;
break;
case OSSL_FUNC_RAND_UNINSTANTIATE:
if (rand->uninstantiate != NULL)
break;
rand->uninstantiate = OSSL_FUNC_rand_uninstantiate(fns);
fnrandcnt++;
break;
case OSSL_FUNC_RAND_GENERATE:
if (rand->generate != NULL)
break;
rand->generate = OSSL_FUNC_rand_generate(fns);
fnrandcnt++;
break;
case OSSL_FUNC_RAND_RESEED:
if (rand->reseed != NULL)
break;
rand->reseed = OSSL_FUNC_rand_reseed(fns);
break;
case OSSL_FUNC_RAND_NONCE:
if (rand->nonce != NULL)
break;
rand->nonce = OSSL_FUNC_rand_nonce(fns);
break;
case OSSL_FUNC_RAND_ENABLE_LOCKING:
if (rand->enable_locking != NULL)
break;
rand->enable_locking = OSSL_FUNC_rand_enable_locking(fns);
fnenablelockcnt++;
break;
case OSSL_FUNC_RAND_LOCK:
if (rand->lock != NULL)
break;
rand->lock = OSSL_FUNC_rand_lock(fns);
fnlockcnt++;
break;
case OSSL_FUNC_RAND_UNLOCK:
if (rand->unlock != NULL)
break;
rand->unlock = OSSL_FUNC_rand_unlock(fns);
fnlockcnt++;
break;
case OSSL_FUNC_RAND_GETTABLE_PARAMS:
if (rand->gettable_params != NULL)
break;
rand->gettable_params =
OSSL_FUNC_rand_gettable_params(fns);
break;
case OSSL_FUNC_RAND_GETTABLE_CTX_PARAMS:
if (rand->gettable_ctx_params != NULL)
break;
rand->gettable_ctx_params =
OSSL_FUNC_rand_gettable_ctx_params(fns);
break;
case OSSL_FUNC_RAND_SETTABLE_CTX_PARAMS:
if (rand->settable_ctx_params != NULL)
break;
rand->settable_ctx_params =
OSSL_FUNC_rand_settable_ctx_params(fns);
break;
case OSSL_FUNC_RAND_GET_PARAMS:
if (rand->get_params != NULL)
break;
rand->get_params = OSSL_FUNC_rand_get_params(fns);
break;
case OSSL_FUNC_RAND_GET_CTX_PARAMS:
if (rand->get_ctx_params != NULL)
break;
rand->get_ctx_params = OSSL_FUNC_rand_get_ctx_params(fns);
fnctxcnt++;
break;
case OSSL_FUNC_RAND_SET_CTX_PARAMS:
if (rand->set_ctx_params != NULL)
break;
rand->set_ctx_params = OSSL_FUNC_rand_set_ctx_params(fns);
break;
case OSSL_FUNC_RAND_VERIFY_ZEROIZATION:
if (rand->verify_zeroization != NULL)
break;
rand->verify_zeroization = OSSL_FUNC_rand_verify_zeroization(fns);
#ifdef FIPS_MODULE
fnzeroizecnt++;
#endif
break;
}
}
/*
* In order to be a consistent set of functions we must have at least
* a complete set of "rand" functions and a complete set of context
* management functions. In FIPS mode, we also require the zeroization
* verification function.
*
* In addition, if locking can be enabled, we need a complete set of
* locking functions.
*/
if (fnrandcnt != 3
|| fnctxcnt != 3
|| (fnenablelockcnt != 0 && fnenablelockcnt != 1)
|| (fnlockcnt != 0 && fnlockcnt != 2)
#ifdef FIPS_MODULE
|| fnzeroizecnt != 1
#endif
) {
evp_rand_free(rand);
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_PROVIDER_FUNCTIONS);
return NULL;
}
if (prov != NULL && !ossl_provider_up_ref(prov)) {
evp_rand_free(rand);
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
return NULL;
}
rand->prov = prov;
return rand;
}
EVP_RAND *EVP_RAND_fetch(OSSL_LIB_CTX *libctx, const char *algorithm,
const char *properties)
{
return evp_generic_fetch(libctx, OSSL_OP_RAND, algorithm, properties,
evp_rand_from_algorithm, evp_rand_up_ref,
evp_rand_free);
}
int EVP_RAND_up_ref(EVP_RAND *rand)
{
return evp_rand_up_ref(rand);
}
void EVP_RAND_free(EVP_RAND *rand)
{
evp_rand_free(rand);
}
int EVP_RAND_number(const EVP_RAND *rand)
{
return rand->name_id;
}
const char *EVP_RAND_name(const EVP_RAND *rand)
{
return evp_first_name(rand->prov, rand->name_id);
}
const char *EVP_RAND_description(const EVP_RAND *rand)
{
return rand->description;
}
int EVP_RAND_is_a(const EVP_RAND *rand, const char *name)
{
return evp_is_a(rand->prov, rand->name_id, NULL, name);
}
const OSSL_PROVIDER *EVP_RAND_provider(const EVP_RAND *rand)
{
return rand->prov;
}
int EVP_RAND_get_params(EVP_RAND *rand, OSSL_PARAM params[])
{
if (rand->get_params != NULL)
return rand->get_params(params);
return 1;
}
static int evp_rand_ctx_up_ref(EVP_RAND_CTX *ctx)
{
int ref = 0;
return CRYPTO_UP_REF(&ctx->refcnt, &ref, ctx->refcnt_lock);
}
EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, EVP_RAND_CTX *parent)
{
EVP_RAND_CTX *ctx;
void *parent_ctx = NULL;
const OSSL_DISPATCH *parent_dispatch = NULL;
if (rand == NULL) {
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_NULL_ALGORITHM);
return NULL;
}
ctx = OPENSSL_zalloc(sizeof(*ctx));
if (ctx == NULL || (ctx->refcnt_lock = CRYPTO_THREAD_lock_new()) == NULL) {
OPENSSL_free(ctx);
ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
return NULL;
}
if (parent != NULL) {
if (!evp_rand_ctx_up_ref(parent)) {
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
CRYPTO_THREAD_lock_free(ctx->refcnt_lock);
OPENSSL_free(ctx);
return NULL;
}
parent_ctx = parent->data;
parent_dispatch = parent->meth->dispatch;
}
if ((ctx->data = rand->newctx(ossl_provider_ctx(rand->prov), parent_ctx,
parent_dispatch)) == NULL
|| !EVP_RAND_up_ref(rand)) {
ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
rand->freectx(ctx->data);
CRYPTO_THREAD_lock_free(ctx->refcnt_lock);
OPENSSL_free(ctx);
EVP_RAND_CTX_free(parent);
return NULL;
}
ctx->meth = rand;
ctx->parent = parent;
ctx->refcnt = 1;
return ctx;
}
void EVP_RAND_CTX_free(EVP_RAND_CTX *ctx)
{
if (ctx != NULL) {
int ref = 0;
CRYPTO_DOWN_REF(&ctx->refcnt, &ref, ctx->refcnt_lock);
if (ref <= 0) {
EVP_RAND_CTX *parent = ctx->parent;
ctx->meth->freectx(ctx->data);
ctx->data = NULL;
EVP_RAND_free(ctx->meth);
CRYPTO_THREAD_lock_free(ctx->refcnt_lock);
OPENSSL_free(ctx);
EVP_RAND_CTX_free(parent);
}
}
}
EVP_RAND *EVP_RAND_CTX_rand(EVP_RAND_CTX *ctx)
{
return ctx->meth;
}
static int evp_rand_get_ctx_params_locked(EVP_RAND_CTX *ctx,
OSSL_PARAM params[])
{
return ctx->meth->get_ctx_params(ctx->data, params);
}
int EVP_RAND_get_ctx_params(EVP_RAND_CTX *ctx, OSSL_PARAM params[])
{
int res;
if (!evp_rand_lock(ctx))
return 0;
res = evp_rand_get_ctx_params_locked(ctx, params);
evp_rand_unlock(ctx);
return res;
}
static int evp_rand_set_ctx_params_locked(EVP_RAND_CTX *ctx,
const OSSL_PARAM params[])
{
if (ctx->meth->set_ctx_params != NULL)
return ctx->meth->set_ctx_params(ctx->data, params);
return 1;
}
int EVP_RAND_set_ctx_params(EVP_RAND_CTX *ctx, const OSSL_PARAM params[])
{
int res;
if (!evp_rand_lock(ctx))
return 0;
res = evp_rand_set_ctx_params_locked(ctx, params);
evp_rand_unlock(ctx);
return res;
}
const OSSL_PARAM *EVP_RAND_gettable_params(const EVP_RAND *rand)
{
if (rand->gettable_params == NULL)
return NULL;
return rand->gettable_params(ossl_provider_ctx(EVP_RAND_provider(rand)));
}
const OSSL_PARAM *EVP_RAND_gettable_ctx_params(const EVP_RAND *rand)
{
void *provctx;
if (rand->gettable_ctx_params == NULL)
return NULL;
provctx = ossl_provider_ctx(EVP_RAND_provider(rand));
return rand->gettable_ctx_params(NULL, provctx);
}
const OSSL_PARAM *EVP_RAND_settable_ctx_params(const EVP_RAND *rand)
{
void *provctx;
if (rand->settable_ctx_params == NULL)
return NULL;
provctx = ossl_provider_ctx(EVP_RAND_provider(rand));
return rand->settable_ctx_params(NULL, provctx);
}
const OSSL_PARAM *EVP_RAND_CTX_gettable_params(EVP_RAND_CTX *ctx)
{
void *provctx;
if (ctx->meth->gettable_ctx_params == NULL)
return NULL;
provctx = ossl_provider_ctx(EVP_RAND_provider(ctx->meth));
return ctx->meth->gettable_ctx_params(ctx->data, provctx);
}
const OSSL_PARAM *EVP_RAND_CTX_settable_params(EVP_RAND_CTX *ctx)
{
void *provctx;
if (ctx->meth->settable_ctx_params == NULL)
return NULL;
provctx = ossl_provider_ctx(EVP_RAND_provider(ctx->meth));
return ctx->meth->settable_ctx_params(ctx->data, provctx);
}
void EVP_RAND_do_all_provided(OSSL_LIB_CTX *libctx,
void (*fn)(EVP_RAND *rand, void *arg),
void *arg)
{
evp_generic_do_all(libctx, OSSL_OP_RAND,
(void (*)(void *, void *))fn, arg,
evp_rand_from_algorithm, evp_rand_free);
}
int EVP_RAND_names_do_all(const EVP_RAND *rand,
void (*fn)(const char *name, void *data),
void *data)
{
if (rand->prov != NULL)
return evp_names_do_all(rand->prov, rand->name_id, fn, data);
return 1;
}
static int evp_rand_instantiate_locked
(EVP_RAND_CTX *ctx, unsigned int strength, int prediction_resistance,
const unsigned char *pstr, size_t pstr_len, const OSSL_PARAM params[])
{
return ctx->meth->instantiate(ctx->data, strength, prediction_resistance,
pstr, pstr_len, params);
}
int EVP_RAND_instantiate(EVP_RAND_CTX *ctx, unsigned int strength,
int prediction_resistance,
const unsigned char *pstr, size_t pstr_len,
const OSSL_PARAM params[])
{
int res;
if (!evp_rand_lock(ctx))
return 0;
res = evp_rand_instantiate_locked(ctx, strength, prediction_resistance,
pstr, pstr_len, params);
evp_rand_unlock(ctx);
return res;
}
static int evp_rand_uninstantiate_locked(EVP_RAND_CTX *ctx)
{
return ctx->meth->uninstantiate(ctx->data);
}
int EVP_RAND_uninstantiate(EVP_RAND_CTX *ctx)
{
int res;
if (!evp_rand_lock(ctx))
return 0;
res = evp_rand_uninstantiate_locked(ctx);
evp_rand_unlock(ctx);
return res;
}
static int evp_rand_generate_locked(EVP_RAND_CTX *ctx, unsigned char *out,
size_t outlen, unsigned int strength,
int prediction_resistance,
const unsigned char *addin,
size_t addin_len)
{
size_t chunk, max_request = 0;
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
params[0] = OSSL_PARAM_construct_size_t(OSSL_RAND_PARAM_MAX_REQUEST,
&max_request);
if (!evp_rand_get_ctx_params_locked(ctx, params)
|| max_request == 0) {
ERR_raise(ERR_LIB_EVP, EVP_R_UNABLE_TO_GET_MAXIMUM_REQUEST_SIZE);
return 0;
}
for (; outlen > 0; outlen -= chunk, out += chunk) {
chunk = outlen > max_request ? max_request : outlen;
if (!ctx->meth->generate(ctx->data, out, chunk, strength,
prediction_resistance, addin, addin_len)) {
ERR_raise(ERR_LIB_EVP, EVP_R_GENERATE_ERROR);
return 0;
}
/*
* Prediction resistance is only relevant the first time around,
* subsequently, the DRBG has already been properly reseeded.
*/
prediction_resistance = 0;
}
return 1;
}
int EVP_RAND_generate(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen,
unsigned int strength, int prediction_resistance,
const unsigned char *addin, size_t addin_len)
{
int res;
if (!evp_rand_lock(ctx))
return 0;
res = evp_rand_generate_locked(ctx, out, outlen, strength,
prediction_resistance, addin, addin_len);
evp_rand_unlock(ctx);
return res;
}
static int evp_rand_reseed_locked(EVP_RAND_CTX *ctx, int prediction_resistance,
const unsigned char *ent, size_t ent_len,
const unsigned char *addin, size_t addin_len)
{
if (ctx->meth->reseed != NULL)
return ctx->meth->reseed(ctx->data, prediction_resistance,
ent, ent_len, addin, addin_len);
return 1;
}
int EVP_RAND_reseed(EVP_RAND_CTX *ctx, int prediction_resistance,
const unsigned char *ent, size_t ent_len,
const unsigned char *addin, size_t addin_len)
{
int res;
if (!evp_rand_lock(ctx))
return 0;
res = evp_rand_reseed_locked(ctx, prediction_resistance,
ent, ent_len, addin, addin_len);
evp_rand_unlock(ctx);
return res;
}
static unsigned int evp_rand_strength_locked(EVP_RAND_CTX *ctx)
{
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
unsigned int strength = 0;
params[0] = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH, &strength);
if (!evp_rand_get_ctx_params_locked(ctx, params))
return 0;
return strength;
}
unsigned int EVP_RAND_strength(EVP_RAND_CTX *ctx)
{
unsigned int res;
if (!evp_rand_lock(ctx))
return 0;
res = evp_rand_strength_locked(ctx);
evp_rand_unlock(ctx);
return res;
}
static int evp_rand_nonce_locked(EVP_RAND_CTX *ctx, unsigned char *out,
size_t outlen)
{
unsigned int str = evp_rand_strength_locked(ctx);
if (ctx->meth->nonce == NULL)
return 0;
if (ctx->meth->nonce(ctx->data, out, str, outlen, outlen))
return 1;
return evp_rand_generate_locked(ctx, out, outlen, str, 0, NULL, 0);
}
int EVP_RAND_nonce(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen)
{
int res;
if (!evp_rand_lock(ctx))
return 0;
res = evp_rand_nonce_locked(ctx, out, outlen);
evp_rand_unlock(ctx);
return res;
}
int EVP_RAND_state(EVP_RAND_CTX *ctx)
{
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
int state;
params[0] = OSSL_PARAM_construct_int(OSSL_RAND_PARAM_STATE, &state);
if (!EVP_RAND_get_ctx_params(ctx, params))
state = EVP_RAND_STATE_ERROR;
return state;
}
static int evp_rand_verify_zeroization_locked(EVP_RAND_CTX *ctx)
{
if (ctx->meth->verify_zeroization != NULL)
return ctx->meth->verify_zeroization(ctx->data);
return 0;
}
int EVP_RAND_verify_zeroization(EVP_RAND_CTX *ctx)
{
int res;
if (!evp_rand_lock(ctx))
return 0;
res = evp_rand_verify_zeroization_locked(ctx);
evp_rand_unlock(ctx);
return res;
}