mirror of
https://github.com/openssl/openssl.git
synced 2024-11-27 05:21:51 +08:00
b0700d2c8d
All instances of SSLeay (any combination of case) were replaced with the case-equivalent OpenSSL. Reviewed-by: Richard Levitte <levitte@openssl.org>
684 lines
27 KiB
C
684 lines
27 KiB
C
/* crypto/bn/bn_lcl.h */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
|
|
#ifndef HEADER_BN_LCL_H
|
|
# define HEADER_BN_LCL_H
|
|
|
|
# include "internal/bn_int.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/*-
|
|
* Bignum consistency macros
|
|
* There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
|
|
* bignum data after direct manipulations on the data. There is also an
|
|
* "internal" macro, bn_check_top(), for verifying that there are no leading
|
|
* zeroes. Unfortunately, some auditing is required due to the fact that
|
|
* bn_fix_top() has become an overabused duct-tape because bignum data is
|
|
* occasionally passed around in an inconsistent state. So the following
|
|
* changes have been made to sort this out;
|
|
* - bn_fix_top()s implementation has been moved to bn_correct_top()
|
|
* - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
|
|
* bn_check_top() is as before.
|
|
* - if BN_DEBUG *is* defined;
|
|
* - bn_check_top() tries to pollute unused words even if the bignum 'top' is
|
|
* consistent. (ed: only if BN_DEBUG_RAND is defined)
|
|
* - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
|
|
* The idea is to have debug builds flag up inconsistent bignums when they
|
|
* occur. If that occurs in a bn_fix_top(), we examine the code in question; if
|
|
* the use of bn_fix_top() was appropriate (ie. it follows directly after code
|
|
* that manipulates the bignum) it is converted to bn_correct_top(), and if it
|
|
* was not appropriate, we convert it permanently to bn_check_top() and track
|
|
* down the cause of the bug. Eventually, no internal code should be using the
|
|
* bn_fix_top() macro. External applications and libraries should try this with
|
|
* their own code too, both in terms of building against the openssl headers
|
|
* with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
|
|
* defined. This not only improves external code, it provides more test
|
|
* coverage for openssl's own code.
|
|
*/
|
|
|
|
# ifdef BN_DEBUG
|
|
|
|
/* We only need assert() when debugging */
|
|
# include <assert.h>
|
|
|
|
# ifdef BN_DEBUG_RAND
|
|
/* To avoid "make update" cvs wars due to BN_DEBUG, use some tricks */
|
|
# ifndef RAND_pseudo_bytes
|
|
int RAND_pseudo_bytes(unsigned char *buf, int num);
|
|
# define BN_DEBUG_TRIX
|
|
# endif
|
|
# define bn_pollute(a) \
|
|
do { \
|
|
const BIGNUM *_bnum1 = (a); \
|
|
if(_bnum1->top < _bnum1->dmax) { \
|
|
unsigned char _tmp_char; \
|
|
/* We cast away const without the compiler knowing, any \
|
|
* *genuinely* constant variables that aren't mutable \
|
|
* wouldn't be constructed with top!=dmax. */ \
|
|
BN_ULONG *_not_const; \
|
|
memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
|
|
RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
|
|
memset(_not_const + _bnum1->top, _tmp_char, \
|
|
sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
|
|
} \
|
|
} while(0)
|
|
# ifdef BN_DEBUG_TRIX
|
|
# undef RAND_pseudo_bytes
|
|
# endif
|
|
# else
|
|
# define bn_pollute(a)
|
|
# endif
|
|
# define bn_check_top(a) \
|
|
do { \
|
|
const BIGNUM *_bnum2 = (a); \
|
|
if (_bnum2 != NULL) { \
|
|
assert((_bnum2->top == 0) || \
|
|
(_bnum2->d[_bnum2->top - 1] != 0)); \
|
|
bn_pollute(_bnum2); \
|
|
} \
|
|
} while(0)
|
|
|
|
# define bn_fix_top(a) bn_check_top(a)
|
|
|
|
# define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
|
|
# define bn_wcheck_size(bn, words) \
|
|
do { \
|
|
const BIGNUM *_bnum2 = (bn); \
|
|
assert((words) <= (_bnum2)->dmax && (words) >= (_bnum2)->top); \
|
|
/* avoid unused variable warning with NDEBUG */ \
|
|
(void)(_bnum2); \
|
|
} while(0)
|
|
|
|
# else /* !BN_DEBUG */
|
|
|
|
# define bn_pollute(a)
|
|
# define bn_check_top(a)
|
|
# define bn_fix_top(a) bn_correct_top(a)
|
|
# define bn_check_size(bn, bits)
|
|
# define bn_wcheck_size(bn, words)
|
|
|
|
# endif
|
|
|
|
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
|
|
BN_ULONG w);
|
|
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
|
|
void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
|
|
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
|
|
BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
|
|
int num);
|
|
BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
|
|
int num);
|
|
|
|
struct bignum_st {
|
|
BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit
|
|
* chunks. */
|
|
int top; /* Index of last used d +1. */
|
|
/* The next are internal book keeping for bn_expand. */
|
|
int dmax; /* Size of the d array. */
|
|
int neg; /* one if the number is negative */
|
|
int flags;
|
|
};
|
|
|
|
/* Used for montgomery multiplication */
|
|
struct bn_mont_ctx_st {
|
|
int ri; /* number of bits in R */
|
|
BIGNUM RR; /* used to convert to montgomery form */
|
|
BIGNUM N; /* The modulus */
|
|
BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only
|
|
* stored for bignum algorithm) */
|
|
BN_ULONG n0[2]; /* least significant word(s) of Ni; (type
|
|
* changed with 0.9.9, was "BN_ULONG n0;"
|
|
* before) */
|
|
int flags;
|
|
};
|
|
|
|
/*
|
|
* Used for reciprocal division/mod functions It cannot be shared between
|
|
* threads
|
|
*/
|
|
struct bn_recp_ctx_st {
|
|
BIGNUM N; /* the divisor */
|
|
BIGNUM Nr; /* the reciprocal */
|
|
int num_bits;
|
|
int shift;
|
|
int flags;
|
|
};
|
|
|
|
/* Used for slow "generation" functions. */
|
|
struct bn_gencb_st {
|
|
unsigned int ver; /* To handle binary (in)compatibility */
|
|
void *arg; /* callback-specific data */
|
|
union {
|
|
/* if(ver==1) - handles old style callbacks */
|
|
void (*cb_1) (int, int, void *);
|
|
/* if(ver==2) - new callback style */
|
|
int (*cb_2) (int, int, BN_GENCB *);
|
|
} cb;
|
|
};
|
|
|
|
/*-
|
|
* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
|
|
*
|
|
*
|
|
* For window size 'w' (w >= 2) and a random 'b' bits exponent,
|
|
* the number of multiplications is a constant plus on average
|
|
*
|
|
* 2^(w-1) + (b-w)/(w+1);
|
|
*
|
|
* here 2^(w-1) is for precomputing the table (we actually need
|
|
* entries only for windows that have the lowest bit set), and
|
|
* (b-w)/(w+1) is an approximation for the expected number of
|
|
* w-bit windows, not counting the first one.
|
|
*
|
|
* Thus we should use
|
|
*
|
|
* w >= 6 if b > 671
|
|
* w = 5 if 671 > b > 239
|
|
* w = 4 if 239 > b > 79
|
|
* w = 3 if 79 > b > 23
|
|
* w <= 2 if 23 > b
|
|
*
|
|
* (with draws in between). Very small exponents are often selected
|
|
* with low Hamming weight, so we use w = 1 for b <= 23.
|
|
*/
|
|
# define BN_window_bits_for_exponent_size(b) \
|
|
((b) > 671 ? 6 : \
|
|
(b) > 239 ? 5 : \
|
|
(b) > 79 ? 4 : \
|
|
(b) > 23 ? 3 : 1)
|
|
|
|
/*
|
|
* BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
|
|
* line width of the target processor is at least the following value.
|
|
*/
|
|
# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )
|
|
# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
|
|
|
|
/*
|
|
* Window sizes optimized for fixed window size modular exponentiation
|
|
* algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
|
|
* BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
|
|
* log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
|
|
* defined for cache line sizes of 32 and 64, cache line sizes where
|
|
* log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
|
|
* used on processors that have a 128 byte or greater cache line size.
|
|
*/
|
|
# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
|
|
|
|
# define BN_window_bits_for_ctime_exponent_size(b) \
|
|
((b) > 937 ? 6 : \
|
|
(b) > 306 ? 5 : \
|
|
(b) > 89 ? 4 : \
|
|
(b) > 22 ? 3 : 1)
|
|
# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
|
|
|
|
# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
|
|
|
|
# define BN_window_bits_for_ctime_exponent_size(b) \
|
|
((b) > 306 ? 5 : \
|
|
(b) > 89 ? 4 : \
|
|
(b) > 22 ? 3 : 1)
|
|
# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
|
|
|
|
# endif
|
|
|
|
/* Pentium pro 16,16,16,32,64 */
|
|
/* Alpha 16,16,16,16.64 */
|
|
# define BN_MULL_SIZE_NORMAL (16)/* 32 */
|
|
# define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */
|
|
# define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */
|
|
# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */
|
|
# define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */
|
|
|
|
/*
|
|
* 2011-02-22 SMS. In various places, a size_t variable or a type cast to
|
|
* size_t was used to perform integer-only operations on pointers. This
|
|
* failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t
|
|
* is still only 32 bits. What's needed in these cases is an integer type
|
|
* with the same size as a pointer, which size_t is not certain to be. The
|
|
* only fix here is VMS-specific.
|
|
*/
|
|
# if defined(OPENSSL_SYS_VMS)
|
|
# if __INITIAL_POINTER_SIZE == 64
|
|
# define PTR_SIZE_INT long long
|
|
# else /* __INITIAL_POINTER_SIZE == 64 */
|
|
# define PTR_SIZE_INT int
|
|
# endif /* __INITIAL_POINTER_SIZE == 64 [else] */
|
|
# elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */
|
|
# define PTR_SIZE_INT size_t
|
|
# endif /* defined(OPENSSL_SYS_VMS) [else] */
|
|
|
|
# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
|
|
/*
|
|
* BN_UMULT_HIGH section.
|
|
*
|
|
* No, I'm not trying to overwhelm you when stating that the
|
|
* product of N-bit numbers is 2*N bits wide:-) No, I don't expect
|
|
* you to be impressed when I say that if the compiler doesn't
|
|
* support 2*N integer type, then you have to replace every N*N
|
|
* multiplication with 4 (N/2)*(N/2) accompanied by some shifts
|
|
* and additions which unavoidably results in severe performance
|
|
* penalties. Of course provided that the hardware is capable of
|
|
* producing 2*N result... That's when you normally start
|
|
* considering assembler implementation. However! It should be
|
|
* pointed out that some CPUs (most notably Alpha, PowerPC and
|
|
* upcoming IA-64 family:-) provide *separate* instruction
|
|
* calculating the upper half of the product placing the result
|
|
* into a general purpose register. Now *if* the compiler supports
|
|
* inline assembler, then it's not impossible to implement the
|
|
* "bignum" routines (and have the compiler optimize 'em)
|
|
* exhibiting "native" performance in C. That's what BN_UMULT_HIGH
|
|
* macro is about:-)
|
|
*
|
|
* <appro@fy.chalmers.se>
|
|
*/
|
|
# if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
|
|
# if defined(__DECC)
|
|
# include <c_asm.h>
|
|
# define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
|
|
# elif defined(__GNUC__) && __GNUC__>=2
|
|
# define BN_UMULT_HIGH(a,b) ({ \
|
|
register BN_ULONG ret; \
|
|
asm ("umulh %1,%2,%0" \
|
|
: "=r"(ret) \
|
|
: "r"(a), "r"(b)); \
|
|
ret; })
|
|
# endif /* compiler */
|
|
# elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG)
|
|
# if defined(__GNUC__) && __GNUC__>=2
|
|
# define BN_UMULT_HIGH(a,b) ({ \
|
|
register BN_ULONG ret; \
|
|
asm ("mulhdu %0,%1,%2" \
|
|
: "=r"(ret) \
|
|
: "r"(a), "r"(b)); \
|
|
ret; })
|
|
# endif /* compiler */
|
|
# elif (defined(__x86_64) || defined(__x86_64__)) && \
|
|
(defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
|
|
# if defined(__GNUC__) && __GNUC__>=2
|
|
# define BN_UMULT_HIGH(a,b) ({ \
|
|
register BN_ULONG ret,discard; \
|
|
asm ("mulq %3" \
|
|
: "=a"(discard),"=d"(ret) \
|
|
: "a"(a), "g"(b) \
|
|
: "cc"); \
|
|
ret; })
|
|
# define BN_UMULT_LOHI(low,high,a,b) \
|
|
asm ("mulq %3" \
|
|
: "=a"(low),"=d"(high) \
|
|
: "a"(a),"g"(b) \
|
|
: "cc");
|
|
# endif
|
|
# elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
|
|
# if defined(_MSC_VER) && _MSC_VER>=1400
|
|
unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
|
|
unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
|
|
unsigned __int64 *h);
|
|
# pragma intrinsic(__umulh,_umul128)
|
|
# define BN_UMULT_HIGH(a,b) __umulh((a),(b))
|
|
# define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))
|
|
# endif
|
|
# elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
|
|
# if defined(__GNUC__) && __GNUC__>=2
|
|
# if __GNUC__>4 || (__GNUC__>=4 && __GNUC_MINOR__>=4)
|
|
/* "h" constraint is no more since 4.4 */
|
|
# define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64)
|
|
# define BN_UMULT_LOHI(low,high,a,b) ({ \
|
|
__uint128_t ret=(__uint128_t)(a)*(b); \
|
|
(high)=ret>>64; (low)=ret; })
|
|
# else
|
|
# define BN_UMULT_HIGH(a,b) ({ \
|
|
register BN_ULONG ret; \
|
|
asm ("dmultu %1,%2" \
|
|
: "=h"(ret) \
|
|
: "r"(a), "r"(b) : "l"); \
|
|
ret; })
|
|
# define BN_UMULT_LOHI(low,high,a,b)\
|
|
asm ("dmultu %2,%3" \
|
|
: "=l"(low),"=h"(high) \
|
|
: "r"(a), "r"(b));
|
|
# endif
|
|
# endif
|
|
# elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
|
|
# if defined(__GNUC__) && __GNUC__>=2
|
|
# define BN_UMULT_HIGH(a,b) ({ \
|
|
register BN_ULONG ret; \
|
|
asm ("umulh %0,%1,%2" \
|
|
: "=r"(ret) \
|
|
: "r"(a), "r"(b)); \
|
|
ret; })
|
|
# endif
|
|
# endif /* cpu */
|
|
# endif /* OPENSSL_NO_ASM */
|
|
|
|
/*************************************************************
|
|
* Using the long long type
|
|
*/
|
|
# define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
|
|
# define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
|
|
|
|
# ifdef BN_DEBUG_RAND
|
|
# define bn_clear_top2max(a) \
|
|
{ \
|
|
int ind = (a)->dmax - (a)->top; \
|
|
BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
|
|
for (; ind != 0; ind--) \
|
|
*(++ftl) = 0x0; \
|
|
}
|
|
# else
|
|
# define bn_clear_top2max(a)
|
|
# endif
|
|
|
|
# ifdef BN_LLONG
|
|
# define mul_add(r,a,w,c) { \
|
|
BN_ULLONG t; \
|
|
t=(BN_ULLONG)w * (a) + (r) + (c); \
|
|
(r)= Lw(t); \
|
|
(c)= Hw(t); \
|
|
}
|
|
|
|
# define mul(r,a,w,c) { \
|
|
BN_ULLONG t; \
|
|
t=(BN_ULLONG)w * (a) + (c); \
|
|
(r)= Lw(t); \
|
|
(c)= Hw(t); \
|
|
}
|
|
|
|
# define sqr(r0,r1,a) { \
|
|
BN_ULLONG t; \
|
|
t=(BN_ULLONG)(a)*(a); \
|
|
(r0)=Lw(t); \
|
|
(r1)=Hw(t); \
|
|
}
|
|
|
|
# elif defined(BN_UMULT_LOHI)
|
|
# define mul_add(r,a,w,c) { \
|
|
BN_ULONG high,low,ret,tmp=(a); \
|
|
ret = (r); \
|
|
BN_UMULT_LOHI(low,high,w,tmp); \
|
|
ret += (c); \
|
|
(c) = (ret<(c))?1:0; \
|
|
(c) += high; \
|
|
ret += low; \
|
|
(c) += (ret<low)?1:0; \
|
|
(r) = ret; \
|
|
}
|
|
|
|
# define mul(r,a,w,c) { \
|
|
BN_ULONG high,low,ret,ta=(a); \
|
|
BN_UMULT_LOHI(low,high,w,ta); \
|
|
ret = low + (c); \
|
|
(c) = high; \
|
|
(c) += (ret<low)?1:0; \
|
|
(r) = ret; \
|
|
}
|
|
|
|
# define sqr(r0,r1,a) { \
|
|
BN_ULONG tmp=(a); \
|
|
BN_UMULT_LOHI(r0,r1,tmp,tmp); \
|
|
}
|
|
|
|
# elif defined(BN_UMULT_HIGH)
|
|
# define mul_add(r,a,w,c) { \
|
|
BN_ULONG high,low,ret,tmp=(a); \
|
|
ret = (r); \
|
|
high= BN_UMULT_HIGH(w,tmp); \
|
|
ret += (c); \
|
|
low = (w) * tmp; \
|
|
(c) = (ret<(c))?1:0; \
|
|
(c) += high; \
|
|
ret += low; \
|
|
(c) += (ret<low)?1:0; \
|
|
(r) = ret; \
|
|
}
|
|
|
|
# define mul(r,a,w,c) { \
|
|
BN_ULONG high,low,ret,ta=(a); \
|
|
low = (w) * ta; \
|
|
high= BN_UMULT_HIGH(w,ta); \
|
|
ret = low + (c); \
|
|
(c) = high; \
|
|
(c) += (ret<low)?1:0; \
|
|
(r) = ret; \
|
|
}
|
|
|
|
# define sqr(r0,r1,a) { \
|
|
BN_ULONG tmp=(a); \
|
|
(r0) = tmp * tmp; \
|
|
(r1) = BN_UMULT_HIGH(tmp,tmp); \
|
|
}
|
|
|
|
# else
|
|
/*************************************************************
|
|
* No long long type
|
|
*/
|
|
|
|
# define LBITS(a) ((a)&BN_MASK2l)
|
|
# define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
|
|
# define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)
|
|
|
|
# define LLBITS(a) ((a)&BN_MASKl)
|
|
# define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)
|
|
# define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
|
|
|
|
# define mul64(l,h,bl,bh) \
|
|
{ \
|
|
BN_ULONG m,m1,lt,ht; \
|
|
\
|
|
lt=l; \
|
|
ht=h; \
|
|
m =(bh)*(lt); \
|
|
lt=(bl)*(lt); \
|
|
m1=(bl)*(ht); \
|
|
ht =(bh)*(ht); \
|
|
m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
|
|
ht+=HBITS(m); \
|
|
m1=L2HBITS(m); \
|
|
lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
|
|
(l)=lt; \
|
|
(h)=ht; \
|
|
}
|
|
|
|
# define sqr64(lo,ho,in) \
|
|
{ \
|
|
BN_ULONG l,h,m; \
|
|
\
|
|
h=(in); \
|
|
l=LBITS(h); \
|
|
h=HBITS(h); \
|
|
m =(l)*(h); \
|
|
l*=l; \
|
|
h*=h; \
|
|
h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
|
|
m =(m&BN_MASK2l)<<(BN_BITS4+1); \
|
|
l=(l+m)&BN_MASK2; if (l < m) h++; \
|
|
(lo)=l; \
|
|
(ho)=h; \
|
|
}
|
|
|
|
# define mul_add(r,a,bl,bh,c) { \
|
|
BN_ULONG l,h; \
|
|
\
|
|
h= (a); \
|
|
l=LBITS(h); \
|
|
h=HBITS(h); \
|
|
mul64(l,h,(bl),(bh)); \
|
|
\
|
|
/* non-multiply part */ \
|
|
l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
|
|
(c)=(r); \
|
|
l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
|
|
(c)=h&BN_MASK2; \
|
|
(r)=l; \
|
|
}
|
|
|
|
# define mul(r,a,bl,bh,c) { \
|
|
BN_ULONG l,h; \
|
|
\
|
|
h= (a); \
|
|
l=LBITS(h); \
|
|
h=HBITS(h); \
|
|
mul64(l,h,(bl),(bh)); \
|
|
\
|
|
/* non-multiply part */ \
|
|
l+=(c); if ((l&BN_MASK2) < (c)) h++; \
|
|
(c)=h&BN_MASK2; \
|
|
(r)=l&BN_MASK2; \
|
|
}
|
|
# endif /* !BN_LLONG */
|
|
|
|
void BN_init(BIGNUM *a);
|
|
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
|
|
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
|
|
|
|
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
|
|
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
|
|
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
|
|
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
|
|
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
|
|
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
|
|
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
|
|
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
|
|
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
|
|
int dna, int dnb, BN_ULONG *t);
|
|
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
|
|
int n, int tna, int tnb, BN_ULONG *t);
|
|
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
|
|
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
|
|
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
|
|
BN_ULONG *t);
|
|
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
|
|
BN_ULONG *t);
|
|
BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
|
|
int cl, int dl);
|
|
BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
|
|
int cl, int dl);
|
|
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
|
|
const BN_ULONG *np, const BN_ULONG *n0, int num);
|
|
|
|
BIGNUM *int_bn_mod_inverse(BIGNUM *in,
|
|
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
|
|
int *noinv);
|
|
|
|
int bn_probable_prime_dh(BIGNUM *rnd, int bits,
|
|
const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
|
|
int bn_probable_prime_dh_retry(BIGNUM *rnd, int bits, BN_CTX *ctx);
|
|
int bn_probable_prime_dh_coprime(BIGNUM *rnd, int bits, BN_CTX *ctx);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif
|