mirror of
https://github.com/openssl/openssl.git
synced 2024-12-15 06:01:37 +08:00
e077455e9e
Since OPENSSL_malloc() and friends report ERR_R_MALLOC_FAILURE, and at least handle the file name and line number they are called from, there's no need to report ERR_R_MALLOC_FAILURE where they are called directly, or when SSLfatal() and RLAYERfatal() is used, the reason `ERR_R_MALLOC_FAILURE` is changed to `ERR_R_CRYPTO_LIB`. There were a number of places where `ERR_R_MALLOC_FAILURE` was reported even though it was a function from a different sub-system that was called. Those places are changed to report ERR_R_{lib}_LIB, where {lib} is the name of that sub-system. Some of them are tricky to get right, as we have a lot of functions that belong in the ASN1 sub-system, and all the `sk_` calls or from the CRYPTO sub-system. Some extra adaptation was necessary where there were custom OPENSSL_malloc() wrappers, and some bugs are fixed alongside these changes. Reviewed-by: Tomas Mraz <tomas@openssl.org> Reviewed-by: Hugo Landau <hlandau@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19301)
642 lines
17 KiB
C
642 lines
17 KiB
C
/*
|
|
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/numbers.h"
|
|
#include <limits.h>
|
|
#include <openssl/asn1.h>
|
|
#include <openssl/bn.h>
|
|
#include "asn1_local.h"
|
|
|
|
ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x)
|
|
{
|
|
return ASN1_STRING_dup(x);
|
|
}
|
|
|
|
int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
|
|
{
|
|
int neg, ret;
|
|
/* Compare signs */
|
|
neg = x->type & V_ASN1_NEG;
|
|
if (neg != (y->type & V_ASN1_NEG)) {
|
|
if (neg)
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
ret = ASN1_STRING_cmp(x, y);
|
|
|
|
if (neg)
|
|
return -ret;
|
|
else
|
|
return ret;
|
|
}
|
|
|
|
/*-
|
|
* This converts a big endian buffer and sign into its content encoding.
|
|
* This is used for INTEGER and ENUMERATED types.
|
|
* The internal representation is an ASN1_STRING whose data is a big endian
|
|
* representation of the value, ignoring the sign. The sign is determined by
|
|
* the type: if type & V_ASN1_NEG is true it is negative, otherwise positive.
|
|
*
|
|
* Positive integers are no problem: they are almost the same as the DER
|
|
* encoding, except if the first byte is >= 0x80 we need to add a zero pad.
|
|
*
|
|
* Negative integers are a bit trickier...
|
|
* The DER representation of negative integers is in 2s complement form.
|
|
* The internal form is converted by complementing each octet and finally
|
|
* adding one to the result. This can be done less messily with a little trick.
|
|
* If the internal form has trailing zeroes then they will become FF by the
|
|
* complement and 0 by the add one (due to carry) so just copy as many trailing
|
|
* zeros to the destination as there are in the source. The carry will add one
|
|
* to the last none zero octet: so complement this octet and add one and finally
|
|
* complement any left over until you get to the start of the string.
|
|
*
|
|
* Padding is a little trickier too. If the first bytes is > 0x80 then we pad
|
|
* with 0xff. However if the first byte is 0x80 and one of the following bytes
|
|
* is non-zero we pad with 0xff. The reason for this distinction is that 0x80
|
|
* followed by optional zeros isn't padded.
|
|
*/
|
|
|
|
/*
|
|
* If |pad| is zero, the operation is effectively reduced to memcpy,
|
|
* and if |pad| is 0xff, then it performs two's complement, ~dst + 1.
|
|
* Note that in latter case sequence of zeros yields itself, and so
|
|
* does 0x80 followed by any number of zeros. These properties are
|
|
* used elsewhere below...
|
|
*/
|
|
static void twos_complement(unsigned char *dst, const unsigned char *src,
|
|
size_t len, unsigned char pad)
|
|
{
|
|
unsigned int carry = pad & 1;
|
|
|
|
/* Begin at the end of the encoding */
|
|
if (len != 0) {
|
|
/*
|
|
* if len == 0 then src/dst could be NULL, and this would be undefined
|
|
* behaviour.
|
|
*/
|
|
dst += len;
|
|
src += len;
|
|
}
|
|
/* two's complement value: ~value + 1 */
|
|
while (len-- != 0) {
|
|
*(--dst) = (unsigned char)(carry += *(--src) ^ pad);
|
|
carry >>= 8;
|
|
}
|
|
}
|
|
|
|
static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg,
|
|
unsigned char **pp)
|
|
{
|
|
unsigned int pad = 0;
|
|
size_t ret, i;
|
|
unsigned char *p, pb = 0;
|
|
|
|
if (b != NULL && blen) {
|
|
ret = blen;
|
|
i = b[0];
|
|
if (!neg && (i > 127)) {
|
|
pad = 1;
|
|
pb = 0;
|
|
} else if (neg) {
|
|
pb = 0xFF;
|
|
if (i > 128) {
|
|
pad = 1;
|
|
} else if (i == 128) {
|
|
/*
|
|
* Special case [of minimal negative for given length]:
|
|
* if any other bytes non zero we pad, otherwise we don't.
|
|
*/
|
|
for (pad = 0, i = 1; i < blen; i++)
|
|
pad |= b[i];
|
|
pb = pad != 0 ? 0xffU : 0;
|
|
pad = pb & 1;
|
|
}
|
|
}
|
|
ret += pad;
|
|
} else {
|
|
ret = 1;
|
|
blen = 0; /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */
|
|
}
|
|
|
|
if (pp == NULL || (p = *pp) == NULL)
|
|
return ret;
|
|
|
|
/*
|
|
* This magically handles all corner cases, such as '(b == NULL ||
|
|
* blen == 0)', non-negative value, "negative" zero, 0x80 followed
|
|
* by any number of zeros...
|
|
*/
|
|
*p = pb;
|
|
p += pad; /* yes, p[0] can be written twice, but it's little
|
|
* price to pay for eliminated branches */
|
|
twos_complement(p, b, blen, pb);
|
|
|
|
*pp += ret;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* convert content octets into a big endian buffer. Returns the length
|
|
* of buffer or 0 on error: for malformed INTEGER. If output buffer is
|
|
* NULL just return length.
|
|
*/
|
|
|
|
static size_t c2i_ibuf(unsigned char *b, int *pneg,
|
|
const unsigned char *p, size_t plen)
|
|
{
|
|
int neg, pad;
|
|
/* Zero content length is illegal */
|
|
if (plen == 0) {
|
|
ERR_raise(ERR_LIB_ASN1, ASN1_R_ILLEGAL_ZERO_CONTENT);
|
|
return 0;
|
|
}
|
|
neg = p[0] & 0x80;
|
|
if (pneg)
|
|
*pneg = neg;
|
|
/* Handle common case where length is 1 octet separately */
|
|
if (plen == 1) {
|
|
if (b != NULL) {
|
|
if (neg)
|
|
b[0] = (p[0] ^ 0xFF) + 1;
|
|
else
|
|
b[0] = p[0];
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
pad = 0;
|
|
if (p[0] == 0) {
|
|
pad = 1;
|
|
} else if (p[0] == 0xFF) {
|
|
size_t i;
|
|
|
|
/*
|
|
* Special case [of "one less minimal negative" for given length]:
|
|
* if any other bytes non zero it was padded, otherwise not.
|
|
*/
|
|
for (pad = 0, i = 1; i < plen; i++)
|
|
pad |= p[i];
|
|
pad = pad != 0 ? 1 : 0;
|
|
}
|
|
/* reject illegal padding: first two octets MSB can't match */
|
|
if (pad && (neg == (p[1] & 0x80))) {
|
|
ERR_raise(ERR_LIB_ASN1, ASN1_R_ILLEGAL_PADDING);
|
|
return 0;
|
|
}
|
|
|
|
/* skip over pad */
|
|
p += pad;
|
|
plen -= pad;
|
|
|
|
if (b != NULL)
|
|
twos_complement(b, p, plen, neg ? 0xffU : 0);
|
|
|
|
return plen;
|
|
}
|
|
|
|
int ossl_i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
|
|
{
|
|
return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp);
|
|
}
|
|
|
|
/* Convert big endian buffer into uint64_t, return 0 on error */
|
|
static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen)
|
|
{
|
|
size_t i;
|
|
uint64_t r;
|
|
|
|
if (blen > sizeof(*pr)) {
|
|
ERR_raise(ERR_LIB_ASN1, ASN1_R_TOO_LARGE);
|
|
return 0;
|
|
}
|
|
if (b == NULL)
|
|
return 0;
|
|
for (r = 0, i = 0; i < blen; i++) {
|
|
r <<= 8;
|
|
r |= b[i];
|
|
}
|
|
*pr = r;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Write uint64_t to big endian buffer and return offset to first
|
|
* written octet. In other words it returns offset in range from 0
|
|
* to 7, with 0 denoting 8 written octets and 7 - one.
|
|
*/
|
|
static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r)
|
|
{
|
|
size_t off = sizeof(uint64_t);
|
|
|
|
do {
|
|
b[--off] = (unsigned char)r;
|
|
} while (r >>= 8);
|
|
|
|
return off;
|
|
}
|
|
|
|
/*
|
|
* Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces
|
|
* overflow warnings.
|
|
*/
|
|
#define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX)))
|
|
|
|
/* signed version of asn1_get_uint64 */
|
|
static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen,
|
|
int neg)
|
|
{
|
|
uint64_t r;
|
|
if (asn1_get_uint64(&r, b, blen) == 0)
|
|
return 0;
|
|
if (neg) {
|
|
if (r <= INT64_MAX) {
|
|
/* Most significant bit is guaranteed to be clear, negation
|
|
* is guaranteed to be meaningful in platform-neutral sense. */
|
|
*pr = -(int64_t)r;
|
|
} else if (r == ABS_INT64_MIN) {
|
|
/* This never happens if INT64_MAX == ABS_INT64_MIN, e.g.
|
|
* on ones'-complement system. */
|
|
*pr = (int64_t)(0 - r);
|
|
} else {
|
|
ERR_raise(ERR_LIB_ASN1, ASN1_R_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
} else {
|
|
if (r <= INT64_MAX) {
|
|
*pr = (int64_t)r;
|
|
} else {
|
|
ERR_raise(ERR_LIB_ASN1, ASN1_R_TOO_LARGE);
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */
|
|
ASN1_INTEGER *ossl_c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp,
|
|
long len)
|
|
{
|
|
ASN1_INTEGER *ret = NULL;
|
|
size_t r;
|
|
int neg;
|
|
|
|
r = c2i_ibuf(NULL, NULL, *pp, len);
|
|
|
|
if (r == 0)
|
|
return NULL;
|
|
|
|
if ((a == NULL) || ((*a) == NULL)) {
|
|
ret = ASN1_INTEGER_new();
|
|
if (ret == NULL)
|
|
return NULL;
|
|
ret->type = V_ASN1_INTEGER;
|
|
} else
|
|
ret = *a;
|
|
|
|
if (ASN1_STRING_set(ret, NULL, r) == 0) {
|
|
ERR_raise(ERR_LIB_ASN1, ERR_R_ASN1_LIB);
|
|
goto err;
|
|
}
|
|
|
|
c2i_ibuf(ret->data, &neg, *pp, len);
|
|
|
|
if (neg != 0)
|
|
ret->type |= V_ASN1_NEG;
|
|
else
|
|
ret->type &= ~V_ASN1_NEG;
|
|
|
|
*pp += len;
|
|
if (a != NULL)
|
|
(*a) = ret;
|
|
return ret;
|
|
err:
|
|
if (a == NULL || *a != ret)
|
|
ASN1_INTEGER_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype)
|
|
{
|
|
if (a == NULL) {
|
|
ERR_raise(ERR_LIB_ASN1, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
if ((a->type & ~V_ASN1_NEG) != itype) {
|
|
ERR_raise(ERR_LIB_ASN1, ASN1_R_WRONG_INTEGER_TYPE);
|
|
return 0;
|
|
}
|
|
return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG);
|
|
}
|
|
|
|
static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype)
|
|
{
|
|
unsigned char tbuf[sizeof(r)];
|
|
size_t off;
|
|
|
|
a->type = itype;
|
|
if (r < 0) {
|
|
/* Most obvious '-r' triggers undefined behaviour for most
|
|
* common INT64_MIN. Even though below '0 - (uint64_t)r' can
|
|
* appear two's-complement centric, it does produce correct/
|
|
* expected result even on one's-complement. This is because
|
|
* cast to unsigned has to change bit pattern... */
|
|
off = asn1_put_uint64(tbuf, 0 - (uint64_t)r);
|
|
a->type |= V_ASN1_NEG;
|
|
} else {
|
|
off = asn1_put_uint64(tbuf, r);
|
|
a->type &= ~V_ASN1_NEG;
|
|
}
|
|
return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
|
|
}
|
|
|
|
static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a,
|
|
int itype)
|
|
{
|
|
if (a == NULL) {
|
|
ERR_raise(ERR_LIB_ASN1, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
if ((a->type & ~V_ASN1_NEG) != itype) {
|
|
ERR_raise(ERR_LIB_ASN1, ASN1_R_WRONG_INTEGER_TYPE);
|
|
return 0;
|
|
}
|
|
if (a->type & V_ASN1_NEG) {
|
|
ERR_raise(ERR_LIB_ASN1, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
|
|
return 0;
|
|
}
|
|
return asn1_get_uint64(pr, a->data, a->length);
|
|
}
|
|
|
|
static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype)
|
|
{
|
|
unsigned char tbuf[sizeof(r)];
|
|
size_t off;
|
|
|
|
a->type = itype;
|
|
off = asn1_put_uint64(tbuf, r);
|
|
return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
|
|
}
|
|
|
|
/*
|
|
* This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1
|
|
* integers: some broken software can encode a positive INTEGER with its MSB
|
|
* set as negative (it doesn't add a padding zero).
|
|
*/
|
|
|
|
ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
|
|
long length)
|
|
{
|
|
ASN1_INTEGER *ret = NULL;
|
|
const unsigned char *p;
|
|
unsigned char *s;
|
|
long len = 0;
|
|
int inf, tag, xclass;
|
|
int i = 0;
|
|
|
|
if ((a == NULL) || ((*a) == NULL)) {
|
|
if ((ret = ASN1_INTEGER_new()) == NULL)
|
|
return NULL;
|
|
ret->type = V_ASN1_INTEGER;
|
|
} else
|
|
ret = (*a);
|
|
|
|
p = *pp;
|
|
inf = ASN1_get_object(&p, &len, &tag, &xclass, length);
|
|
if (inf & 0x80) {
|
|
i = ASN1_R_BAD_OBJECT_HEADER;
|
|
goto err;
|
|
}
|
|
|
|
if (tag != V_ASN1_INTEGER) {
|
|
i = ASN1_R_EXPECTING_AN_INTEGER;
|
|
goto err;
|
|
}
|
|
|
|
if (len < 0) {
|
|
i = ASN1_R_ILLEGAL_NEGATIVE_VALUE;
|
|
goto err;
|
|
}
|
|
/*
|
|
* We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies
|
|
* a missing NULL parameter.
|
|
*/
|
|
s = OPENSSL_malloc((int)len + 1);
|
|
if (s == NULL)
|
|
goto err;
|
|
ret->type = V_ASN1_INTEGER;
|
|
if (len) {
|
|
if ((*p == 0) && (len != 1)) {
|
|
p++;
|
|
len--;
|
|
}
|
|
memcpy(s, p, (int)len);
|
|
p += len;
|
|
}
|
|
|
|
ASN1_STRING_set0(ret, s, (int)len);
|
|
if (a != NULL)
|
|
(*a) = ret;
|
|
*pp = p;
|
|
return ret;
|
|
err:
|
|
if (i != 0)
|
|
ERR_raise(ERR_LIB_ASN1, i);
|
|
if ((a == NULL) || (*a != ret))
|
|
ASN1_INTEGER_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai,
|
|
int atype)
|
|
{
|
|
ASN1_INTEGER *ret;
|
|
int len;
|
|
|
|
if (ai == NULL) {
|
|
ret = ASN1_STRING_type_new(atype);
|
|
} else {
|
|
ret = ai;
|
|
ret->type = atype;
|
|
}
|
|
|
|
if (ret == NULL) {
|
|
ERR_raise(ERR_LIB_ASN1, ERR_R_NESTED_ASN1_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
if (BN_is_negative(bn) && !BN_is_zero(bn))
|
|
ret->type |= V_ASN1_NEG_INTEGER;
|
|
|
|
len = BN_num_bytes(bn);
|
|
|
|
if (len == 0)
|
|
len = 1;
|
|
|
|
if (ASN1_STRING_set(ret, NULL, len) == 0) {
|
|
ERR_raise(ERR_LIB_ASN1, ERR_R_ASN1_LIB);
|
|
goto err;
|
|
}
|
|
|
|
/* Correct zero case */
|
|
if (BN_is_zero(bn))
|
|
ret->data[0] = 0;
|
|
else
|
|
len = BN_bn2bin(bn, ret->data);
|
|
ret->length = len;
|
|
return ret;
|
|
err:
|
|
if (ret != ai)
|
|
ASN1_INTEGER_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn,
|
|
int itype)
|
|
{
|
|
BIGNUM *ret;
|
|
|
|
if ((ai->type & ~V_ASN1_NEG) != itype) {
|
|
ERR_raise(ERR_LIB_ASN1, ASN1_R_WRONG_INTEGER_TYPE);
|
|
return NULL;
|
|
}
|
|
|
|
ret = BN_bin2bn(ai->data, ai->length, bn);
|
|
if (ret == NULL) {
|
|
ERR_raise(ERR_LIB_ASN1, ASN1_R_BN_LIB);
|
|
return NULL;
|
|
}
|
|
if (ai->type & V_ASN1_NEG)
|
|
BN_set_negative(ret, 1);
|
|
return ret;
|
|
}
|
|
|
|
int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a)
|
|
{
|
|
return asn1_string_get_int64(pr, a, V_ASN1_INTEGER);
|
|
}
|
|
|
|
int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r)
|
|
{
|
|
return asn1_string_set_int64(a, r, V_ASN1_INTEGER);
|
|
}
|
|
|
|
int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a)
|
|
{
|
|
return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER);
|
|
}
|
|
|
|
int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r)
|
|
{
|
|
return asn1_string_set_uint64(a, r, V_ASN1_INTEGER);
|
|
}
|
|
|
|
int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
|
|
{
|
|
return ASN1_INTEGER_set_int64(a, v);
|
|
}
|
|
|
|
long ASN1_INTEGER_get(const ASN1_INTEGER *a)
|
|
{
|
|
int i;
|
|
int64_t r;
|
|
if (a == NULL)
|
|
return 0;
|
|
i = ASN1_INTEGER_get_int64(&r, a);
|
|
if (i == 0)
|
|
return -1;
|
|
if (r > LONG_MAX || r < LONG_MIN)
|
|
return -1;
|
|
return (long)r;
|
|
}
|
|
|
|
ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
|
|
{
|
|
return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER);
|
|
}
|
|
|
|
BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
|
|
{
|
|
return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER);
|
|
}
|
|
|
|
int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a)
|
|
{
|
|
return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED);
|
|
}
|
|
|
|
int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r)
|
|
{
|
|
return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED);
|
|
}
|
|
|
|
int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v)
|
|
{
|
|
return ASN1_ENUMERATED_set_int64(a, v);
|
|
}
|
|
|
|
long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a)
|
|
{
|
|
int i;
|
|
int64_t r;
|
|
if (a == NULL)
|
|
return 0;
|
|
if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED)
|
|
return -1;
|
|
if (a->length > (int)sizeof(long))
|
|
return 0xffffffffL;
|
|
i = ASN1_ENUMERATED_get_int64(&r, a);
|
|
if (i == 0)
|
|
return -1;
|
|
if (r > LONG_MAX || r < LONG_MIN)
|
|
return -1;
|
|
return (long)r;
|
|
}
|
|
|
|
ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai)
|
|
{
|
|
return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED);
|
|
}
|
|
|
|
BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn)
|
|
{
|
|
return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED);
|
|
}
|
|
|
|
/* Internal functions used by x_int64.c */
|
|
int ossl_c2i_uint64_int(uint64_t *ret, int *neg,
|
|
const unsigned char **pp, long len)
|
|
{
|
|
unsigned char buf[sizeof(uint64_t)];
|
|
size_t buflen;
|
|
|
|
buflen = c2i_ibuf(NULL, NULL, *pp, len);
|
|
if (buflen == 0)
|
|
return 0;
|
|
if (buflen > sizeof(uint64_t)) {
|
|
ERR_raise(ERR_LIB_ASN1, ASN1_R_TOO_LARGE);
|
|
return 0;
|
|
}
|
|
(void)c2i_ibuf(buf, neg, *pp, len);
|
|
return asn1_get_uint64(ret, buf, buflen);
|
|
}
|
|
|
|
int ossl_i2c_uint64_int(unsigned char *p, uint64_t r, int neg)
|
|
{
|
|
unsigned char buf[sizeof(uint64_t)];
|
|
size_t off;
|
|
|
|
off = asn1_put_uint64(buf, r);
|
|
return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p);
|
|
}
|
|
|