mirror of
https://github.com/openssl/openssl.git
synced 2024-11-27 05:21:51 +08:00
0d4fb84390
Signed-off-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org>
673 lines
18 KiB
C
673 lines
18 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/numbers.h"
|
|
#include <limits.h>
|
|
#include <openssl/asn1.h>
|
|
#include <openssl/bn.h>
|
|
#include "asn1_locl.h"
|
|
|
|
ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x)
|
|
{
|
|
return ASN1_STRING_dup(x);
|
|
}
|
|
|
|
int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
|
|
{
|
|
int neg, ret;
|
|
/* Compare signs */
|
|
neg = x->type & V_ASN1_NEG;
|
|
if (neg != (y->type & V_ASN1_NEG)) {
|
|
if (neg)
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
ret = ASN1_STRING_cmp(x, y);
|
|
|
|
if (neg)
|
|
return -ret;
|
|
else
|
|
return ret;
|
|
}
|
|
|
|
/*-
|
|
* This converts a big endian buffer and sign into its content encoding.
|
|
* This is used for INTEGER and ENUMERATED types.
|
|
* The internal representation is an ASN1_STRING whose data is a big endian
|
|
* representation of the value, ignoring the sign. The sign is determined by
|
|
* the type: if type & V_ASN1_NEG is true it is negative, otherwise positive.
|
|
*
|
|
* Positive integers are no problem: they are almost the same as the DER
|
|
* encoding, except if the first byte is >= 0x80 we need to add a zero pad.
|
|
*
|
|
* Negative integers are a bit trickier...
|
|
* The DER representation of negative integers is in 2s complement form.
|
|
* The internal form is converted by complementing each octet and finally
|
|
* adding one to the result. This can be done less messily with a little trick.
|
|
* If the internal form has trailing zeroes then they will become FF by the
|
|
* complement and 0 by the add one (due to carry) so just copy as many trailing
|
|
* zeros to the destination as there are in the source. The carry will add one
|
|
* to the last none zero octet: so complement this octet and add one and finally
|
|
* complement any left over until you get to the start of the string.
|
|
*
|
|
* Padding is a little trickier too. If the first bytes is > 0x80 then we pad
|
|
* with 0xff. However if the first byte is 0x80 and one of the following bytes
|
|
* is non-zero we pad with 0xff. The reason for this distinction is that 0x80
|
|
* followed by optional zeros isn't padded.
|
|
*/
|
|
|
|
static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg,
|
|
unsigned char **pp)
|
|
{
|
|
int pad = 0;
|
|
size_t ret, i;
|
|
unsigned char *p, pb = 0;
|
|
const unsigned char *n;
|
|
|
|
if (b == NULL || blen == 0)
|
|
ret = 1;
|
|
else {
|
|
ret = blen;
|
|
i = b[0];
|
|
if (ret == 1 && i == 0)
|
|
neg = 0;
|
|
if (!neg && (i > 127)) {
|
|
pad = 1;
|
|
pb = 0;
|
|
} else if (neg) {
|
|
if (i > 128) {
|
|
pad = 1;
|
|
pb = 0xFF;
|
|
} else if (i == 128) {
|
|
/*
|
|
* Special case: if any other bytes non zero we pad:
|
|
* otherwise we don't.
|
|
*/
|
|
for (i = 1; i < blen; i++)
|
|
if (b[i]) {
|
|
pad = 1;
|
|
pb = 0xFF;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
ret += pad;
|
|
}
|
|
if (pp == NULL)
|
|
return ret;
|
|
p = *pp;
|
|
|
|
if (pad)
|
|
*(p++) = pb;
|
|
if (b == NULL || blen == 0)
|
|
*p = 0;
|
|
else if (!neg)
|
|
memcpy(p, b, blen);
|
|
else {
|
|
/* Begin at the end of the encoding */
|
|
n = b + blen - 1;
|
|
p += blen - 1;
|
|
i = blen;
|
|
/* Copy zeros to destination as long as source is zero */
|
|
while (!*n && i > 1) {
|
|
*(p--) = 0;
|
|
n--;
|
|
i--;
|
|
}
|
|
/* Complement and increment next octet */
|
|
*(p--) = ((*(n--)) ^ 0xff) + 1;
|
|
i--;
|
|
/* Complement any octets left */
|
|
for (; i > 0; i--)
|
|
*(p--) = *(n--) ^ 0xff;
|
|
}
|
|
|
|
*pp += ret;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* convert content octets into a big endian buffer. Returns the length
|
|
* of buffer or 0 on error: for malformed INTEGER. If output buffer is
|
|
* NULL just return length.
|
|
*/
|
|
|
|
static size_t c2i_ibuf(unsigned char *b, int *pneg,
|
|
const unsigned char *p, size_t plen)
|
|
{
|
|
size_t i;
|
|
int neg, pad;
|
|
/* Zero content length is illegal */
|
|
if (plen == 0) {
|
|
ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT);
|
|
return 0;
|
|
}
|
|
neg = p[0] & 0x80;
|
|
if (pneg)
|
|
*pneg = neg;
|
|
/* Handle common case where length is 1 octet separately */
|
|
if (plen == 1) {
|
|
if (b) {
|
|
if (neg)
|
|
b[0] = (p[0] ^ 0xFF) + 1;
|
|
else
|
|
b[0] = p[0];
|
|
}
|
|
return 1;
|
|
}
|
|
if (p[0] == 0 || p[0] == 0xFF)
|
|
pad = 1;
|
|
else
|
|
pad = 0;
|
|
/* reject illegal padding: first two octets MSB can't match */
|
|
if (pad && (neg == (p[1] & 0x80))) {
|
|
ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING);
|
|
return 0;
|
|
}
|
|
/* If positive just copy across */
|
|
if (neg == 0) {
|
|
if (b)
|
|
memcpy(b, p + pad, plen - pad);
|
|
return plen - pad;
|
|
}
|
|
|
|
if (neg && pad) {
|
|
/* check is any following octets are non zero */
|
|
for (i = 1; i < plen; i++) {
|
|
if (p[i] != 0)
|
|
break;
|
|
}
|
|
/* if all bytes are zero handle as special case */
|
|
if (i == plen) {
|
|
if (b) {
|
|
b[0] = 1;
|
|
memset(b + 1, 0, plen - 1);
|
|
}
|
|
return plen;
|
|
}
|
|
}
|
|
|
|
plen -= pad;
|
|
/* Must be negative: calculate twos complement */
|
|
if (b) {
|
|
const unsigned char *from = p + plen - 1 + pad;
|
|
unsigned char *to = b + plen - 1;
|
|
i = plen;
|
|
while (*from == 0 && i) {
|
|
*to-- = 0;
|
|
i--;
|
|
from--;
|
|
}
|
|
*to-- = (*from-- ^ 0xff) + 1;
|
|
OPENSSL_assert(i != 0);
|
|
i--;
|
|
for (; i > 0; i--)
|
|
*to-- = *from-- ^ 0xff;
|
|
}
|
|
return plen;
|
|
}
|
|
|
|
int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
|
|
{
|
|
return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp);
|
|
}
|
|
|
|
/* Convert big endian buffer into uint64_t, return 0 on error */
|
|
static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen)
|
|
{
|
|
size_t i;
|
|
if (blen > sizeof(*pr)) {
|
|
ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE);
|
|
return 0;
|
|
}
|
|
*pr = 0;
|
|
if (b == NULL)
|
|
return 0;
|
|
for (i = 0; i < blen; i++) {
|
|
*pr <<= 8;
|
|
*pr |= b[i];
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static size_t asn1_put_uint64(unsigned char *b, uint64_t r)
|
|
{
|
|
if (r >= 0x100) {
|
|
unsigned char *p;
|
|
uint64_t rtmp = r;
|
|
size_t i = 0;
|
|
|
|
/* Work out how many bytes we need */
|
|
while (rtmp) {
|
|
rtmp >>= 8;
|
|
i++;
|
|
}
|
|
|
|
/* Copy from end to beginning */
|
|
p = b + i - 1;
|
|
|
|
do {
|
|
*p-- = r & 0xFF;
|
|
r >>= 8;
|
|
} while (p >= b);
|
|
|
|
return i;
|
|
}
|
|
|
|
b[0] = (unsigned char)r;
|
|
return 1;
|
|
|
|
}
|
|
|
|
/*
|
|
* Absolute value of INT64_MIN: we can't just use -INT64_MIN as it produces
|
|
* overflow warnings.
|
|
*/
|
|
|
|
#define ABS_INT64_MIN \
|
|
((uint64_t)INT64_MAX + (uint64_t)(-(INT64_MIN + INT64_MAX)))
|
|
|
|
/* signed version of asn1_get_uint64 */
|
|
static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen,
|
|
int neg)
|
|
{
|
|
uint64_t r;
|
|
if (asn1_get_uint64(&r, b, blen) == 0)
|
|
return 0;
|
|
if (neg) {
|
|
if (r > ABS_INT64_MIN) {
|
|
ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
*pr = -(int64_t)r;
|
|
} else {
|
|
if (r > INT64_MAX) {
|
|
ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE);
|
|
return 0;
|
|
}
|
|
*pr = (int64_t)r;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */
|
|
ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp,
|
|
long len)
|
|
{
|
|
ASN1_INTEGER *ret = NULL;
|
|
size_t r;
|
|
int neg;
|
|
|
|
r = c2i_ibuf(NULL, NULL, *pp, len);
|
|
|
|
if (r == 0)
|
|
return NULL;
|
|
|
|
if ((a == NULL) || ((*a) == NULL)) {
|
|
ret = ASN1_INTEGER_new();
|
|
if (ret == NULL)
|
|
return NULL;
|
|
ret->type = V_ASN1_INTEGER;
|
|
} else
|
|
ret = *a;
|
|
|
|
if (ASN1_STRING_set(ret, NULL, r) == 0)
|
|
goto err;
|
|
|
|
c2i_ibuf(ret->data, &neg, *pp, len);
|
|
|
|
if (neg)
|
|
ret->type |= V_ASN1_NEG;
|
|
|
|
*pp += len;
|
|
if (a != NULL)
|
|
(*a) = ret;
|
|
return ret;
|
|
err:
|
|
ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE);
|
|
if ((a == NULL) || (*a != ret))
|
|
ASN1_INTEGER_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype)
|
|
{
|
|
if (a == NULL) {
|
|
ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
if ((a->type & ~V_ASN1_NEG) != itype) {
|
|
ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE);
|
|
return 0;
|
|
}
|
|
return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG);
|
|
}
|
|
|
|
static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype)
|
|
{
|
|
unsigned char tbuf[sizeof(r)];
|
|
size_t l;
|
|
a->type = itype;
|
|
if (r < 0) {
|
|
l = asn1_put_uint64(tbuf, -r);
|
|
a->type |= V_ASN1_NEG;
|
|
} else {
|
|
l = asn1_put_uint64(tbuf, r);
|
|
a->type &= ~V_ASN1_NEG;
|
|
}
|
|
if (l == 0)
|
|
return 0;
|
|
return ASN1_STRING_set(a, tbuf, l);
|
|
}
|
|
|
|
static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a,
|
|
int itype)
|
|
{
|
|
if (a == NULL) {
|
|
ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
if ((a->type & ~V_ASN1_NEG) != itype) {
|
|
ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE);
|
|
return 0;
|
|
}
|
|
if (a->type & V_ASN1_NEG) {
|
|
ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
|
|
return 0;
|
|
}
|
|
return asn1_get_uint64(pr, a->data, a->length);
|
|
}
|
|
|
|
static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype)
|
|
{
|
|
unsigned char tbuf[sizeof(r)];
|
|
size_t l;
|
|
a->type = itype;
|
|
l = asn1_put_uint64(tbuf, r);
|
|
if (l == 0)
|
|
return 0;
|
|
return ASN1_STRING_set(a, tbuf, l);
|
|
}
|
|
|
|
/*
|
|
* This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1
|
|
* integers: some broken software can encode a positive INTEGER with its MSB
|
|
* set as negative (it doesn't add a padding zero).
|
|
*/
|
|
|
|
ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
|
|
long length)
|
|
{
|
|
ASN1_INTEGER *ret = NULL;
|
|
const unsigned char *p;
|
|
unsigned char *s;
|
|
long len;
|
|
int inf, tag, xclass;
|
|
int i;
|
|
|
|
if ((a == NULL) || ((*a) == NULL)) {
|
|
if ((ret = ASN1_INTEGER_new()) == NULL)
|
|
return (NULL);
|
|
ret->type = V_ASN1_INTEGER;
|
|
} else
|
|
ret = (*a);
|
|
|
|
p = *pp;
|
|
inf = ASN1_get_object(&p, &len, &tag, &xclass, length);
|
|
if (inf & 0x80) {
|
|
i = ASN1_R_BAD_OBJECT_HEADER;
|
|
goto err;
|
|
}
|
|
|
|
if (tag != V_ASN1_INTEGER) {
|
|
i = ASN1_R_EXPECTING_AN_INTEGER;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies
|
|
* a missing NULL parameter.
|
|
*/
|
|
s = OPENSSL_malloc((int)len + 1);
|
|
if (s == NULL) {
|
|
i = ERR_R_MALLOC_FAILURE;
|
|
goto err;
|
|
}
|
|
ret->type = V_ASN1_INTEGER;
|
|
if (len) {
|
|
if ((*p == 0) && (len != 1)) {
|
|
p++;
|
|
len--;
|
|
}
|
|
memcpy(s, p, (int)len);
|
|
p += len;
|
|
}
|
|
|
|
OPENSSL_free(ret->data);
|
|
ret->data = s;
|
|
ret->length = (int)len;
|
|
if (a != NULL)
|
|
(*a) = ret;
|
|
*pp = p;
|
|
return (ret);
|
|
err:
|
|
ASN1err(ASN1_F_D2I_ASN1_UINTEGER, i);
|
|
if ((a == NULL) || (*a != ret))
|
|
ASN1_INTEGER_free(ret);
|
|
return (NULL);
|
|
}
|
|
|
|
static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai,
|
|
int atype)
|
|
{
|
|
ASN1_INTEGER *ret;
|
|
int len;
|
|
|
|
if (ai == NULL) {
|
|
ret = ASN1_STRING_type_new(atype);
|
|
} else {
|
|
ret = ai;
|
|
ret->type = atype;
|
|
}
|
|
|
|
if (ret == NULL) {
|
|
ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
if (BN_is_negative(bn) && !BN_is_zero(bn))
|
|
ret->type |= V_ASN1_NEG_INTEGER;
|
|
|
|
len = BN_num_bytes(bn);
|
|
|
|
if (len == 0)
|
|
len = 1;
|
|
|
|
if (ASN1_STRING_set(ret, NULL, len) == 0) {
|
|
ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
/* Correct zero case */
|
|
if (BN_is_zero(bn))
|
|
ret->data[0] = 0;
|
|
else
|
|
len = BN_bn2bin(bn, ret->data);
|
|
ret->length = len;
|
|
return ret;
|
|
err:
|
|
if (ret != ai)
|
|
ASN1_INTEGER_free(ret);
|
|
return (NULL);
|
|
}
|
|
|
|
static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn,
|
|
int itype)
|
|
{
|
|
BIGNUM *ret;
|
|
|
|
if ((ai->type & ~V_ASN1_NEG) != itype) {
|
|
ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE);
|
|
return NULL;
|
|
}
|
|
|
|
ret = BN_bin2bn(ai->data, ai->length, bn);
|
|
if (ret == 0) {
|
|
ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB);
|
|
return NULL;
|
|
}
|
|
if (ai->type & V_ASN1_NEG)
|
|
BN_set_negative(ret, 1);
|
|
return ret;
|
|
}
|
|
|
|
int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a)
|
|
{
|
|
return asn1_string_get_int64(pr, a, V_ASN1_INTEGER);
|
|
}
|
|
|
|
int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r)
|
|
{
|
|
return asn1_string_set_int64(a, r, V_ASN1_INTEGER);
|
|
}
|
|
|
|
int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a)
|
|
{
|
|
return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER);
|
|
}
|
|
|
|
int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r)
|
|
{
|
|
return asn1_string_set_uint64(a, r, V_ASN1_INTEGER);
|
|
}
|
|
|
|
int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
|
|
{
|
|
return ASN1_INTEGER_set_int64(a, v);
|
|
}
|
|
|
|
long ASN1_INTEGER_get(const ASN1_INTEGER *a)
|
|
{
|
|
int i;
|
|
int64_t r;
|
|
if (a == NULL)
|
|
return 0;
|
|
i = ASN1_INTEGER_get_int64(&r, a);
|
|
if (i == 0)
|
|
return -1;
|
|
if (r > LONG_MAX || r < LONG_MIN)
|
|
return -1;
|
|
return (long)r;
|
|
}
|
|
|
|
ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
|
|
{
|
|
return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER);
|
|
}
|
|
|
|
BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
|
|
{
|
|
return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER);
|
|
}
|
|
|
|
int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a)
|
|
{
|
|
return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED);
|
|
}
|
|
|
|
int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r)
|
|
{
|
|
return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED);
|
|
}
|
|
|
|
int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v)
|
|
{
|
|
return ASN1_ENUMERATED_set_int64(a, v);
|
|
}
|
|
|
|
long ASN1_ENUMERATED_get(ASN1_ENUMERATED *a)
|
|
{
|
|
int i;
|
|
int64_t r;
|
|
if (a == NULL)
|
|
return 0;
|
|
if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED)
|
|
return -1;
|
|
if (a->length > (int)sizeof(long))
|
|
return 0xffffffffL;
|
|
i = ASN1_ENUMERATED_get_int64(&r, a);
|
|
if (i == 0)
|
|
return -1;
|
|
if (r > LONG_MAX || r < LONG_MIN)
|
|
return -1;
|
|
return (long)r;
|
|
}
|
|
|
|
ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai)
|
|
{
|
|
return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED);
|
|
}
|
|
|
|
BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn)
|
|
{
|
|
return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED);
|
|
}
|