mirror of
https://github.com/openssl/openssl.git
synced 2024-12-09 05:51:54 +08:00
56e4d112ae
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com> Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/22916)
222 lines
7.6 KiB
C
222 lines
7.6 KiB
C
/*
|
|
* Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <openssl/core_names.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/err.h>
|
|
|
|
/*
|
|
* This is a demonstration of key exchange using ECDH.
|
|
*
|
|
* EC key exchange requires 2 parties (peers) to first agree on shared group
|
|
* parameters (the EC curve name). Each peer then generates a public/private
|
|
* key pair using the shared curve name. Each peer then gives their public key
|
|
* to the other peer. A peer can then derive the same shared secret using their
|
|
* private key and the other peers public key.
|
|
*/
|
|
|
|
/* Object used to store information for a single Peer */
|
|
typedef struct peer_data_st {
|
|
const char *name; /* name of peer */
|
|
const char *curvename; /* The shared curve name */
|
|
EVP_PKEY *priv; /* private keypair */
|
|
EVP_PKEY *pub; /* public key to send to other peer */
|
|
unsigned char *secret; /* allocated shared secret buffer */
|
|
size_t secretlen;
|
|
} PEER_DATA;
|
|
|
|
/*
|
|
* The public key needs to be given to the other peer
|
|
* The following code extracts the public key data from the private key
|
|
* and then builds an EVP_KEY public key.
|
|
*/
|
|
static int get_peer_public_key(PEER_DATA *peer, OSSL_LIB_CTX *libctx)
|
|
{
|
|
int ret = 0;
|
|
EVP_PKEY_CTX *ctx;
|
|
OSSL_PARAM params[3];
|
|
unsigned char pubkeydata[256];
|
|
size_t pubkeylen;
|
|
|
|
/* Get the EC encoded public key data from the peers private key */
|
|
if (!EVP_PKEY_get_octet_string_param(peer->priv, OSSL_PKEY_PARAM_PUB_KEY,
|
|
pubkeydata, sizeof(pubkeydata),
|
|
&pubkeylen))
|
|
return 0;
|
|
|
|
/* Create a EC public key from the public key data */
|
|
ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL);
|
|
if (ctx == NULL)
|
|
return 0;
|
|
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
|
|
(char *)peer->curvename, 0);
|
|
params[1] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,
|
|
pubkeydata, pubkeylen);
|
|
params[2] = OSSL_PARAM_construct_end();
|
|
ret = EVP_PKEY_fromdata_init(ctx) > 0
|
|
&& (EVP_PKEY_fromdata(ctx, &peer->pub, EVP_PKEY_PUBLIC_KEY,
|
|
params) > 0);
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return ret;
|
|
}
|
|
|
|
static int create_peer(PEER_DATA *peer, OSSL_LIB_CTX *libctx)
|
|
{
|
|
int ret = 0;
|
|
EVP_PKEY_CTX *ctx = NULL;
|
|
OSSL_PARAM params[2];
|
|
|
|
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
|
|
(char *)peer->curvename, 0);
|
|
params[1] = OSSL_PARAM_construct_end();
|
|
|
|
ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL);
|
|
if (ctx == NULL)
|
|
return 0;
|
|
|
|
if (EVP_PKEY_keygen_init(ctx) <= 0
|
|
|| !EVP_PKEY_CTX_set_params(ctx, params)
|
|
|| EVP_PKEY_generate(ctx, &peer->priv) <= 0
|
|
|| !get_peer_public_key(peer, libctx)) {
|
|
EVP_PKEY_free(peer->priv);
|
|
peer->priv = NULL;
|
|
goto err;
|
|
}
|
|
ret = 1;
|
|
err:
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return ret;
|
|
}
|
|
|
|
static void destroy_peer(PEER_DATA *peer)
|
|
{
|
|
EVP_PKEY_free(peer->priv);
|
|
EVP_PKEY_free(peer->pub);
|
|
}
|
|
|
|
static int generate_secret(PEER_DATA *peerA, EVP_PKEY *peerBpub,
|
|
OSSL_LIB_CTX *libctx)
|
|
{
|
|
unsigned char *secret = NULL;
|
|
size_t secretlen = 0;
|
|
EVP_PKEY_CTX *derivectx;
|
|
|
|
/* Create an EVP_PKEY_CTX that contains peerA's private key */
|
|
derivectx = EVP_PKEY_CTX_new_from_pkey(libctx, peerA->priv, NULL);
|
|
if (derivectx == NULL)
|
|
return 0;
|
|
|
|
if (EVP_PKEY_derive_init(derivectx) <= 0)
|
|
goto cleanup;
|
|
/* Set up peerB's public key */
|
|
if (EVP_PKEY_derive_set_peer(derivectx, peerBpub) <= 0)
|
|
goto cleanup;
|
|
|
|
/*
|
|
* For backwards compatibility purposes the OpenSSL ECDH provider supports
|
|
* optionally using a X963KDF to expand the secret data. This can be done
|
|
* with code similar to the following.
|
|
*
|
|
* OSSL_PARAM params[5];
|
|
* size_t outlen = 128;
|
|
* unsigned char ukm[] = { 1, 2, 3, 4 };
|
|
* params[0] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_TYPE,
|
|
* "X963KDF", 0);
|
|
* params[1] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_DIGEST,
|
|
* "SHA256", 0);
|
|
* params[2] = OSSL_PARAM_construct_size_t(OSSL_EXCHANGE_PARAM_KDF_OUTLEN,
|
|
* &outlen);
|
|
* params[3] = OSSL_PARAM_construct_octet_string(OSSL_EXCHANGE_PARAM_KDF_UKM,
|
|
* ukm, sizeof(ukm));
|
|
* params[4] = OSSL_PARAM_construct_end();
|
|
* if (!EVP_PKEY_CTX_set_params(derivectx, params))
|
|
* goto cleanup;
|
|
*
|
|
* Note: After the secret is generated below, the peer could alternatively
|
|
* pass the secret to a KDF to derive additional key data from the secret.
|
|
* See demos/kdf/hkdf.c for an example (where ikm is the secret key)
|
|
*/
|
|
|
|
/* Calculate the size of the secret and allocate space */
|
|
if (EVP_PKEY_derive(derivectx, NULL, &secretlen) <= 0)
|
|
goto cleanup;
|
|
secret = (unsigned char *)OPENSSL_malloc(secretlen);
|
|
if (secret == NULL)
|
|
goto cleanup;
|
|
|
|
/*
|
|
* Derive the shared secret. In this example 32 bytes are generated.
|
|
* For EC curves the secret size is related to the degree of the curve
|
|
* which is 256 bits for P-256.
|
|
*/
|
|
if (EVP_PKEY_derive(derivectx, secret, &secretlen) <= 0)
|
|
goto cleanup;
|
|
peerA->secret = secret;
|
|
peerA->secretlen = secretlen;
|
|
|
|
printf("Shared secret (%s):\n", peerA->name);
|
|
BIO_dump_indent_fp(stdout, peerA->secret, peerA->secretlen, 2);
|
|
putchar('\n');
|
|
|
|
return 1;
|
|
cleanup:
|
|
OPENSSL_free(secret);
|
|
EVP_PKEY_CTX_free(derivectx);
|
|
return 0;
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
int ret = EXIT_FAILURE;
|
|
/* Initialise the 2 peers that will share a secret */
|
|
PEER_DATA peer1 = {"peer 1", "P-256"};
|
|
PEER_DATA peer2 = {"peer 2", "P-256"};
|
|
/*
|
|
* Setting libctx to NULL uses the default library context
|
|
* Use OSSL_LIB_CTX_new() to create a non default library context
|
|
*/
|
|
OSSL_LIB_CTX *libctx = NULL;
|
|
|
|
/* Each peer creates a (Ephemeral) keypair */
|
|
if (!create_peer(&peer1, libctx)
|
|
|| !create_peer(&peer2, libctx)) {
|
|
fprintf(stderr, "Create peer failed\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* Each peer uses its private key and the other peers public key to
|
|
* derive a shared secret
|
|
*/
|
|
if (!generate_secret(&peer1, peer2.pub, libctx)
|
|
|| !generate_secret(&peer2, peer1.pub, libctx)) {
|
|
fprintf(stderr, "Generate secrets failed\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/* For illustrative purposes demonstrate that the derived secrets are equal */
|
|
if (peer1.secretlen != peer2.secretlen
|
|
|| CRYPTO_memcmp(peer1.secret, peer2.secret, peer1.secretlen) != 0) {
|
|
fprintf(stderr, "Derived secrets do not match\n");
|
|
goto cleanup;
|
|
} else {
|
|
fprintf(stdout, "Derived secrets match\n");
|
|
}
|
|
|
|
ret = EXIT_SUCCESS;
|
|
cleanup:
|
|
if (ret != EXIT_SUCCESS)
|
|
ERR_print_errors_fp(stderr);
|
|
destroy_peer(&peer2);
|
|
destroy_peer(&peer1);
|
|
return ret;
|
|
}
|