mirror of
https://github.com/openssl/openssl.git
synced 2024-12-15 06:01:37 +08:00
9b86974e0c
L<foo|foo> is sub-optimal If the xref is the same as the title, which is what we do, then you only need L<foo>. This fixes all 1457 occurrences in 349 files. Approximately. (And pod used to need both.) Reviewed-by: Richard Levitte <levitte@openssl.org>
98 lines
4.9 KiB
Plaintext
98 lines
4.9 KiB
Plaintext
=pod
|
|
|
|
=head1 NAME
|
|
|
|
EC_GROUP_new, EC_GROUP_free, EC_GROUP_clear_free, EC_GROUP_new_curve_GFp, EC_GROUP_new_curve_GF2m, EC_GROUP_new_by_curve_name, EC_GROUP_set_curve_GFp, EC_GROUP_get_curve_GFp, EC_GROUP_set_curve_GF2m, EC_GROUP_get_curve_GF2m, EC_get_builtin_curves - Functions for creating and destroying B<EC_GROUP> objects.
|
|
|
|
=head1 SYNOPSIS
|
|
|
|
#include <openssl/ec.h>
|
|
#include <openssl/bn.h>
|
|
|
|
EC_GROUP *EC_GROUP_new(const EC_METHOD *meth);
|
|
void EC_GROUP_free(EC_GROUP *group);
|
|
void EC_GROUP_clear_free(EC_GROUP *group);
|
|
|
|
EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
|
|
EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
|
|
EC_GROUP *EC_GROUP_new_by_curve_name(int nid);
|
|
|
|
int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
|
|
int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
|
|
int EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
|
|
int EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
|
|
|
|
size_t EC_get_builtin_curves(EC_builtin_curve *r, size_t nitems);
|
|
|
|
=head1 DESCRIPTION
|
|
|
|
Within the library there are two forms of elliptic curve that are of interest. The first form is those defined over the
|
|
prime field Fp. The elements of Fp are the integers 0 to p-1, where p is a prime number. This gives us a revised
|
|
elliptic curve equation as follows:
|
|
|
|
y^2 mod p = x^3 +ax + b mod p
|
|
|
|
The second form is those defined over a binary field F2^m where the elements of the field are integers of length at
|
|
most m bits. For this form the elliptic curve equation is modified to:
|
|
|
|
y^2 + xy = x^3 + ax^2 + b (where b != 0)
|
|
|
|
Operations in a binary field are performed relative to an B<irreducible polynomial>. All such curves with OpenSSL
|
|
use a trinomial or a pentanomial for this parameter.
|
|
|
|
A new curve can be constructed by calling EC_GROUP_new, using the implementation provided by B<meth> (see
|
|
L<EC_GFp_simple_method(3)>). It is then necessary to call either EC_GROUP_set_curve_GFp or
|
|
EC_GROUP_set_curve_GF2m as appropriate to create a curve defined over Fp or over F2^m respectively.
|
|
|
|
EC_GROUP_set_curve_GFp sets the curve parameters B<p>, B<a> and B<b> for a curve over Fp stored in B<group>.
|
|
EC_group_get_curve_GFp obtains the previously set curve parameters.
|
|
|
|
EC_GROUP_set_curve_GF2m sets the equivalent curve parameters for a curve over F2^m. In this case B<p> represents
|
|
the irreducible polynomial - each bit represents a term in the polynomial. Therefore there will either be three
|
|
or five bits set dependent on whether the polynomial is a trinomial or a pentanomial.
|
|
EC_group_get_curve_GF2m obtains the previously set curve parameters.
|
|
|
|
The functions EC_GROUP_new_curve_GFp and EC_GROUP_new_curve_GF2m are shortcuts for calling EC_GROUP_new and the
|
|
appropriate EC_group_set_curve function. An appropriate default implementation method will be used.
|
|
|
|
Whilst the library can be used to create any curve using the functions described above, there are also a number of
|
|
predefined curves that are available. In order to obtain a list of all of the predefined curves, call the function
|
|
EC_get_builtin_curves. The parameter B<r> should be an array of EC_builtin_curve structures of size B<nitems>. The function
|
|
will populate the B<r> array with information about the builtin curves. If B<nitems> is less than the total number of
|
|
curves available, then the first B<nitems> curves will be returned. Otherwise the total number of curves will be
|
|
provided. The return value is the total number of curves available (whether that number has been populated in B<r> or
|
|
not). Passing a NULL B<r>, or setting B<nitems> to 0 will do nothing other than return the total number of curves available.
|
|
The EC_builtin_curve structure is defined as follows:
|
|
|
|
typedef struct {
|
|
int nid;
|
|
const char *comment;
|
|
} EC_builtin_curve;
|
|
|
|
Each EC_builtin_curve item has a unique integer id (B<nid>), and a human readable comment string describing the curve.
|
|
|
|
In order to construct a builtin curve use the function EC_GROUP_new_by_curve_name and provide the B<nid> of the curve to
|
|
be constructed.
|
|
|
|
EC_GROUP_free frees the memory associated with the EC_GROUP.
|
|
If B<group> is NULL nothing is done.
|
|
|
|
EC_GROUP_clear_free destroys any sensitive data held within the EC_GROUP and then frees its memory.
|
|
If B<group> is NULL nothing is done.
|
|
|
|
=head1 RETURN VALUES
|
|
|
|
All EC_GROUP_new* functions return a pointer to the newly constructed group, or NULL on error.
|
|
|
|
EC_get_builtin_curves returns the number of builtin curves that are available.
|
|
|
|
EC_GROUP_set_curve_GFp, EC_GROUP_get_curve_GFp, EC_GROUP_set_curve_GF2m, EC_GROUP_get_curve_GF2m return 1 on success or 0 on error.
|
|
|
|
=head1 SEE ALSO
|
|
|
|
L<crypto(3)>, L<ec(3)>, L<EC_GROUP_copy(3)>,
|
|
L<EC_POINT_new(3)>, L<EC_POINT_add(3)>, L<EC_KEY_new(3)>,
|
|
L<EC_GFp_simple_method(3)>, L<d2i_ECPKParameters(3)>
|
|
|
|
=cut
|