openssl/apps/list.c
2020-07-30 20:15:59 +10:00

1030 lines
29 KiB
C

/*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* We need to use some deprecated APIs */
#define OPENSSL_SUPPRESS_DEPRECATED
#include <string.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <openssl/provider.h>
#include <openssl/safestack.h>
#include <openssl/kdf.h>
#include <openssl/serializer.h>
#include <openssl/deserializer.h>
#include <openssl/core_names.h>
#include "apps.h"
#include "app_params.h"
#include "progs.h"
#include "opt.h"
#include "names.h"
DEFINE_STACK_OF_CSTRING()
static int verbose = 0;
static void legacy_cipher_fn(const EVP_CIPHER *c,
const char *from, const char *to, void *arg)
{
if (c != NULL) {
BIO_printf(arg, " %s\n", EVP_CIPHER_name(c));
} else {
if (from == NULL)
from = "<undefined>";
if (to == NULL)
to = "<undefined>";
BIO_printf(arg, " %s => %s\n", from, to);
}
}
DEFINE_STACK_OF(EVP_CIPHER)
static int cipher_cmp(const EVP_CIPHER * const *a,
const EVP_CIPHER * const *b)
{
int ret = EVP_CIPHER_number(*a) - EVP_CIPHER_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_CIPHER_provider(*a)),
OSSL_PROVIDER_name(EVP_CIPHER_provider(*b)));
return ret;
}
static void collect_ciphers(EVP_CIPHER *cipher, void *stack)
{
STACK_OF(EVP_CIPHER) *cipher_stack = stack;
if (sk_EVP_CIPHER_push(cipher_stack, cipher) > 0)
EVP_CIPHER_up_ref(cipher);
}
static void list_ciphers(void)
{
STACK_OF(EVP_CIPHER) *ciphers = sk_EVP_CIPHER_new(cipher_cmp);
int i;
if (ciphers == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Legacy:\n");
EVP_CIPHER_do_all_sorted(legacy_cipher_fn, bio_out);
BIO_printf(bio_out, "Provided:\n");
EVP_CIPHER_do_all_provided(NULL, collect_ciphers, ciphers);
sk_EVP_CIPHER_sort(ciphers);
for (i = 0; i < sk_EVP_CIPHER_num(ciphers); i++) {
const EVP_CIPHER *c = sk_EVP_CIPHER_value(ciphers, i);
STACK_OF(OPENSSL_CSTRING) *names =
sk_OPENSSL_CSTRING_new(name_cmp);
EVP_CIPHER_names_do_all(c, collect_names, names);
BIO_printf(bio_out, " ");
print_names(bio_out, names);
BIO_printf(bio_out, " @ %s\n",
OSSL_PROVIDER_name(EVP_CIPHER_provider(c)));
sk_OPENSSL_CSTRING_free(names);
if (verbose) {
print_param_types("retrievable algorithm parameters",
EVP_CIPHER_gettable_params(c), 4);
print_param_types("retrievable operation parameters",
EVP_CIPHER_gettable_ctx_params(c), 4);
print_param_types("settable operation parameters",
EVP_CIPHER_settable_ctx_params(c), 4);
}
}
sk_EVP_CIPHER_pop_free(ciphers, EVP_CIPHER_free);
}
static void list_md_fn(const EVP_MD *m,
const char *from, const char *to, void *arg)
{
if (m != NULL) {
BIO_printf(arg, " %s\n", EVP_MD_name(m));
} else {
if (from == NULL)
from = "<undefined>";
if (to == NULL)
to = "<undefined>";
BIO_printf((BIO *)arg, " %s => %s\n", from, to);
}
}
DEFINE_STACK_OF(EVP_MD)
static int md_cmp(const EVP_MD * const *a, const EVP_MD * const *b)
{
int ret = EVP_MD_number(*a) - EVP_MD_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_MD_provider(*a)),
OSSL_PROVIDER_name(EVP_MD_provider(*b)));
return ret;
}
static void collect_digests(EVP_MD *md, void *stack)
{
STACK_OF(EVP_MD) *digest_stack = stack;
if (sk_EVP_MD_push(digest_stack, md) > 0)
EVP_MD_up_ref(md);
}
static void list_digests(void)
{
STACK_OF(EVP_MD) *digests = sk_EVP_MD_new(md_cmp);
int i;
if (digests == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Legacy:\n");
EVP_MD_do_all_sorted(list_md_fn, bio_out);
BIO_printf(bio_out, "Provided:\n");
EVP_MD_do_all_provided(NULL, collect_digests, digests);
sk_EVP_MD_sort(digests);
for (i = 0; i < sk_EVP_MD_num(digests); i++) {
const EVP_MD *m = sk_EVP_MD_value(digests, i);
STACK_OF(OPENSSL_CSTRING) *names =
sk_OPENSSL_CSTRING_new(name_cmp);
EVP_MD_names_do_all(m, collect_names, names);
BIO_printf(bio_out, " ");
print_names(bio_out, names);
BIO_printf(bio_out, " @ %s\n",
OSSL_PROVIDER_name(EVP_MD_provider(m)));
sk_OPENSSL_CSTRING_free(names);
if (verbose) {
print_param_types("retrievable algorithm parameters",
EVP_MD_gettable_params(m), 4);
print_param_types("retrievable operation parameters",
EVP_MD_gettable_ctx_params(m), 4);
print_param_types("settable operation parameters",
EVP_MD_settable_ctx_params(m), 4);
}
}
sk_EVP_MD_pop_free(digests, EVP_MD_free);
}
DEFINE_STACK_OF(EVP_MAC)
static int mac_cmp(const EVP_MAC * const *a, const EVP_MAC * const *b)
{
int ret = EVP_MAC_number(*a) - EVP_MAC_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_MAC_provider(*a)),
OSSL_PROVIDER_name(EVP_MAC_provider(*b)));
return ret;
}
static void collect_macs(EVP_MAC *mac, void *stack)
{
STACK_OF(EVP_MAC) *mac_stack = stack;
if (sk_EVP_MAC_push(mac_stack, mac) > 0)
EVP_MAC_up_ref(mac);
}
static void list_macs(void)
{
STACK_OF(EVP_MAC) *macs = sk_EVP_MAC_new(mac_cmp);
int i;
if (macs == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Provided MACs:\n");
EVP_MAC_do_all_provided(NULL, collect_macs, macs);
sk_EVP_MAC_sort(macs);
for (i = 0; i < sk_EVP_MAC_num(macs); i++) {
const EVP_MAC *m = sk_EVP_MAC_value(macs, i);
STACK_OF(OPENSSL_CSTRING) *names =
sk_OPENSSL_CSTRING_new(name_cmp);
EVP_MAC_names_do_all(m, collect_names, names);
BIO_printf(bio_out, " ");
print_names(bio_out, names);
BIO_printf(bio_out, " @ %s\n",
OSSL_PROVIDER_name(EVP_MAC_provider(m)));
sk_OPENSSL_CSTRING_free(names);
if (verbose) {
print_param_types("retrievable algorithm parameters",
EVP_MAC_gettable_params(m), 4);
print_param_types("retrievable operation parameters",
EVP_MAC_gettable_ctx_params(m), 4);
print_param_types("settable operation parameters",
EVP_MAC_settable_ctx_params(m), 4);
}
}
sk_EVP_MAC_pop_free(macs, EVP_MAC_free);
}
/*
* KDFs and PRFs
*/
DEFINE_STACK_OF(EVP_KDF)
static int kdf_cmp(const EVP_KDF * const *a, const EVP_KDF * const *b)
{
int ret = EVP_KDF_number(*a) - EVP_KDF_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_KDF_provider(*a)),
OSSL_PROVIDER_name(EVP_KDF_provider(*b)));
return ret;
}
static void collect_kdfs(EVP_KDF *kdf, void *stack)
{
STACK_OF(EVP_KDF) *kdf_stack = stack;
sk_EVP_KDF_push(kdf_stack, kdf);
EVP_KDF_up_ref(kdf);
}
static void list_kdfs(void)
{
STACK_OF(EVP_KDF) *kdfs = sk_EVP_KDF_new(kdf_cmp);
int i;
if (kdfs == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Provided KDFs and PDFs:\n");
EVP_KDF_do_all_provided(NULL, collect_kdfs, kdfs);
sk_EVP_KDF_sort(kdfs);
for (i = 0; i < sk_EVP_KDF_num(kdfs); i++) {
const EVP_KDF *k = sk_EVP_KDF_value(kdfs, i);
STACK_OF(OPENSSL_CSTRING) *names =
sk_OPENSSL_CSTRING_new(name_cmp);
EVP_KDF_names_do_all(k, collect_names, names);
BIO_printf(bio_out, " ");
print_names(bio_out, names);
BIO_printf(bio_out, " @ %s\n",
OSSL_PROVIDER_name(EVP_KDF_provider(k)));
sk_OPENSSL_CSTRING_free(names);
if (verbose) {
print_param_types("retrievable algorithm parameters",
EVP_KDF_gettable_params(k), 4);
print_param_types("retrievable operation parameters",
EVP_KDF_gettable_ctx_params(k), 4);
print_param_types("settable operation parameters",
EVP_KDF_settable_ctx_params(k), 4);
}
}
sk_EVP_KDF_pop_free(kdfs, EVP_KDF_free);
}
/*
* RANDs
*/
DEFINE_STACK_OF(EVP_RAND)
static int rand_cmp(const EVP_RAND * const *a, const EVP_RAND * const *b)
{
int ret = strcasecmp(EVP_RAND_name(*a), EVP_RAND_name(*b));
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_RAND_provider(*a)),
OSSL_PROVIDER_name(EVP_RAND_provider(*b)));
return ret;
}
static void collect_rands(EVP_RAND *rand, void *stack)
{
STACK_OF(EVP_RAND) *rand_stack = stack;
sk_EVP_RAND_push(rand_stack, rand);
EVP_RAND_up_ref(rand);
}
static void list_random_generators(void)
{
STACK_OF(EVP_RAND) *rands = sk_EVP_RAND_new(rand_cmp);
int i;
if (rands == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Provided RNGs and seed sources:\n");
EVP_RAND_do_all_provided(NULL, collect_rands, rands);
sk_EVP_RAND_sort(rands);
for (i = 0; i < sk_EVP_RAND_num(rands); i++) {
const EVP_RAND *m = sk_EVP_RAND_value(rands, i);
BIO_printf(bio_out, " %s", EVP_RAND_name(m));
BIO_printf(bio_out, " @ %s\n",
OSSL_PROVIDER_name(EVP_RAND_provider(m)));
if (verbose) {
print_param_types("retrievable algorithm parameters",
EVP_RAND_gettable_params(m), 4);
print_param_types("retrievable operation parameters",
EVP_RAND_gettable_ctx_params(m), 4);
print_param_types("settable operation parameters",
EVP_RAND_settable_ctx_params(m), 4);
}
}
sk_EVP_RAND_pop_free(rands, EVP_RAND_free);
}
/*
* Serializers
*/
DEFINE_STACK_OF(OSSL_SERIALIZER)
static int serializer_cmp(const OSSL_SERIALIZER * const *a,
const OSSL_SERIALIZER * const *b)
{
int ret = OSSL_SERIALIZER_number(*a) - OSSL_SERIALIZER_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(OSSL_SERIALIZER_provider(*a)),
OSSL_PROVIDER_name(OSSL_SERIALIZER_provider(*b)));
return ret;
}
static void collect_serializers(OSSL_SERIALIZER *serializer, void *stack)
{
STACK_OF(OSSL_SERIALIZER) *serializer_stack = stack;
sk_OSSL_SERIALIZER_push(serializer_stack, serializer);
OSSL_SERIALIZER_up_ref(serializer);
}
static void list_serializers(void)
{
STACK_OF(OSSL_SERIALIZER) *serializers;
int i;
serializers = sk_OSSL_SERIALIZER_new(serializer_cmp);
if (serializers == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Provided SERIALIZERs:\n");
OSSL_SERIALIZER_do_all_provided(NULL, collect_serializers, serializers);
sk_OSSL_SERIALIZER_sort(serializers);
for (i = 0; i < sk_OSSL_SERIALIZER_num(serializers); i++) {
OSSL_SERIALIZER *k = sk_OSSL_SERIALIZER_value(serializers, i);
STACK_OF(OPENSSL_CSTRING) *names =
sk_OPENSSL_CSTRING_new(name_cmp);
OSSL_SERIALIZER_names_do_all(k, collect_names, names);
BIO_printf(bio_out, " ");
print_names(bio_out, names);
BIO_printf(bio_out, " @ %s (%s)\n",
OSSL_PROVIDER_name(OSSL_SERIALIZER_provider(k)),
OSSL_SERIALIZER_properties(k));
sk_OPENSSL_CSTRING_free(names);
if (verbose) {
print_param_types("settable operation parameters",
OSSL_SERIALIZER_settable_ctx_params(k), 4);
}
}
sk_OSSL_SERIALIZER_pop_free(serializers, OSSL_SERIALIZER_free);
}
/*
* Deserializers
*/
DEFINE_STACK_OF(OSSL_DESERIALIZER)
static int deserializer_cmp(const OSSL_DESERIALIZER * const *a,
const OSSL_DESERIALIZER * const *b)
{
int ret = OSSL_DESERIALIZER_number(*a) - OSSL_DESERIALIZER_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(OSSL_DESERIALIZER_provider(*a)),
OSSL_PROVIDER_name(OSSL_DESERIALIZER_provider(*b)));
return ret;
}
static void collect_deserializers(OSSL_DESERIALIZER *deserializer, void *stack)
{
STACK_OF(OSSL_DESERIALIZER) *deserializer_stack = stack;
sk_OSSL_DESERIALIZER_push(deserializer_stack, deserializer);
OSSL_DESERIALIZER_up_ref(deserializer);
}
static void list_deserializers(void)
{
STACK_OF(OSSL_DESERIALIZER) *deserializers;
int i;
deserializers = sk_OSSL_DESERIALIZER_new(deserializer_cmp);
if (deserializers == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Provided DESERIALIZERs:\n");
OSSL_DESERIALIZER_do_all_provided(NULL, collect_deserializers,
deserializers);
sk_OSSL_DESERIALIZER_sort(deserializers);
for (i = 0; i < sk_OSSL_DESERIALIZER_num(deserializers); i++) {
OSSL_DESERIALIZER *k = sk_OSSL_DESERIALIZER_value(deserializers, i);
STACK_OF(OPENSSL_CSTRING) *names =
sk_OPENSSL_CSTRING_new(name_cmp);
OSSL_DESERIALIZER_names_do_all(k, collect_names, names);
BIO_printf(bio_out, " ");
print_names(bio_out, names);
BIO_printf(bio_out, " @ %s (%s)\n",
OSSL_PROVIDER_name(OSSL_DESERIALIZER_provider(k)),
OSSL_DESERIALIZER_properties(k));
sk_OPENSSL_CSTRING_free(names);
if (verbose) {
print_param_types("settable operation parameters",
OSSL_DESERIALIZER_settable_ctx_params(k), 4);
}
}
sk_OSSL_DESERIALIZER_pop_free(deserializers, OSSL_DESERIALIZER_free);
}
static void list_missing_help(void)
{
const FUNCTION *fp;
const OPTIONS *o;
for (fp = functions; fp->name != NULL; fp++) {
if ((o = fp->help) != NULL) {
/* If there is help, list what flags are not documented. */
for ( ; o->name != NULL; o++) {
if (o->helpstr == NULL)
BIO_printf(bio_out, "%s %s\n", fp->name, o->name);
}
} else if (fp->func != dgst_main) {
/* If not aliased to the dgst command, */
BIO_printf(bio_out, "%s *\n", fp->name);
}
}
}
static void list_objects(void)
{
int max_nid = OBJ_new_nid(0);
int i;
char *oid_buf = NULL;
int oid_size = 0;
/* Skip 0, since that's NID_undef */
for (i = 1; i < max_nid; i++) {
const ASN1_OBJECT *obj = OBJ_nid2obj(i);
const char *sn = OBJ_nid2sn(i);
const char *ln = OBJ_nid2ln(i);
int n = 0;
/*
* If one of the retrieved objects somehow generated an error,
* we ignore it. The check for NID_undef below will detect the
* error and simply skip to the next NID.
*/
ERR_clear_error();
if (OBJ_obj2nid(obj) == NID_undef)
continue;
if ((n = OBJ_obj2txt(NULL, 0, obj, 1)) == 0) {
BIO_printf(bio_out, "# None-OID object: %s, %s\n", sn, ln);
continue;
}
if (n < 0)
break; /* Error */
if (n > oid_size) {
oid_buf = OPENSSL_realloc(oid_buf, n + 1);
if (oid_buf == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
break; /* Error */
}
oid_size = n + 1;
}
if (OBJ_obj2txt(oid_buf, oid_size, obj, 1) < 0)
break; /* Error */
if (ln == NULL || strcmp(sn, ln) == 0)
BIO_printf(bio_out, "%s = %s\n", sn, oid_buf);
else
BIO_printf(bio_out, "%s = %s, %s\n", sn, ln, oid_buf);
}
OPENSSL_free(oid_buf);
}
static void list_options_for_command(const char *command)
{
const FUNCTION *fp;
const OPTIONS *o;
for (fp = functions; fp->name != NULL; fp++)
if (strcmp(fp->name, command) == 0)
break;
if (fp->name == NULL) {
BIO_printf(bio_err, "Invalid command '%s'; type \"help\" for a list.\n",
command);
return;
}
if ((o = fp->help) == NULL)
return;
for ( ; o->name != NULL; o++) {
char c = o->valtype;
if (o->name == OPT_PARAM_STR)
break;
if (o->name == OPT_HELP_STR
|| o->name == OPT_MORE_STR
|| o->name == OPT_SECTION_STR
|| o->name[0] == '\0')
continue;
BIO_printf(bio_out, "%s %c\n", o->name, c == '\0' ? '-' : c);
}
/* Always output the -- marker since it is sometimes documented. */
BIO_printf(bio_out, "- -\n");
}
static void list_type(FUNC_TYPE ft, int one)
{
FUNCTION *fp;
int i = 0;
DISPLAY_COLUMNS dc;
memset(&dc, 0, sizeof(dc));
if (!one)
calculate_columns(functions, &dc);
for (fp = functions; fp->name != NULL; fp++) {
if (fp->type != ft)
continue;
if (one) {
BIO_printf(bio_out, "%s\n", fp->name);
} else {
if (i % dc.columns == 0 && i > 0)
BIO_printf(bio_out, "\n");
BIO_printf(bio_out, "%-*s", dc.width, fp->name);
i++;
}
}
if (!one)
BIO_printf(bio_out, "\n\n");
}
static void list_pkey(void)
{
int i;
for (i = 0; i < EVP_PKEY_asn1_get_count(); i++) {
const EVP_PKEY_ASN1_METHOD *ameth;
int pkey_id, pkey_base_id, pkey_flags;
const char *pinfo, *pem_str;
ameth = EVP_PKEY_asn1_get0(i);
EVP_PKEY_asn1_get0_info(&pkey_id, &pkey_base_id, &pkey_flags,
&pinfo, &pem_str, ameth);
if (pkey_flags & ASN1_PKEY_ALIAS) {
BIO_printf(bio_out, "Name: %s\n", OBJ_nid2ln(pkey_id));
BIO_printf(bio_out, "\tAlias for: %s\n",
OBJ_nid2ln(pkey_base_id));
} else {
BIO_printf(bio_out, "Name: %s\n", pinfo);
BIO_printf(bio_out, "\tType: %s Algorithm\n",
pkey_flags & ASN1_PKEY_DYNAMIC ?
"External" : "Builtin");
BIO_printf(bio_out, "\tOID: %s\n", OBJ_nid2ln(pkey_id));
if (pem_str == NULL)
pem_str = "(none)";
BIO_printf(bio_out, "\tPEM string: %s\n", pem_str);
}
}
}
#ifndef OPENSSL_NO_DEPRECATED_3_0
static void list_pkey_meth(void)
{
size_t i;
size_t meth_count = EVP_PKEY_meth_get_count();
for (i = 0; i < meth_count; i++) {
const EVP_PKEY_METHOD *pmeth = EVP_PKEY_meth_get0(i);
int pkey_id, pkey_flags;
EVP_PKEY_meth_get0_info(&pkey_id, &pkey_flags, pmeth);
BIO_printf(bio_out, "%s\n", OBJ_nid2ln(pkey_id));
BIO_printf(bio_out, "\tType: %s Algorithm\n",
pkey_flags & ASN1_PKEY_DYNAMIC ? "External" : "Builtin");
}
}
#endif
#ifndef OPENSSL_NO_DEPRECATED_3_0
static void list_engines(void)
{
# ifndef OPENSSL_NO_ENGINE
ENGINE *e;
BIO_puts(bio_out, "Engines:\n");
e = ENGINE_get_first();
while (e) {
BIO_printf(bio_out, "%s\n", ENGINE_get_id(e));
e = ENGINE_get_next(e);
}
# else
BIO_puts(bio_out, "Engine support is disabled.\n");
# endif
}
#endif
static void list_disabled(void)
{
BIO_puts(bio_out, "Disabled algorithms:\n");
#ifdef OPENSSL_NO_ARIA
BIO_puts(bio_out, "ARIA\n");
#endif
#ifdef OPENSSL_NO_BF
BIO_puts(bio_out, "BF\n");
#endif
#ifdef OPENSSL_NO_BLAKE2
BIO_puts(bio_out, "BLAKE2\n");
#endif
#ifdef OPENSSL_NO_CAMELLIA
BIO_puts(bio_out, "CAMELLIA\n");
#endif
#ifdef OPENSSL_NO_CAST
BIO_puts(bio_out, "CAST\n");
#endif
#ifdef OPENSSL_NO_CMAC
BIO_puts(bio_out, "CMAC\n");
#endif
#ifdef OPENSSL_NO_CMS
BIO_puts(bio_out, "CMS\n");
#endif
#ifdef OPENSSL_NO_COMP
BIO_puts(bio_out, "COMP\n");
#endif
#ifdef OPENSSL_NO_DES
BIO_puts(bio_out, "DES\n");
#endif
#ifdef OPENSSL_NO_DGRAM
BIO_puts(bio_out, "DGRAM\n");
#endif
#ifdef OPENSSL_NO_DH
BIO_puts(bio_out, "DH\n");
#endif
#ifdef OPENSSL_NO_DSA
BIO_puts(bio_out, "DSA\n");
#endif
#if defined(OPENSSL_NO_DTLS)
BIO_puts(bio_out, "DTLS\n");
#endif
#if defined(OPENSSL_NO_DTLS1)
BIO_puts(bio_out, "DTLS1\n");
#endif
#if defined(OPENSSL_NO_DTLS1_2)
BIO_puts(bio_out, "DTLS1_2\n");
#endif
#ifdef OPENSSL_NO_EC
BIO_puts(bio_out, "EC\n");
#endif
#ifdef OPENSSL_NO_EC2M
BIO_puts(bio_out, "EC2M\n");
#endif
#if defined(OPENSSL_NO_ENGINE) && !defined(OPENSSL_NO_DEPRECATED_3_0)
BIO_puts(bio_out, "ENGINE\n");
#endif
#ifdef OPENSSL_NO_GOST
BIO_puts(bio_out, "GOST\n");
#endif
#ifdef OPENSSL_NO_IDEA
BIO_puts(bio_out, "IDEA\n");
#endif
#ifdef OPENSSL_NO_MD2
BIO_puts(bio_out, "MD2\n");
#endif
#ifdef OPENSSL_NO_MD4
BIO_puts(bio_out, "MD4\n");
#endif
#ifdef OPENSSL_NO_MD5
BIO_puts(bio_out, "MD5\n");
#endif
#ifdef OPENSSL_NO_MDC2
BIO_puts(bio_out, "MDC2\n");
#endif
#ifdef OPENSSL_NO_OCB
BIO_puts(bio_out, "OCB\n");
#endif
#ifdef OPENSSL_NO_OCSP
BIO_puts(bio_out, "OCSP\n");
#endif
#ifdef OPENSSL_NO_PSK
BIO_puts(bio_out, "PSK\n");
#endif
#ifdef OPENSSL_NO_RC2
BIO_puts(bio_out, "RC2\n");
#endif
#ifdef OPENSSL_NO_RC4
BIO_puts(bio_out, "RC4\n");
#endif
#ifdef OPENSSL_NO_RC5
BIO_puts(bio_out, "RC5\n");
#endif
#ifdef OPENSSL_NO_RMD160
BIO_puts(bio_out, "RMD160\n");
#endif
#ifdef OPENSSL_NO_RSA
BIO_puts(bio_out, "RSA\n");
#endif
#ifdef OPENSSL_NO_SCRYPT
BIO_puts(bio_out, "SCRYPT\n");
#endif
#ifdef OPENSSL_NO_SCTP
BIO_puts(bio_out, "SCTP\n");
#endif
#ifdef OPENSSL_NO_SEED
BIO_puts(bio_out, "SEED\n");
#endif
#ifdef OPENSSL_NO_SM2
BIO_puts(bio_out, "SM2\n");
#endif
#ifdef OPENSSL_NO_SM3
BIO_puts(bio_out, "SM3\n");
#endif
#ifdef OPENSSL_NO_SM4
BIO_puts(bio_out, "SM4\n");
#endif
#ifdef OPENSSL_NO_SOCK
BIO_puts(bio_out, "SOCK\n");
#endif
#ifdef OPENSSL_NO_SRP
BIO_puts(bio_out, "SRP\n");
#endif
#ifdef OPENSSL_NO_SRTP
BIO_puts(bio_out, "SRTP\n");
#endif
#ifdef OPENSSL_NO_SSL3
BIO_puts(bio_out, "SSL3\n");
#endif
#ifdef OPENSSL_NO_TLS1
BIO_puts(bio_out, "TLS1\n");
#endif
#ifdef OPENSSL_NO_TLS1_1
BIO_puts(bio_out, "TLS1_1\n");
#endif
#ifdef OPENSSL_NO_TLS1_2
BIO_puts(bio_out, "TLS1_2\n");
#endif
#ifdef OPENSSL_NO_WHIRLPOOL
BIO_puts(bio_out, "WHIRLPOOL\n");
#endif
#ifndef ZLIB
BIO_puts(bio_out, "ZLIB\n");
#endif
}
/* Unified enum for help and list commands. */
typedef enum HELPLIST_CHOICE {
OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ONE, OPT_VERBOSE,
OPT_COMMANDS, OPT_DIGEST_COMMANDS, OPT_MAC_ALGORITHMS, OPT_OPTIONS,
OPT_DIGEST_ALGORITHMS, OPT_CIPHER_COMMANDS, OPT_CIPHER_ALGORITHMS,
OPT_PK_ALGORITHMS, OPT_PK_METHOD, OPT_DISABLED,
OPT_KDF_ALGORITHMS, OPT_RANDOM_GENERATORS, OPT_SERIALIZERS,
OPT_DESERIALIZERS,
OPT_MISSING_HELP, OPT_OBJECTS,
#ifndef OPENSSL_NO_DEPRECATED_3_0
OPT_ENGINES,
#endif
OPT_PROV_ENUM
} HELPLIST_CHOICE;
const OPTIONS list_options[] = {
OPT_SECTION("General"),
{"help", OPT_HELP, '-', "Display this summary"},
OPT_SECTION("Output"),
{"1", OPT_ONE, '-', "List in one column"},
{"verbose", OPT_VERBOSE, '-', "Verbose listing"},
{"commands", OPT_COMMANDS, '-', "List of standard commands"},
{"standard-commands", OPT_COMMANDS, '-', "List of standard commands"},
{"digest-commands", OPT_DIGEST_COMMANDS, '-',
"List of message digest commands"},
{"digest-algorithms", OPT_DIGEST_ALGORITHMS, '-',
"List of message digest algorithms"},
{"kdf-algorithms", OPT_KDF_ALGORITHMS, '-',
"List of key derivation and pseudo random function algorithms"},
{"random-generators", OPT_RANDOM_GENERATORS, '-',
"List of random number generators"},
{"mac-algorithms", OPT_MAC_ALGORITHMS, '-',
"List of message authentication code algorithms"},
{"cipher-commands", OPT_CIPHER_COMMANDS, '-', "List of cipher commands"},
{"cipher-algorithms", OPT_CIPHER_ALGORITHMS, '-',
"List of cipher algorithms"},
{"serializers", OPT_SERIALIZERS, '-', "List of serialization methods" },
{"deserializers", OPT_DESERIALIZERS, '-',
"List of deserialization methods" },
{"public-key-algorithms", OPT_PK_ALGORITHMS, '-',
"List of public key algorithms"},
#ifndef OPENSSL_NO_DEPRECATED_3_0
{"public-key-methods", OPT_PK_METHOD, '-',
"List of public key methods"},
{"engines", OPT_ENGINES, '-',
"List of loaded engines"},
#endif
{"disabled", OPT_DISABLED, '-', "List of disabled features"},
{"missing-help", OPT_MISSING_HELP, '-',
"List missing detailed help strings"},
{"options", OPT_OPTIONS, 's',
"List options for specified command"},
{"objects", OPT_OBJECTS, '-',
"List built in objects (OID<->name mappings)"},
OPT_PROV_OPTIONS,
{NULL}
};
int list_main(int argc, char **argv)
{
char *prog;
HELPLIST_CHOICE o;
int one = 0, done = 0;
struct {
unsigned int commands:1;
unsigned int random_generators:1;
unsigned int digest_commands:1;
unsigned int digest_algorithms:1;
unsigned int kdf_algorithms:1;
unsigned int mac_algorithms:1;
unsigned int cipher_commands:1;
unsigned int cipher_algorithms:1;
unsigned int serializer_algorithms:1;
unsigned int deserializer_algorithms:1;
unsigned int pk_algorithms:1;
unsigned int pk_method:1;
#ifndef OPENSSL_NO_DEPRECATED_3_0
unsigned int engines:1;
#endif
unsigned int disabled:1;
unsigned int missing_help:1;
unsigned int objects:1;
unsigned int options:1;
} todo = { 0, };
verbose = 0; /* Clear a possible previous call */
prog = opt_init(argc, argv, list_options);
while ((o = opt_next()) != OPT_EOF) {
switch (o) {
case OPT_EOF: /* Never hit, but suppresses warning */
case OPT_ERR:
opthelp:
BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
return 1;
case OPT_HELP:
opt_help(list_options);
break;
case OPT_ONE:
one = 1;
break;
case OPT_COMMANDS:
todo.commands = 1;
break;
case OPT_DIGEST_COMMANDS:
todo.digest_commands = 1;
break;
case OPT_DIGEST_ALGORITHMS:
todo.digest_algorithms = 1;
break;
case OPT_KDF_ALGORITHMS:
todo.kdf_algorithms = 1;
break;
case OPT_RANDOM_GENERATORS:
todo.random_generators = 1;
break;
case OPT_MAC_ALGORITHMS:
todo.mac_algorithms = 1;
break;
case OPT_CIPHER_COMMANDS:
todo.cipher_commands = 1;
break;
case OPT_CIPHER_ALGORITHMS:
todo.cipher_algorithms = 1;
break;
case OPT_SERIALIZERS:
todo.serializer_algorithms = 1;
break;
case OPT_DESERIALIZERS:
todo.deserializer_algorithms = 1;
break;
case OPT_PK_ALGORITHMS:
todo.pk_algorithms = 1;
break;
case OPT_PK_METHOD:
todo.pk_method = 1;
break;
#ifndef OPENSSL_NO_DEPRECATED_3_0
case OPT_ENGINES:
todo.engines = 1;
break;
#endif
case OPT_DISABLED:
todo.disabled = 1;
break;
case OPT_MISSING_HELP:
todo.missing_help = 1;
break;
case OPT_OBJECTS:
todo.objects = 1;
break;
case OPT_OPTIONS:
list_options_for_command(opt_arg());
break;
case OPT_VERBOSE:
verbose = 1;
break;
case OPT_PROV_CASES:
if (!opt_provider(o))
return 1;
break;
}
done = 1;
}
if (opt_num_rest() != 0) {
BIO_printf(bio_err, "Extra arguments given.\n");
goto opthelp;
}
if (todo.commands)
list_type(FT_general, one);
if (todo.random_generators)
list_random_generators();
if (todo.digest_commands)
list_type(FT_md, one);
if (todo.digest_algorithms)
list_digests();
if (todo.kdf_algorithms)
list_kdfs();
if (todo.mac_algorithms)
list_macs();
if (todo.cipher_commands)
list_type(FT_cipher, one);
if (todo.cipher_algorithms)
list_ciphers();
if (todo.serializer_algorithms)
list_serializers();
if (todo.deserializer_algorithms)
list_deserializers();
if (todo.pk_algorithms)
list_pkey();
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (todo.pk_method)
list_pkey_meth();
if (todo.engines)
list_engines();
#endif
if (todo.disabled)
list_disabled();
if (todo.missing_help)
list_missing_help();
if (todo.objects)
list_objects();
if (!done)
goto opthelp;
return 0;
}