openssl/providers/implementations/rands/drbg.c
Pauli 714a1bb380 rand: set up EVP and DRBG infrastructure for RAND from providers.
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/11682)
2020-06-24 20:05:41 +10:00

885 lines
28 KiB
C

/*
* Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include "crypto/rand.h"
#include "drbg_local.h"
#include "internal/thread_once.h"
#include "crypto/cryptlib.h"
#include "seeding/seeding.h"
#include "crypto/rand_pool.h"
/*
* Support framework for NIST SP 800-90A DRBG
*
* See manual page PROV_DRBG(7) for a general overview.
*
* The OpenSSL model is to have new and free functions, and that new
* does all initialization. That is not the NIST model, which has
* instantiation and un-instantiate, and re-use within a new/free
* lifecycle. (No doubt this comes from the desire to support hardware
* DRBG, where allocation of resources on something like an HSM is
* a much bigger deal than just re-setting an allocated resource.)
*/
#ifdef FIPS_MODULE
# define get_entropy prov_crngt_get_entropy
# define cleanup_entropy prov_crngt_cleanup_entropy
#else
# define get_entropy prov_drbg_get_entropy
# define cleanup_entropy prov_drbg_cleanup_entropy
#endif
/* NIST SP 800-90A DRBG recommends the use of a personalization string. */
static const char ossl_pers_string[] = DRBG_DEFAULT_PERS_STRING;
static unsigned int master_reseed_interval = MASTER_RESEED_INTERVAL;
static unsigned int slave_reseed_interval = SLAVE_RESEED_INTERVAL;
static time_t master_reseed_time_interval = MASTER_RESEED_TIME_INTERVAL;
static time_t slave_reseed_time_interval = SLAVE_RESEED_TIME_INTERVAL;
static const OSSL_DISPATCH *find_call(const OSSL_DISPATCH *dispatch,
int function);
int drbg_lock(void *vctx)
{
PROV_DRBG *drbg = vctx;
if (drbg == NULL || drbg->lock == NULL)
return 1;
return CRYPTO_THREAD_write_lock(drbg->lock);
}
void drbg_unlock(void *vctx)
{
PROV_DRBG *drbg = vctx;
if (drbg != NULL && drbg->lock != NULL)
CRYPTO_THREAD_unlock(drbg->lock);
}
static int drbg_lock_parent(PROV_DRBG *drbg)
{
void *parent = drbg->parent;
const OSSL_DISPATCH *pfunc;
if (parent != NULL) {
pfunc = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_LOCK);
if (pfunc != NULL && !OSSL_get_OP_rand_lock(pfunc)(parent)) {
ERR_raise(ERR_LIB_PROV, RAND_R_PARENT_LOCKING_NOT_ENABLED);
return 0;
}
}
return 1;
}
static void drbg_unlock_parent(PROV_DRBG *drbg)
{
void *parent = drbg->parent;
const OSSL_DISPATCH *pfunc;
if (parent != NULL) {
pfunc = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_UNLOCK);
if (pfunc != NULL)
OSSL_get_OP_rand_unlock(pfunc)(parent);
}
}
static int get_parent_strength(PROV_DRBG *drbg, int *str)
{
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
const OSSL_DISPATCH *pfunc;
void *parent = drbg->parent;
pfunc = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_GET_CTX_PARAMS);
if (pfunc == NULL) {
ERR_raise(ERR_LIB_PROV, RAND_R_UNABLE_TO_GET_PARENT_STRENGTH);
return 0;
}
*params = OSSL_PARAM_construct_int(OSSL_RAND_PARAM_STRENGTH, str);
if (!drbg_lock_parent(drbg)) {
ERR_raise(ERR_LIB_PROV, RAND_R_UNABLE_TO_LOCK_PARENT);
return 0;
}
if (!OSSL_get_OP_rand_get_ctx_params(pfunc)(parent, params)) {
drbg_unlock_parent(drbg);
ERR_raise(ERR_LIB_PROV, RAND_R_UNABLE_TO_GET_PARENT_STRENGTH);
return 0;
}
drbg_unlock_parent(drbg);
return 1;
}
static unsigned int get_parent_reseed_count(PROV_DRBG *drbg)
{
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
const OSSL_DISPATCH *pfunc;
void *parent = drbg->parent;
unsigned int r;
pfunc = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_GET_CTX_PARAMS);
if (pfunc == NULL) {
ERR_raise(ERR_LIB_PROV,
RAND_R_UNABLE_TO_GET_PARENT_RESEED_PROP_COUNTER);
goto err;
}
*params = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_RESEED_PROP_CTR, &r);
if (!drbg_lock_parent(drbg)) {
ERR_raise(ERR_LIB_PROV, RAND_R_UNABLE_TO_LOCK_PARENT);
goto err;
}
if (!OSSL_get_OP_rand_get_ctx_params(pfunc)(parent, params)) {
drbg_unlock_parent(drbg);
ERR_raise(ERR_LIB_PROV, RAND_R_UNABLE_TO_GET_RESEED_PROP_CTR);
goto err;
}
drbg_unlock_parent(drbg);
return r;
err:
r = tsan_load(&drbg->reseed_prop_counter) - 2;
if (r == 0)
r = UINT_MAX;
return r;
}
#ifndef FIPS_MODULE
/*
* Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
*
* If the DRBG has a parent, then the required amount of entropy input
* is fetched using the parent's RAND_DRBG_generate().
*
* Otherwise, the entropy is polled from the system entropy sources
* using rand_pool_acquire_entropy().
*
* If a random pool has been added to the DRBG using RAND_add(), then
* its entropy will be used up first.
*/
static size_t prov_drbg_get_entropy(PROV_DRBG *drbg, unsigned char **pout,
int entropy, size_t min_len, size_t max_len,
int prediction_resistance)
{
size_t ret = 0;
size_t entropy_available = 0;
RAND_POOL *pool;
int p_str;
const OSSL_DISPATCH *pfunc;
if (drbg->parent != NULL) {
if (!get_parent_strength(drbg, &p_str))
return 0;
if (drbg->strength > p_str) {
/*
* We currently don't support the algorithm from NIST SP 800-90C
* 10.1.2 to use a weaker DRBG as source
*/
RANDerr(0, RAND_R_PARENT_STRENGTH_TOO_WEAK);
return 0;
}
}
if (drbg->seed_pool != NULL) {
pool = drbg->seed_pool;
pool->entropy_requested = entropy;
} else {
pool = rand_pool_new(entropy, drbg->secure, min_len, max_len);
if (pool == NULL)
return 0;
}
if (drbg->parent != NULL) {
size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
/*
* Get random data from parent. Include our address as additional input,
* in order to provide some additional distinction between different
* DRBG child instances.
* Our lock is already held, but we need to lock our parent before
* generating bits from it. (Note: taking the lock will be a no-op
* if locking if drbg->parent->lock == NULL.)
*/
pfunc = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_GENERATE);
if (pfunc == NULL)
return 0;
drbg_lock_parent(drbg);
if (OSSL_get_OP_rand_generate(pfunc)(drbg->parent, buffer, bytes_needed,
drbg->strength,
prediction_resistance,
(unsigned char *)&drbg,
sizeof(drbg)) != 0)
bytes = bytes_needed;
drbg->reseed_next_counter = get_parent_reseed_count(drbg);
drbg_unlock_parent(drbg);
rand_pool_add_end(pool, bytes, 8 * bytes);
entropy_available = rand_pool_entropy_available(pool);
}
} else {
/* Get entropy by polling system entropy sources. */
entropy_available = rand_pool_acquire_entropy(pool);
}
if (entropy_available > 0) {
ret = rand_pool_length(pool);
*pout = rand_pool_detach(pool);
}
if (drbg->seed_pool == NULL)
rand_pool_free(pool);
return ret;
}
/*
* Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
*
*/
static void prov_drbg_cleanup_entropy(PROV_DRBG *drbg,
unsigned char *out, size_t outlen)
{
if (drbg->seed_pool == NULL) {
if (drbg->secure)
OPENSSL_secure_clear_free(out, outlen);
else
OPENSSL_clear_free(out, outlen);
}
}
#endif
#ifndef PROV_RAND_GET_RANDOM_NONCE
typedef struct prov_drbg_nonce_global_st {
CRYPTO_RWLOCK *rand_nonce_lock;
int rand_nonce_count;
} PROV_DRBG_NONCE_GLOBAL;
/*
* drbg_ossl_ctx_new() calls drgb_setup() which calls rand_drbg_get_nonce()
* which needs to get the rand_nonce_lock out of the OPENSSL_CTX...but since
* drbg_ossl_ctx_new() hasn't finished running yet we need the rand_nonce_lock
* to be in a different global data object. Otherwise we will go into an
* infinite recursion loop.
*/
static void *prov_drbg_nonce_ossl_ctx_new(OPENSSL_CTX *libctx)
{
PROV_DRBG_NONCE_GLOBAL *dngbl = OPENSSL_zalloc(sizeof(*dngbl));
if (dngbl == NULL)
return NULL;
dngbl->rand_nonce_lock = CRYPTO_THREAD_lock_new();
if (dngbl->rand_nonce_lock == NULL) {
OPENSSL_free(dngbl);
return NULL;
}
return dngbl;
}
static void prov_drbg_nonce_ossl_ctx_free(void *vdngbl)
{
PROV_DRBG_NONCE_GLOBAL *dngbl = vdngbl;
if (dngbl == NULL)
return;
CRYPTO_THREAD_lock_free(dngbl->rand_nonce_lock);
OPENSSL_free(dngbl);
}
static const OPENSSL_CTX_METHOD drbg_nonce_ossl_ctx_method = {
prov_drbg_nonce_ossl_ctx_new,
prov_drbg_nonce_ossl_ctx_free,
};
/* Get a nonce from the operating system */
static size_t prov_drbg_get_nonce(PROV_DRBG *drbg,
unsigned char **pout,
int entropy, size_t min_len, size_t max_len)
{
size_t ret = 0;
RAND_POOL *pool;
PROV_DRBG_NONCE_GLOBAL *dngbl
= openssl_ctx_get_data(drbg->libctx, OPENSSL_CTX_DRBG_NONCE_INDEX,
&drbg_nonce_ossl_ctx_method);
struct {
void *instance;
int count;
} data;
if (dngbl == NULL)
return 0;
memset(&data, 0, sizeof(data));
pool = rand_pool_new(0, 0, min_len, max_len);
if (pool == NULL)
return 0;
if (rand_pool_add_nonce_data(pool) == 0)
goto err;
data.instance = drbg;
CRYPTO_atomic_add(&dngbl->rand_nonce_count, 1, &data.count,
dngbl->rand_nonce_lock);
if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0)
goto err;
ret = rand_pool_length(pool);
*pout = rand_pool_detach(pool);
err:
rand_pool_free(pool);
return ret;
}
#endif
/*
* Implements the cleanup_nonce() callback (see PROV_DRBG_set_callbacks())
*
*/
static void prov_drbg_cleanup_nonce(PROV_DRBG *drbg,
unsigned char *out, size_t outlen)
{
OPENSSL_clear_free(out, outlen);
}
/*
* Instantiate |drbg|, after it has been initialized. Use |pers| and
* |perslen| as prediction-resistance input.
*
* Requires that drbg->lock is already locked for write, if non-null.
*
* Returns 1 on success, 0 on failure.
*/
int PROV_DRBG_instantiate(PROV_DRBG *drbg, int strength,
int prediction_resistance,
const unsigned char *pers, size_t perslen,
int (*ifnc)(PROV_DRBG *drbg,
const unsigned char *ent, size_t ent_len,
const unsigned char *nonce,
size_t nonce_len,
const unsigned char *pstr,
size_t pstr_len))
{
unsigned char *nonce = NULL, *entropy = NULL;
size_t noncelen = 0, entropylen = 0;
size_t min_entropy, min_entropylen, max_entropylen;
const OSSL_DISPATCH *pnonce;
if (strength > drbg->strength) {
PROVerr(0, RAND_R_INSUFFICIENT_DRBG_STRENGTH);
goto end;
}
min_entropy = drbg->strength;
min_entropylen = drbg->min_entropylen;
max_entropylen = drbg->max_entropylen;
if (pers == NULL) {
pers = (const unsigned char *)ossl_pers_string;
perslen = sizeof(ossl_pers_string);
}
if (perslen > drbg->max_perslen) {
PROVerr(0, RAND_R_PERSONALISATION_STRING_TOO_LONG);
goto end;
}
if (drbg->state != DRBG_UNINITIALISED) {
if (drbg->state == DRBG_ERROR)
PROVerr(0, RAND_R_IN_ERROR_STATE);
else
PROVerr(0, RAND_R_ALREADY_INSTANTIATED);
goto end;
}
drbg->state = DRBG_ERROR;
if (drbg->min_noncelen > 0) {
#ifndef PROV_RAND_GET_RANDOM_NONCE
if (drbg->parent != NULL)
#endif
{
pnonce = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_NONCE);
if (pnonce == NULL) {
/*
* NIST SP800-90Ar1 section 9.1 says you can combine getting
* the entropy and nonce in 1 call by increasing the entropy
* with 50% and increasing the minimum length to accommodate
* the length of the nonce. We do this in case a nonce is
* required and there is no parental nonce capability.
*/
min_entropy += drbg->strength / 2;
min_entropylen += drbg->min_noncelen;
max_entropylen += drbg->max_noncelen;
} else {
drbg_lock_parent(drbg);
noncelen = OSSL_get_OP_rand_nonce(pnonce)(drbg->parent, &nonce,
drbg->strength / 2,
drbg->min_noncelen,
drbg->max_noncelen);
drbg_unlock_parent(drbg);
if (noncelen < drbg->min_noncelen
|| noncelen > drbg->max_noncelen) {
PROVerr(0, RAND_R_ERROR_RETRIEVING_NONCE);
goto end;
}
}
}
#ifndef PROV_RAND_GET_RANDOM_NONCE
else { /* parent == NULL */
noncelen = prov_drbg_get_nonce(drbg, &nonce, drbg->strength / 2,
drbg->min_noncelen,
drbg->max_noncelen);
if (noncelen < drbg->min_noncelen
|| noncelen > drbg->max_noncelen) {
PROVerr(0, RAND_R_ERROR_RETRIEVING_NONCE);
goto end;
}
}
#endif
}
drbg->reseed_next_counter = tsan_load(&drbg->reseed_prop_counter);
if (drbg->reseed_next_counter) {
drbg->reseed_next_counter++;
if(!drbg->reseed_next_counter)
drbg->reseed_next_counter = 1;
}
entropylen = get_entropy(drbg, &entropy, min_entropy,
min_entropylen, max_entropylen,
prediction_resistance);
if (entropylen < min_entropylen
|| entropylen > max_entropylen) {
PROVerr(0, RAND_R_ERROR_RETRIEVING_ENTROPY);
goto end;
}
if (!ifnc(drbg, entropy, entropylen, nonce, noncelen, pers, perslen)) {
PROVerr(0, RAND_R_ERROR_INSTANTIATING_DRBG);
goto end;
}
drbg->state = DRBG_READY;
drbg->reseed_gen_counter = 1;
drbg->reseed_time = time(NULL);
tsan_store(&drbg->reseed_prop_counter, drbg->reseed_next_counter);
end:
if (entropy != NULL)
cleanup_entropy(drbg, entropy, entropylen);
if (nonce != NULL)
prov_drbg_cleanup_nonce(drbg, nonce, noncelen);
if (drbg->state == DRBG_READY)
return 1;
return 0;
}
/*
* Reseed |drbg|, mixing in the specified data
*
* Requires that drbg->lock is already locked for write, if non-null.
*
* Returns 1 on success, 0 on failure.
*/
int PROV_DRBG_reseed(PROV_DRBG *drbg, int prediction_resistance,
const unsigned char *ent, size_t ent_len,
const unsigned char *adin, size_t adinlen,
int (*reseed)(PROV_DRBG *drbg,
const unsigned char *ent, size_t ent_len,
const unsigned char *adin, size_t adin_len))
{
unsigned char *entropy = NULL;
size_t entropylen = 0;
if (drbg->state == DRBG_ERROR) {
PROVerr(0, RAND_R_IN_ERROR_STATE);
return 0;
}
if (drbg->state == DRBG_UNINITIALISED) {
PROVerr(0, RAND_R_NOT_INSTANTIATED);
return 0;
}
if (adin == NULL) {
adinlen = 0;
} else if (adinlen > drbg->max_adinlen) {
PROVerr(0, RAND_R_ADDITIONAL_INPUT_TOO_LONG);
return 0;
}
drbg->state = DRBG_ERROR;
drbg->reseed_next_counter = tsan_load(&drbg->reseed_prop_counter);
if (drbg->reseed_next_counter) {
drbg->reseed_next_counter++;
if(!drbg->reseed_next_counter)
drbg->reseed_next_counter = 1;
}
entropylen = get_entropy(drbg, &entropy, drbg->strength,
drbg->min_entropylen, drbg->max_entropylen,
prediction_resistance);
if (entropylen < drbg->min_entropylen
|| entropylen > drbg->max_entropylen) {
PROVerr(0, RAND_R_ERROR_RETRIEVING_ENTROPY);
goto end;
}
if (!reseed(drbg, entropy, entropylen, adin, adinlen))
goto end;
drbg->state = DRBG_READY;
drbg->reseed_gen_counter = 1;
drbg->reseed_time = time(NULL);
tsan_store(&drbg->reseed_prop_counter, drbg->reseed_next_counter);
end:
if (entropy != NULL)
OPENSSL_cleanse(entropy, entropylen);
if (drbg->state == DRBG_READY)
return 1;
return 0;
}
/*
* Generate |outlen| bytes into the buffer at |out|. Reseed if we need
* to or if |prediction_resistance| is set. Additional input can be
* sent in |adin| and |adinlen|.
*
* Requires that drbg->lock is already locked for write, if non-null.
*
* Returns 1 on success, 0 on failure.
*
*/
int PROV_DRBG_generate(PROV_DRBG *drbg, unsigned char *out, size_t outlen,
int strength, int prediction_resistance,
const unsigned char *adin, size_t adinlen,
int (*generate)(PROV_DRBG *, unsigned char *out,
size_t outlen, const unsigned char *adin,
size_t adin_len),
int (*reseed)(PROV_DRBG *drbg, const unsigned char *ent,
size_t ent_len, const unsigned char *adin,
size_t adin_len))
{
int fork_id;
int reseed_required = 0;
if (drbg->state != DRBG_READY) {
if (drbg->state == DRBG_ERROR) {
PROVerr(0, RAND_R_IN_ERROR_STATE);
return 0;
}
if (drbg->state == DRBG_UNINITIALISED) {
PROVerr(0, RAND_R_NOT_INSTANTIATED);
return 0;
}
}
if (outlen > drbg->max_request) {
PROVerr(0, RAND_R_REQUEST_TOO_LARGE_FOR_DRBG);
return 0;
}
if (adinlen > drbg->max_adinlen) {
PROVerr(0, RAND_R_ADDITIONAL_INPUT_TOO_LONG);
return 0;
}
fork_id = openssl_get_fork_id();
if (drbg->fork_id != fork_id) {
drbg->fork_id = fork_id;
reseed_required = 1;
}
if (drbg->reseed_interval > 0) {
if (drbg->reseed_gen_counter > drbg->reseed_interval)
reseed_required = 1;
}
if (drbg->reseed_time_interval > 0) {
time_t now = time(NULL);
if (now < drbg->reseed_time
|| now - drbg->reseed_time >= drbg->reseed_time_interval)
reseed_required = 1;
}
if (drbg->parent != NULL) {
unsigned int reseed_counter = 0;
if (reseed_counter > 0
&& get_parent_reseed_count(drbg) !=
tsan_load(&drbg->reseed_prop_counter))
reseed_required = 1;
}
if (reseed_required || prediction_resistance) {
if (!PROV_DRBG_reseed(drbg, prediction_resistance, NULL, 0,
adin, adinlen, reseed)) {
PROVerr(0, RAND_R_RESEED_ERROR);
return 0;
}
adin = NULL;
adinlen = 0;
}
if (!generate(drbg, out, outlen, adin, adinlen)) {
drbg->state = DRBG_ERROR;
PROVerr(0, RAND_R_GENERATE_ERROR);
return 0;
}
drbg->reseed_gen_counter++;
return 1;
}
#if 0
/*
* Calculates the minimum length of a full entropy buffer
* which is necessary to seed (i.e. instantiate) the DRBG
* successfully.
*/
size_t prov_drbg_seedlen(PROV_DRBG *drbg)
{
/*
* If no os entropy source is available then PROV_seed(buffer, bufsize)
* is expected to succeed if and only if the buffer length satisfies
* the following requirements, which follow from the calculations
* in PROV_DRBG_instantiate().
*/
size_t min_entropy = drbg->strength;
size_t min_entropylen = drbg->min_entropylen;
/*
* Extra entropy for the random nonce in the absence of a
* get_nonce callback, see comment in PROV_DRBG_instantiate().
*/
if (drbg->min_noncelen > 0) {
#ifndef PROV_RAND_GET_RANDOM_NONCE
if (drbg->parent != NULL)
#endif
if (find_call(drbg->parent_dispatch,
OSSL_FUNC_RAND_NONCE) == NULL) {
min_entropy += drbg->strength / 2;
min_entropylen += drbg->min_noncelen;
}
}
/*
* Convert entropy requirement from bits to bytes
* (dividing by 8 without rounding upwards, because
* all entropy requirements are divisible by 8).
*/
min_entropy >>= 3;
/* Return a value that satisfies both requirements */
return min_entropy > min_entropylen ? min_entropy : min_entropylen;
}
#endif
/* Provider support from here down */
static const OSSL_DISPATCH *find_call(const OSSL_DISPATCH *dispatch,
int function)
{
if (dispatch != NULL)
while (dispatch->function_id != 0)
if (dispatch->function_id == function)
return dispatch;
return NULL;
}
int drbg_enable_locking(void *vctx)
{
PROV_DRBG *drbg = vctx;
const OSSL_DISPATCH *pfunc;
if (drbg == NULL)
return 1;
if (drbg->lock == NULL) {
if (drbg->state != DRBG_UNINITIALISED) {
ERR_raise(ERR_LIB_PROV, RAND_R_DRBG_ALREADY_INITIALIZED);
return 0;
}
pfunc = find_call(drbg->parent_dispatch, OSSL_FUNC_RAND_ENABLE_LOCKING);
if (pfunc != NULL)
if (!OSSL_get_OP_rand_enable_locking(pfunc)(drbg->parent)) {
ERR_raise(ERR_LIB_PROV, RAND_R_PARENT_LOCKING_NOT_ENABLED);
return 0;
}
drbg->lock = CRYPTO_THREAD_lock_new();
if (drbg->lock == NULL) {
ERR_raise(ERR_LIB_PROV, RAND_R_FAILED_TO_CREATE_LOCK);
return 0;
}
}
return 1;
}
/*
* Allocate memory and initialize a new DRBG. The DRBG is allocated on
* the secure heap if |secure| is nonzero and the secure heap is enabled.
* The |parent|, if not NULL, will be used as random source for reseeding.
* This also requires the parent's provider context and the parent's lock.
*
* Returns a pointer to the new DRBG instance on success, NULL on failure.
*/
PROV_DRBG *prov_rand_drbg_new(void *provctx, int secure, void *parent,
const OSSL_DISPATCH *parent_dispatch,
int (*dnew)(PROV_DRBG *ctx, int secure))
{
PROV_DRBG *drbg = OPENSSL_zalloc(sizeof(*drbg));
int p_str;
if (drbg == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return NULL;
}
drbg->libctx = provctx;
drbg->secure = secure;
drbg->parent = parent;
drbg->parent_dispatch = parent_dispatch;
/* Set some default maximums up */
drbg->max_entropylen = DRBG_MAX_LENGTH;
drbg->max_noncelen = DRBG_MAX_LENGTH;
drbg->max_perslen = DRBG_MAX_LENGTH;
drbg->max_adinlen = DRBG_MAX_LENGTH;
drbg->reseed_gen_counter = 1;
/* TODO(3.0) clean this up */
if (parent == NULL) {
drbg->reseed_interval = master_reseed_interval;
drbg->reseed_time_interval = master_reseed_time_interval;
} else {
/*
* Do not provide nonce callbacks, the child DRBGs will
* obtain their nonce using random bits from the parent.
*/
drbg->reseed_interval = slave_reseed_interval;
drbg->reseed_time_interval = slave_reseed_time_interval;
}
if (!dnew(drbg, secure))
goto err;
if (parent != NULL) {
if (!get_parent_strength(drbg, &p_str))
goto err;
if (drbg->strength > p_str) {
/*
* We currently don't support the algorithm from NIST SP 800-90C
* 10.1.2 to use a weaker DRBG as source
*/
ERR_raise(ERR_LIB_PROV, RAND_R_PARENT_STRENGTH_TOO_WEAK);
goto err;
}
}
return drbg;
err:
prov_rand_drbg_free(drbg);
return NULL;
}
void prov_rand_drbg_free(PROV_DRBG *drbg)
{
if (drbg == NULL)
return;
rand_pool_free(drbg->adin_pool);
CRYPTO_THREAD_lock_free(drbg->lock);
#ifndef FIPS_MODULE
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RAND_DRBG, drbg, &drbg->ex_data);
#endif
}
int drbg_get_ctx_params(PROV_DRBG *drbg, OSSL_PARAM params[])
{
OSSL_PARAM *p;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_STATUS);
if (p != NULL && !OSSL_PARAM_set_int(p, drbg->state))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_STRENGTH);
if (p != NULL && !OSSL_PARAM_set_int(p, drbg->strength))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MAX_REQUEST);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_request))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MIN_ENTROPYLEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->min_entropylen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MAX_ENTROPYLEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_entropylen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MIN_NONCELEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->min_noncelen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MAX_NONCELEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_noncelen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MAX_PERSLEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_perslen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MAX_ADINLEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_adinlen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_RESEED_CTR);
if (p != NULL && !OSSL_PARAM_set_uint(p, drbg->reseed_gen_counter))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_RESEED_REQUESTS);
if (p != NULL && !OSSL_PARAM_set_uint(p, drbg->reseed_interval))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_RESEED_TIME_INTERVAL);
if (p != NULL && !OSSL_PARAM_set_time_t(p, drbg->reseed_time_interval))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_RESEED_PROP_CTR);
if (p != NULL
&& !OSSL_PARAM_set_uint(p, tsan_load(&drbg->reseed_prop_counter)))
return 0;
return 1;
}
int drbg_set_ctx_params(PROV_DRBG *drbg, const OSSL_PARAM params[])
{
const OSSL_PARAM *p;
p = OSSL_PARAM_locate_const(params, OSSL_RAND_PARAM_RESEED_REQUESTS);
if (p != NULL && !OSSL_PARAM_get_uint(p, &drbg->reseed_interval))
return 0;
p = OSSL_PARAM_locate_const(params, OSSL_RAND_PARAM_RESEED_TIME_INTERVAL);
if (p != NULL && !OSSL_PARAM_get_time_t(p, &drbg->reseed_time_interval))
return 0;
return 1;
}