mirror of
https://github.com/openssl/openssl.git
synced 2024-12-21 06:09:35 +08:00
b425001010
Many of the new types introduced by OpenSSL 3.0 have an OSSL_ prefix, e.g., OSSL_CALLBACK, OSSL_PARAM, OSSL_ALGORITHM, OSSL_SERIALIZER. The OPENSSL_CTX type stands out a little by using a different prefix. For consistency reasons, this type is renamed to OSSL_LIB_CTX. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/12621)
357 lines
9.8 KiB
C
357 lines
9.8 KiB
C
/*
|
||
* Copyright 2020 The OpenSSL Project Authors. All Rights Reserved.
|
||
*
|
||
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
||
* this file except in compliance with the License. You can obtain a copy
|
||
* in the file LICENSE in the source distribution or at
|
||
* https://www.openssl.org/source/license.html
|
||
*/
|
||
|
||
/*
|
||
* RSA low level APIs are deprecated for public use, but still ok for
|
||
* internal use.
|
||
*/
|
||
#include "internal/deprecated.h"
|
||
|
||
#include "e_os.h" /* strcasecmp */
|
||
#include <openssl/crypto.h>
|
||
#include <openssl/evp.h>
|
||
#include <openssl/core_dispatch.h>
|
||
#include <openssl/core_names.h>
|
||
#include <openssl/rsa.h>
|
||
#include <openssl/params.h>
|
||
#include <openssl/err.h>
|
||
#include <crypto/rsa.h>
|
||
#include "prov/providercommonerr.h"
|
||
#include "prov/provider_ctx.h"
|
||
#include "prov/implementations.h"
|
||
#include "prov/securitycheck.h"
|
||
|
||
static OSSL_FUNC_kem_newctx_fn rsakem_newctx;
|
||
static OSSL_FUNC_kem_encapsulate_init_fn rsakem_encapsulate_init;
|
||
static OSSL_FUNC_kem_encapsulate_fn rsakem_generate;
|
||
static OSSL_FUNC_kem_decapsulate_init_fn rsakem_decapsulate_init;
|
||
static OSSL_FUNC_kem_decapsulate_fn rsakem_recover;
|
||
static OSSL_FUNC_kem_freectx_fn rsakem_freectx;
|
||
static OSSL_FUNC_kem_dupctx_fn rsakem_dupctx;
|
||
static OSSL_FUNC_kem_get_ctx_params_fn rsakem_get_ctx_params;
|
||
static OSSL_FUNC_kem_gettable_ctx_params_fn rsakem_gettable_ctx_params;
|
||
static OSSL_FUNC_kem_set_ctx_params_fn rsakem_set_ctx_params;
|
||
static OSSL_FUNC_kem_settable_ctx_params_fn rsakem_settable_ctx_params;
|
||
|
||
/*
|
||
* Only the KEM for RSASVE as defined in SP800-56b r2 is implemented
|
||
* currently.
|
||
*/
|
||
#define KEM_OP_UNDEFINED -1
|
||
#define KEM_OP_RSASVE 0
|
||
|
||
/*
|
||
* What's passed as an actual key is defined by the KEYMGMT interface.
|
||
* We happen to know that our KEYMGMT simply passes RSA structures, so
|
||
* we use that here too.
|
||
*/
|
||
typedef struct {
|
||
OSSL_LIB_CTX *libctx;
|
||
RSA *rsa;
|
||
int op;
|
||
} PROV_RSA_CTX;
|
||
|
||
static const OSSL_ITEM rsakem_opname_id_map[] = {
|
||
{ KEM_OP_RSASVE, OSSL_KEM_PARAM_OPERATION_RSASVE },
|
||
};
|
||
|
||
static int name2id(const char *name, const OSSL_ITEM *map, size_t sz)
|
||
{
|
||
size_t i;
|
||
|
||
if (name == NULL)
|
||
return -1;
|
||
|
||
for (i = 0; i < sz; ++i) {
|
||
if (strcasecmp(map[i].ptr, name) == 0)
|
||
return map[i].id;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
static int rsakem_opname2id(const char *name)
|
||
{
|
||
return name2id(name, rsakem_opname_id_map, OSSL_NELEM(rsakem_opname_id_map));
|
||
}
|
||
|
||
static void *rsakem_newctx(void *provctx)
|
||
{
|
||
PROV_RSA_CTX *prsactx = OPENSSL_zalloc(sizeof(PROV_RSA_CTX));
|
||
|
||
if (prsactx == NULL)
|
||
return NULL;
|
||
prsactx->libctx = PROV_LIBRARY_CONTEXT_OF(provctx);
|
||
prsactx->op = KEM_OP_UNDEFINED;
|
||
|
||
return prsactx;
|
||
}
|
||
|
||
static void rsakem_freectx(void *vprsactx)
|
||
{
|
||
PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
|
||
|
||
RSA_free(prsactx->rsa);
|
||
OPENSSL_free(prsactx);
|
||
}
|
||
|
||
static void *rsakem_dupctx(void *vprsactx)
|
||
{
|
||
PROV_RSA_CTX *srcctx = (PROV_RSA_CTX *)vprsactx;
|
||
PROV_RSA_CTX *dstctx;
|
||
|
||
dstctx = OPENSSL_zalloc(sizeof(*srcctx));
|
||
if (dstctx == NULL)
|
||
return NULL;
|
||
|
||
*dstctx = *srcctx;
|
||
if (dstctx->rsa != NULL && !RSA_up_ref(dstctx->rsa)) {
|
||
OPENSSL_free(dstctx);
|
||
return NULL;
|
||
}
|
||
return dstctx;
|
||
}
|
||
|
||
static int rsakem_init(void *vprsactx, void *vrsa, int operation)
|
||
{
|
||
PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
|
||
|
||
if (prsactx == NULL || vrsa == NULL || !RSA_up_ref(vrsa))
|
||
return 0;
|
||
RSA_free(prsactx->rsa);
|
||
prsactx->rsa = vrsa;
|
||
|
||
if (!ossl_rsa_check_key(vrsa, operation == EVP_PKEY_OP_ENCAPSULATE)) {
|
||
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int rsakem_encapsulate_init(void *vprsactx, void *vrsa)
|
||
{
|
||
return rsakem_init(vprsactx, vrsa, EVP_PKEY_OP_ENCAPSULATE);
|
||
}
|
||
|
||
static int rsakem_decapsulate_init(void *vprsactx, void *vrsa)
|
||
{
|
||
return rsakem_init(vprsactx, vrsa, EVP_PKEY_OP_DECAPSULATE);
|
||
}
|
||
|
||
static int rsakem_get_ctx_params(void *vprsactx, OSSL_PARAM *params)
|
||
{
|
||
PROV_RSA_CTX *ctx = (PROV_RSA_CTX *)vprsactx;
|
||
|
||
if (ctx == NULL || params == NULL)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
static const OSSL_PARAM known_gettable_rsakem_ctx_params[] = {
|
||
OSSL_PARAM_END
|
||
};
|
||
|
||
static const OSSL_PARAM *rsakem_gettable_ctx_params(ossl_unused void *provctx)
|
||
{
|
||
return known_gettable_rsakem_ctx_params;
|
||
}
|
||
|
||
static int rsakem_set_ctx_params(void *vprsactx, const OSSL_PARAM params[])
|
||
{
|
||
PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
|
||
const OSSL_PARAM *p;
|
||
int op;
|
||
|
||
if (prsactx == NULL || params == NULL)
|
||
return 0;
|
||
|
||
p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION);
|
||
if (p != NULL) {
|
||
if (p->data_type != OSSL_PARAM_UTF8_STRING)
|
||
return 0;
|
||
op = rsakem_opname2id(p->data);
|
||
if (op < 0)
|
||
return 0;
|
||
prsactx->op = op;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static const OSSL_PARAM known_settable_rsakem_ctx_params[] = {
|
||
OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0),
|
||
OSSL_PARAM_END
|
||
};
|
||
|
||
static const OSSL_PARAM *rsakem_settable_ctx_params(ossl_unused void *provctx)
|
||
{
|
||
return known_settable_rsakem_ctx_params;
|
||
}
|
||
|
||
/*
|
||
* NIST.SP.800-56Br2
|
||
* 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
|
||
*
|
||
* Generate a random in the range 1 < z < (n – 1)
|
||
*/
|
||
static int rsasve_gen_rand_bytes(RSA *rsa_pub,
|
||
unsigned char *out, int outlen)
|
||
{
|
||
int ret = 0;
|
||
BN_CTX *bnctx;
|
||
BIGNUM *z, *nminus3;
|
||
|
||
bnctx = BN_CTX_secure_new_ex(ossl_rsa_get0_libctx(rsa_pub));
|
||
if (bnctx == NULL)
|
||
return 0;
|
||
|
||
/*
|
||
* Generate a random in the range 1 < z < (n – 1).
|
||
* Since BN_priv_rand_range_ex() returns a value in range 0 <= r < max
|
||
* We can achieve this by adding 2.. but then we need to subtract 3 from
|
||
* the upper bound i.e: 2 + (0 <= r < (n - 3))
|
||
*/
|
||
BN_CTX_start(bnctx);
|
||
nminus3 = BN_CTX_get(bnctx);
|
||
z = BN_CTX_get(bnctx);
|
||
ret = (z != NULL
|
||
&& (BN_copy(nminus3, RSA_get0_n(rsa_pub)) != NULL)
|
||
&& BN_sub_word(nminus3, 3)
|
||
&& BN_priv_rand_range_ex(z, nminus3, bnctx)
|
||
&& BN_add_word(z, 2)
|
||
&& (BN_bn2binpad(z, out, outlen) == outlen));
|
||
BN_CTX_end(bnctx);
|
||
BN_CTX_free(bnctx);
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* NIST.SP.800-56Br2
|
||
* 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
|
||
*/
|
||
static int rsasve_generate(PROV_RSA_CTX *prsactx,
|
||
unsigned char *out, size_t *outlen,
|
||
unsigned char *secret, size_t *secretlen)
|
||
{
|
||
int ret;
|
||
size_t nlen;
|
||
|
||
/* Step (1): nlen = Ceil(len(n)/8) */
|
||
nlen = RSA_size(prsactx->rsa);
|
||
|
||
if (out == NULL) {
|
||
if (nlen == 0) {
|
||
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
|
||
return 0;
|
||
}
|
||
if (outlen == NULL && secretlen == NULL)
|
||
return 0;
|
||
if (outlen != NULL)
|
||
*outlen = nlen;
|
||
if (secretlen != NULL)
|
||
*secretlen = nlen;
|
||
return 1;
|
||
}
|
||
/*
|
||
* Step (2): Generate a random byte string z of nlen bytes where
|
||
* 1 < z < n - 1
|
||
*/
|
||
if (!rsasve_gen_rand_bytes(prsactx->rsa, secret, nlen))
|
||
return 0;
|
||
|
||
/* Step(3): out = RSAEP((n,e), z) */
|
||
ret = RSA_public_encrypt(nlen, secret, out, prsactx->rsa, RSA_NO_PADDING);
|
||
if (ret) {
|
||
ret = 1;
|
||
if (outlen != NULL)
|
||
*outlen = nlen;
|
||
if (secretlen != NULL)
|
||
*secretlen = nlen;
|
||
} else {
|
||
OPENSSL_cleanse(secret, nlen);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* NIST.SP.800-56Br2
|
||
* 7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER).
|
||
*/
|
||
static int rsasve_recover(PROV_RSA_CTX *prsactx,
|
||
unsigned char *out, size_t *outlen,
|
||
const unsigned char *in, size_t inlen)
|
||
{
|
||
size_t nlen;
|
||
|
||
/* Step (1): get the byte length of n */
|
||
nlen = RSA_size(prsactx->rsa);
|
||
|
||
if (out == NULL) {
|
||
if (nlen == 0) {
|
||
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
|
||
return 0;
|
||
}
|
||
*outlen = nlen;
|
||
return 1;
|
||
}
|
||
|
||
/* Step (2): check the input ciphertext 'inlen' matches the nlen */
|
||
if (inlen != nlen) {
|
||
ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);
|
||
return 0;
|
||
}
|
||
/* Step (3): out = RSADP((n,d), in) */
|
||
return (RSA_private_decrypt(inlen, in, out, prsactx->rsa, RSA_NO_PADDING) > 0);
|
||
}
|
||
|
||
static int rsakem_generate(void *vprsactx, unsigned char *out, size_t *outlen,
|
||
unsigned char *secret, size_t *secretlen)
|
||
{
|
||
PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
|
||
|
||
switch (prsactx->op) {
|
||
case KEM_OP_RSASVE:
|
||
return rsasve_generate(prsactx, out, outlen, secret, secretlen);
|
||
default:
|
||
return -2;
|
||
}
|
||
}
|
||
|
||
static int rsakem_recover(void *vprsactx, unsigned char *out, size_t *outlen,
|
||
const unsigned char *in, size_t inlen)
|
||
{
|
||
PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
|
||
|
||
switch (prsactx->op) {
|
||
case KEM_OP_RSASVE:
|
||
return rsasve_recover(prsactx, out, outlen, in, inlen);
|
||
default:
|
||
return -2;
|
||
}
|
||
}
|
||
|
||
const OSSL_DISPATCH ossl_rsa_asym_kem_functions[] = {
|
||
{ OSSL_FUNC_KEM_NEWCTX, (void (*)(void))rsakem_newctx },
|
||
{ OSSL_FUNC_KEM_ENCAPSULATE_INIT,
|
||
(void (*)(void))rsakem_encapsulate_init },
|
||
{ OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))rsakem_generate },
|
||
{ OSSL_FUNC_KEM_DECAPSULATE_INIT,
|
||
(void (*)(void))rsakem_decapsulate_init },
|
||
{ OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))rsakem_recover },
|
||
{ OSSL_FUNC_KEM_FREECTX, (void (*)(void))rsakem_freectx },
|
||
{ OSSL_FUNC_KEM_DUPCTX, (void (*)(void))rsakem_dupctx },
|
||
{ OSSL_FUNC_KEM_GET_CTX_PARAMS,
|
||
(void (*)(void))rsakem_get_ctx_params },
|
||
{ OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS,
|
||
(void (*)(void))rsakem_gettable_ctx_params },
|
||
{ OSSL_FUNC_KEM_SET_CTX_PARAMS,
|
||
(void (*)(void))rsakem_set_ctx_params },
|
||
{ OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS,
|
||
(void (*)(void))rsakem_settable_ctx_params },
|
||
{ 0, NULL }
|
||
};
|