openssl/providers/common/ciphers/gcm_hw.c
Shane Lontis a672a02a64 Add gcm ciphers (aes and aria) to providers.
The code has been modularized so that it can be shared by algorithms.

A fixed size IV is now used instead of being allocated.
The IV is not set into the low level struct now until the update (it uses an
iv_state for this purpose).

Hardware specific methods have been added to a PROV_GCM_HW object.

The S390 code has been changed to just contain methods that can be accessed in
a modular way. There are equivalent generic methods also for the other
platforms.

Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Patrick Steuer <patrick.steuer@de.ibm.com>
(Merged from https://github.com/openssl/openssl/pull/9231)
2019-07-31 21:55:16 +10:00

308 lines
8.9 KiB
C

/*
* Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "ciphers_locl.h"
#include "internal/aes_platform.h"
static const PROV_GCM_HW aes_gcm;
static int gcm_setiv(PROV_GCM_CTX *ctx, const unsigned char *iv, size_t ivlen);
static int gcm_aad_update(PROV_GCM_CTX *ctx, const unsigned char *aad,
size_t aad_len);
static int gcm_cipher_final(PROV_GCM_CTX *ctx, unsigned char *tag);
static int gcm_one_shot(PROV_GCM_CTX *ctx, unsigned char *aad, size_t aad_len,
const unsigned char *in, size_t in_len,
unsigned char *out, unsigned char *tag, size_t tag_len);
static int gcm_cipher_update(PROV_GCM_CTX *ctx, const unsigned char *in,
size_t len, unsigned char *out);
#define SET_KEY_CTR_FN(ks, fn_set_enc_key, fn_block, fn_ctr) \
ctx->ks = ks; \
fn_set_enc_key(key, keylen * 8, ks); \
CRYPTO_gcm128_init(&ctx->gcm, ks, (block128_f)fn_block); \
ctx->ctr = (ctr128_f)fn_ctr; \
ctx->key_set = 1;
#if defined(AESNI_CAPABLE)
/* AES-NI section */
static int aesni_gcm_init_key(PROV_GCM_CTX *ctx, const unsigned char *key,
size_t keylen)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
AES_KEY *ks = &actx->ks.ks;
SET_KEY_CTR_FN(ks, aesni_set_encrypt_key, aesni_encrypt,
aesni_ctr32_encrypt_blocks);
return 1;
}
static const PROV_GCM_HW aesni_gcm = {
aesni_gcm_init_key,
gcm_setiv,
gcm_aad_update,
gcm_cipher_update,
gcm_cipher_final,
gcm_one_shot
};
const PROV_GCM_HW *PROV_AES_HW_gcm(size_t keybits)
{
return AESNI_CAPABLE ? &aesni_gcm : &aes_gcm;
}
#elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__))
/* Fujitsu SPARC64 X support */
static int t4_aes_gcm_init_key(PROV_GCM_CTX *ctx, const unsigned char *key,
size_t keylen)
{
ctr128_f ctr;
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
AES_KEY *ks = &actx->ks.ks;
switch (keylen) {
case 16:
ctr = (ctr128_f)aes128_t4_ctr32_encrypt;
break;
case 24:
ctr = (ctr128_f)aes192_t4_ctr32_encrypt;
break;
case 32:
ctr = (ctr128_f)aes256_t4_ctr32_encrypt;
break;
default:
return 0;
}
SET_KEY_CTR_FN(ks, aes_t4_set_encrypt_key, aes_t4_encrypt, ctr);
return 1;
}
static const PROV_GCM_HW t4_aes_gcm = {
t4_aes_gcm_init_key,
gcm_setiv,
gcm_aad_update,
gcm_cipher_update,
gcm_cipher_final,
gcm_one_shot
};
const PROV_GCM_HW *PROV_AES_HW_gcm(size_t keybits)
{
return SPARC_AES_CAPABLE ? &t4_aes_gcm : &aes_gcm;
}
#elif defined(OPENSSL_CPUID_OBJ) && defined(__s390__)
# include "gcm_s390x.c"
#else
const PROV_GCM_HW *PROV_AES_HW_gcm(size_t keybits)
{
return &aes_gcm;
}
#endif
static int generic_aes_gcm_init_key(PROV_GCM_CTX *ctx, const unsigned char *key,
size_t keylen)
{
PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx;
AES_KEY *ks = &actx->ks.ks;
# ifdef HWAES_CAPABLE
if (HWAES_CAPABLE) {
# ifdef HWAES_ctr32_encrypt_blocks
SET_KEY_CTR_FN(ks, HWAES_set_encrypt_key, HWAES_encrypt,
HWAES_ctr32_encrypt_blocks);
# else
SET_KEY_CTR_FN(ks, HWAES_set_encrypt_key, HWAES_encrypt, NULL);
# endif /* HWAES_ctr32_encrypt_blocks */
} else
# endif /* HWAES_CAPABLE */
# ifdef BSAES_CAPABLE
if (BSAES_CAPABLE) {
SET_KEY_CTR_FN(ks, AES_set_encrypt_key, AES_encrypt,
bsaes_ctr32_encrypt_blocks);
} else
# endif /* BSAES_CAPABLE */
# ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
SET_KEY_CTR_FN(ks, vpaes_set_encrypt_key, vpaes_encrypt, NULL);
} else
# endif /* VPAES_CAPABLE */
{
# ifdef AES_CTR_ASM
SET_KEY_CTR_FN(ks, AES_set_encrypt_key, AES_encrypt, AES_ctr32_encrypt);
# else
SET_KEY_CTR_FN(ks, AES_set_encrypt_key, AES_encrypt, NULL);
# endif /* AES_CTR_ASM */
}
ctx->key_set = 1;
return 1;
}
static int gcm_setiv(PROV_GCM_CTX *ctx, const unsigned char *iv, size_t ivlen)
{
CRYPTO_gcm128_setiv(&ctx->gcm, iv, ivlen);
return 1;
}
static int gcm_aad_update(PROV_GCM_CTX *ctx,
const unsigned char *aad, size_t aad_len)
{
return CRYPTO_gcm128_aad(&ctx->gcm, aad, aad_len) == 0;
}
static int gcm_cipher_update(PROV_GCM_CTX *ctx, const unsigned char *in,
size_t len, unsigned char *out)
{
if (ctx->enc) {
if (ctx->ctr != NULL) {
#if defined(AES_GCM_ASM)
size_t bulk = 0;
if (len >= 32 && AES_GCM_ASM(ctx)) {
size_t res = (16 - ctx->gcm.mres) % 16;
if (CRYPTO_gcm128_encrypt(&ctx->gcm, in, out, res))
return 0;
bulk = aesni_gcm_encrypt(in + res, out + res, len - res,
ctx->gcm.key,
ctx->gcm.Yi.c, ctx->gcm.Xi.u);
ctx->gcm.len.u[1] += bulk;
bulk += res;
}
if (CRYPTO_gcm128_encrypt_ctr32(&ctx->gcm, in + bulk, out + bulk,
len - bulk, ctx->ctr))
return 0;
#else
if (CRYPTO_gcm128_encrypt_ctr32(&ctx->gcm, in, out, len, ctx->ctr))
return 0;
#endif /* AES_GCM_ASM */
} else {
if (CRYPTO_gcm128_encrypt(&ctx->gcm, in, out, len))
return 0;
}
} else {
if (ctx->ctr != NULL) {
#if defined(AES_GCM_ASM)
size_t bulk = 0;
if (len >= 16 && AES_GCM_ASM(ctx)) {
size_t res = (16 - ctx->gcm.mres) % 16;
if (CRYPTO_gcm128_decrypt(&ctx->gcm, in, out, res))
return -1;
bulk = aesni_gcm_decrypt(in + res, out + res, len - res,
ctx->gcm.key,
ctx->gcm.Yi.c, ctx->gcm.Xi.u);
ctx->gcm.len.u[1] += bulk;
bulk += res;
}
if (CRYPTO_gcm128_decrypt_ctr32(&ctx->gcm, in + bulk, out + bulk,
len - bulk, ctx->ctr))
return 0;
#else
if (CRYPTO_gcm128_decrypt_ctr32(&ctx->gcm, in, out, len, ctx->ctr))
return 0;
#endif /* AES_GCM_ASM */
} else {
if (CRYPTO_gcm128_decrypt(&ctx->gcm, in, out, len))
return 0;
}
}
return 1;
}
static int gcm_cipher_final(PROV_GCM_CTX *ctx, unsigned char *tag)
{
if (ctx->enc) {
CRYPTO_gcm128_tag(&ctx->gcm, tag, GCM_TAG_MAX_SIZE);
ctx->taglen = GCM_TAG_MAX_SIZE;
} else {
if (ctx->taglen < 0
|| CRYPTO_gcm128_finish(&ctx->gcm, tag, ctx->taglen) != 0)
return 0;
}
return 1;
}
static int gcm_one_shot(PROV_GCM_CTX *ctx, unsigned char *aad, size_t aad_len,
const unsigned char *in, size_t in_len,
unsigned char *out, unsigned char *tag, size_t tag_len)
{
int ret = 0;
/* Use saved AAD */
if (!ctx->hw->aadupdate(ctx, aad, aad_len))
goto err;
if (!ctx->hw->cipherupdate(ctx, in, in_len, out))
goto err;
ctx->taglen = GCM_TAG_MAX_SIZE;
if (!ctx->hw->cipherfinal(ctx, tag))
goto err;
ret = 1;
err:
return ret;
}
static const PROV_GCM_HW aes_gcm = {
generic_aes_gcm_init_key,
gcm_setiv,
gcm_aad_update,
gcm_cipher_update,
gcm_cipher_final,
gcm_one_shot
};
#if !defined(OPENSSL_NO_ARIA) && !defined(FIPS_MODE)
static int aria_gcm_init_key(PROV_GCM_CTX *ctx, const unsigned char *key,
size_t keylen)
{
PROV_ARIA_GCM_CTX *actx = (PROV_ARIA_GCM_CTX *)ctx;
ARIA_KEY *ks = &actx->ks.ks;
SET_KEY_CTR_FN(ks, aria_set_encrypt_key, aria_encrypt, NULL);
return 1;
}
static int aria_cipher_update(PROV_GCM_CTX *ctx, const unsigned char *in,
size_t len, unsigned char *out)
{
if (ctx->enc) {
if (CRYPTO_gcm128_encrypt(&ctx->gcm, in, out, len))
return 0;
} else {
if (CRYPTO_gcm128_decrypt(&ctx->gcm, in, out, len))
return 0;
}
return 1;
}
static const PROV_GCM_HW aria_gcm = {
aria_gcm_init_key,
gcm_setiv,
gcm_aad_update,
aria_cipher_update,
gcm_cipher_final,
gcm_one_shot
};
const PROV_GCM_HW *PROV_ARIA_HW_gcm(size_t keybits)
{
return &aria_gcm;
}
#endif /* !defined(OPENSSL_NO_ARIA) && !defined(FIPS_MODE) */