openssl/crypto/bio/bss_dgram.c
J.W. Jagersma b9179ae555 djgpp: Fix unused-but-set-variable warning
I chose to just hide this behind '#ifndef __DJGPP__', instead of listing
all the macro combinations where it *is* used.  That would make quite a
mess.

Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19322)
2022-11-14 07:47:53 +00:00

2782 lines
85 KiB
C

/*
* Copyright 2005-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif
#include <stdio.h>
#include <errno.h>
#include "internal/time.h"
#include "bio_local.h"
#ifndef OPENSSL_NO_DGRAM
# ifndef OPENSSL_NO_SCTP
# include <netinet/sctp.h>
# include <fcntl.h>
# define OPENSSL_SCTP_DATA_CHUNK_TYPE 0x00
# define OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE 0xc0
# endif
# if defined(OPENSSL_SYS_LINUX) && !defined(IP_MTU)
# define IP_MTU 14 /* linux is lame */
# endif
# if OPENSSL_USE_IPV6 && !defined(IPPROTO_IPV6)
# define IPPROTO_IPV6 41 /* windows is lame */
# endif
# if defined(__FreeBSD__) && defined(IN6_IS_ADDR_V4MAPPED)
/* Standard definition causes type-punning problems. */
# undef IN6_IS_ADDR_V4MAPPED
# define s6_addr32 __u6_addr.__u6_addr32
# define IN6_IS_ADDR_V4MAPPED(a) \
(((a)->s6_addr32[0] == 0) && \
((a)->s6_addr32[1] == 0) && \
((a)->s6_addr32[2] == htonl(0x0000ffff)))
# endif
/* Determine what method to use for BIO_sendmmsg and BIO_recvmmsg. */
# define M_METHOD_NONE 0
# define M_METHOD_RECVMMSG 1
# define M_METHOD_RECVMSG 2
# define M_METHOD_RECVFROM 3
# define M_METHOD_WSARECVMSG 4
# if !defined(M_METHOD)
# if defined(OPENSSL_SYS_WINDOWS) && defined(BIO_HAVE_WSAMSG) && !defined(NO_WSARECVMSG)
# define M_METHOD M_METHOD_WSARECVMSG
# elif !defined(OPENSSL_SYS_WINDOWS) && defined(MSG_WAITFORONE) && !defined(NO_RECVMMSG)
# define M_METHOD M_METHOD_RECVMMSG
# elif !defined(OPENSSL_SYS_WINDOWS) && defined(CMSG_LEN) && !defined(NO_RECVMSG)
# define M_METHOD M_METHOD_RECVMSG
# elif !defined(NO_RECVFROM)
# define M_METHOD M_METHOD_RECVFROM
# else
# define M_METHOD M_METHOD_NONE
# endif
# endif
# if defined(OPENSSL_SYS_WINDOWS)
# define BIO_CMSG_SPACE(x) WSA_CMSG_SPACE(x)
# define BIO_CMSG_FIRSTHDR(x) WSA_CMSG_FIRSTHDR(x)
# define BIO_CMSG_NXTHDR(x, y) WSA_CMSG_NXTHDR(x, y)
# define BIO_CMSG_DATA(x) WSA_CMSG_DATA(x)
# define BIO_CMSG_LEN(x) WSA_CMSG_LEN(x)
# define MSGHDR_TYPE WSAMSG
# define CMSGHDR_TYPE WSACMSGHDR
# else
# define MSGHDR_TYPE struct msghdr
# define CMSGHDR_TYPE struct cmsghdr
# define BIO_CMSG_SPACE(x) CMSG_SPACE(x)
# define BIO_CMSG_FIRSTHDR(x) CMSG_FIRSTHDR(x)
# define BIO_CMSG_NXTHDR(x, y) CMSG_NXTHDR(x, y)
# define BIO_CMSG_DATA(x) CMSG_DATA(x)
# define BIO_CMSG_LEN(x) CMSG_LEN(x)
# endif
# if M_METHOD == M_METHOD_RECVMMSG \
|| M_METHOD == M_METHOD_RECVMSG \
|| M_METHOD == M_METHOD_WSARECVMSG
# if defined(__APPLE__)
/*
* CMSG_SPACE is not a constant expresson on OSX even though POSIX
* says it's supposed to be. This should be adequate.
*/
# define BIO_CMSG_ALLOC_LEN 64
# else
# if defined(IPV6_PKTINFO)
# define BIO_CMSG_ALLOC_LEN_1 BIO_CMSG_SPACE(sizeof(struct in6_pktinfo))
# else
# define BIO_CMSG_ALLOC_LEN_1 0
# endif
# if defined(IP_PKTINFO)
# define BIO_CMSG_ALLOC_LEN_2 BIO_CMSG_SPACE(sizeof(struct in_pktinfo))
# else
# define BIO_CMSG_ALLOC_LEN_2 0
# endif
# if defined(IP_RECVDSTADDR)
# define BIO_CMSG_ALLOC_LEN_3 BIO_CMSG_SPACE(sizeof(struct in_addr))
# else
# define BIO_CMSG_ALLOC_LEN_3 0
# endif
# define BIO_MAX(X,Y) ((X) > (Y) ? (X) : (Y))
# define BIO_CMSG_ALLOC_LEN \
BIO_MAX(BIO_CMSG_ALLOC_LEN_1, \
BIO_MAX(BIO_CMSG_ALLOC_LEN_2, BIO_CMSG_ALLOC_LEN_3))
# endif
# if (defined(IP_PKTINFO) || defined(IP_RECVDSTADDR)) && defined(IPV6_RECVPKTINFO)
# define SUPPORT_LOCAL_ADDR
# endif
# endif
# define BIO_MSG_N(array, stride, n) (*(BIO_MSG *)((char *)(array) + (n)*(stride)))
static int dgram_write(BIO *h, const char *buf, int num);
static int dgram_read(BIO *h, char *buf, int size);
static int dgram_puts(BIO *h, const char *str);
static long dgram_ctrl(BIO *h, int cmd, long arg1, void *arg2);
static int dgram_new(BIO *h);
static int dgram_free(BIO *data);
static int dgram_clear(BIO *bio);
static int dgram_sendmmsg(BIO *b, BIO_MSG *msg,
size_t stride, size_t num_msg,
uint64_t flags, size_t *num_processed);
static int dgram_recvmmsg(BIO *b, BIO_MSG *msg,
size_t stride, size_t num_msg,
uint64_t flags, size_t *num_processed);
# ifndef OPENSSL_NO_SCTP
static int dgram_sctp_write(BIO *h, const char *buf, int num);
static int dgram_sctp_read(BIO *h, char *buf, int size);
static int dgram_sctp_puts(BIO *h, const char *str);
static long dgram_sctp_ctrl(BIO *h, int cmd, long arg1, void *arg2);
static int dgram_sctp_new(BIO *h);
static int dgram_sctp_free(BIO *data);
static int dgram_sctp_wait_for_dry(BIO *b);
static int dgram_sctp_msg_waiting(BIO *b);
# ifdef SCTP_AUTHENTICATION_EVENT
static void dgram_sctp_handle_auth_free_key_event(BIO *b, union sctp_notification
*snp);
# endif
# endif
static int BIO_dgram_should_retry(int s);
static const BIO_METHOD methods_dgramp = {
BIO_TYPE_DGRAM,
"datagram socket",
bwrite_conv,
dgram_write,
bread_conv,
dgram_read,
dgram_puts,
NULL, /* dgram_gets, */
dgram_ctrl,
dgram_new,
dgram_free,
NULL, /* dgram_callback_ctrl */
dgram_sendmmsg,
dgram_recvmmsg,
};
# ifndef OPENSSL_NO_SCTP
static const BIO_METHOD methods_dgramp_sctp = {
BIO_TYPE_DGRAM_SCTP,
"datagram sctp socket",
bwrite_conv,
dgram_sctp_write,
bread_conv,
dgram_sctp_read,
dgram_sctp_puts,
NULL, /* dgram_gets, */
dgram_sctp_ctrl,
dgram_sctp_new,
dgram_sctp_free,
NULL, /* dgram_callback_ctrl */
NULL, /* sendmmsg */
NULL, /* recvmmsg */
};
# endif
typedef struct bio_dgram_data_st {
BIO_ADDR peer;
BIO_ADDR local_addr;
unsigned int connected;
unsigned int _errno;
unsigned int mtu;
OSSL_TIME next_timeout;
OSSL_TIME socket_timeout;
unsigned int peekmode;
char local_addr_enabled;
} bio_dgram_data;
# ifndef OPENSSL_NO_SCTP
typedef struct bio_dgram_sctp_save_message_st {
BIO *bio;
char *data;
int length;
} bio_dgram_sctp_save_message;
typedef struct bio_dgram_sctp_data_st {
BIO_ADDR peer;
unsigned int connected;
unsigned int _errno;
unsigned int mtu;
struct bio_dgram_sctp_sndinfo sndinfo;
struct bio_dgram_sctp_rcvinfo rcvinfo;
struct bio_dgram_sctp_prinfo prinfo;
BIO_dgram_sctp_notification_handler_fn handle_notifications;
void *notification_context;
int in_handshake;
int ccs_rcvd;
int ccs_sent;
int save_shutdown;
int peer_auth_tested;
} bio_dgram_sctp_data;
# endif
const BIO_METHOD *BIO_s_datagram(void)
{
return &methods_dgramp;
}
BIO *BIO_new_dgram(int fd, int close_flag)
{
BIO *ret;
ret = BIO_new(BIO_s_datagram());
if (ret == NULL)
return NULL;
BIO_set_fd(ret, fd, close_flag);
return ret;
}
static int dgram_new(BIO *bi)
{
bio_dgram_data *data = OPENSSL_zalloc(sizeof(*data));
if (data == NULL)
return 0;
bi->ptr = data;
return 1;
}
static int dgram_free(BIO *a)
{
bio_dgram_data *data;
if (a == NULL)
return 0;
if (!dgram_clear(a))
return 0;
data = (bio_dgram_data *)a->ptr;
OPENSSL_free(data);
return 1;
}
static int dgram_clear(BIO *a)
{
if (a == NULL)
return 0;
if (a->shutdown) {
if (a->init) {
BIO_closesocket(a->num);
}
a->init = 0;
a->flags = 0;
}
return 1;
}
static void dgram_adjust_rcv_timeout(BIO *b)
{
# if defined(SO_RCVTIMEO)
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
OSSL_TIME timeleft;
/* Is a timer active? */
if (!ossl_time_is_zero(data->next_timeout)) {
/* Read current socket timeout */
# ifdef OPENSSL_SYS_WINDOWS
int timeout;
int sz = sizeof(timeout);
if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void *)&timeout, &sz) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling getsockopt()");
else
data->socket_timeout = ossl_ms2time(timeout);
# else
struct timeval tv;
socklen_t sz = sizeof(tv);
if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &tv, &sz) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling getsockopt()");
else
data->socket_timeout = ossl_time_from_timeval(tv);
# endif
/* Calculate time left until timer expires */
timeleft = ossl_time_subtract(data->next_timeout, ossl_time_now());
if (ossl_time_compare(timeleft, ossl_ticks2time(OSSL_TIME_US)) < 0)
timeleft = ossl_ticks2time(OSSL_TIME_US);
/*
* Adjust socket timeout if next handshake message timer will expire
* earlier.
*/
if (ossl_time_is_zero(data->socket_timeout)
|| ossl_time_compare(data->socket_timeout, timeleft) >= 0) {
# ifdef OPENSSL_SYS_WINDOWS
timeout = (int)ossl_time2ms(timeleft);
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void *)&timeout, sizeof(timeout)) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# else
tv = ossl_time_to_timeval(timeleft);
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &tv,
sizeof(tv)) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# endif
}
}
# endif
}
static void dgram_update_local_addr(BIO *b)
{
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
socklen_t addr_len = sizeof(data->local_addr);
if (getsockname(b->num, &data->local_addr.sa, &addr_len) < 0)
/*
* This should not be possible, but zero-initialize and return
* anyway.
*/
BIO_ADDR_clear(&data->local_addr);
}
# if M_METHOD == M_METHOD_RECVMMSG || M_METHOD == M_METHOD_RECVMSG || M_METHOD == M_METHOD_WSARECVMSG
static int dgram_get_sock_family(BIO *b)
{
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
return data->local_addr.sa.sa_family;
}
# endif
static void dgram_reset_rcv_timeout(BIO *b)
{
# if defined(SO_RCVTIMEO)
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
/* Is a timer active? */
if (!ossl_time_is_zero(data->next_timeout)) {
# ifdef OPENSSL_SYS_WINDOWS
int timeout = (int)ossl_time2ms(data->socket_timeout);
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void *)&timeout, sizeof(timeout)) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# else
struct timeval tv = ossl_time_to_timeval(data->socket_timeout);
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# endif
}
# endif
}
static int dgram_read(BIO *b, char *out, int outl)
{
int ret = 0;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
int flags = 0;
BIO_ADDR peer;
socklen_t len = sizeof(peer);
if (out != NULL) {
clear_socket_error();
BIO_ADDR_clear(&peer);
dgram_adjust_rcv_timeout(b);
if (data->peekmode)
flags = MSG_PEEK;
ret = recvfrom(b->num, out, outl, flags,
BIO_ADDR_sockaddr_noconst(&peer), &len);
if (!data->connected && ret >= 0)
BIO_ctrl(b, BIO_CTRL_DGRAM_SET_PEER, 0, &peer);
BIO_clear_retry_flags(b);
if (ret < 0) {
if (BIO_dgram_should_retry(ret)) {
BIO_set_retry_read(b);
data->_errno = get_last_socket_error();
}
}
dgram_reset_rcv_timeout(b);
}
return ret;
}
static int dgram_write(BIO *b, const char *in, int inl)
{
int ret;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
clear_socket_error();
if (data->connected)
ret = writesocket(b->num, in, inl);
else {
int peerlen = BIO_ADDR_sockaddr_size(&data->peer);
ret = sendto(b->num, in, inl, 0,
BIO_ADDR_sockaddr(&data->peer), peerlen);
}
BIO_clear_retry_flags(b);
if (ret <= 0) {
if (BIO_dgram_should_retry(ret)) {
BIO_set_retry_write(b);
data->_errno = get_last_socket_error();
}
}
return ret;
}
static long dgram_get_mtu_overhead(bio_dgram_data *data)
{
long ret;
switch (BIO_ADDR_family(&data->peer)) {
case AF_INET:
/*
* Assume this is UDP - 20 bytes for IP, 8 bytes for UDP
*/
ret = 28;
break;
# if OPENSSL_USE_IPV6
case AF_INET6:
{
# ifdef IN6_IS_ADDR_V4MAPPED
struct in6_addr tmp_addr;
if (BIO_ADDR_rawaddress(&data->peer, &tmp_addr, NULL)
&& IN6_IS_ADDR_V4MAPPED(&tmp_addr))
/*
* Assume this is UDP - 20 bytes for IP, 8 bytes for UDP
*/
ret = 28;
else
# endif
/*
* Assume this is UDP - 40 bytes for IP, 8 bytes for UDP
*/
ret = 48;
}
break;
# endif
default:
/* We don't know. Go with the historical default */
ret = 28;
break;
}
return ret;
}
/* Enables appropriate destination address reception option on the socket. */
# if defined(SUPPORT_LOCAL_ADDR)
static int enable_local_addr(BIO *b, int enable) {
int af = dgram_get_sock_family(b);
if (af == AF_INET) {
# if defined(IP_PKTINFO)
/* IP_PKTINFO is preferred */
if (setsockopt(b->num, IPPROTO_IP, IP_PKTINFO,
(void *)&enable, sizeof(enable)) < 0)
return 0;
return 1;
# elif defined(IP_RECVDSTADDR)
/* Fall back to IP_RECVDSTADDR */
if (setsockopt(b->num, IPPROTO_IP, IP_RECVDSTADDR,
&enable, sizeof(enable)) < 0)
return 0;
return 1;
# endif
}
# if OPENSSL_USE_IPV6
if (af == AF_INET6) {
# if defined(IPV6_RECVPKTINFO)
if (setsockopt(b->num, IPPROTO_IPV6, IPV6_RECVPKTINFO,
&enable, sizeof(enable)) < 0)
return 0;
return 1;
# endif
}
# endif
return 0;
}
# endif
static long dgram_ctrl(BIO *b, int cmd, long num, void *ptr)
{
long ret = 1;
int *ip;
bio_dgram_data *data = NULL;
# ifndef __DJGPP__
/* There are currently no cases where this is used on djgpp/watt32. */
int sockopt_val = 0;
# endif
int d_errno;
# if defined(OPENSSL_SYS_LINUX) && (defined(IP_MTU_DISCOVER) || defined(IP_MTU))
socklen_t sockopt_len; /* assume that system supporting IP_MTU is
* modern enough to define socklen_t */
socklen_t addr_len;
BIO_ADDR addr;
# endif
data = (bio_dgram_data *)b->ptr;
switch (cmd) {
case BIO_CTRL_RESET:
num = 0;
ret = 0;
break;
case BIO_CTRL_INFO:
ret = 0;
break;
case BIO_C_SET_FD:
dgram_clear(b);
b->num = *((int *)ptr);
b->shutdown = (int)num;
b->init = 1;
dgram_update_local_addr(b);
# if defined(SUPPORT_LOCAL_ADDR)
if (data->local_addr_enabled) {
if (enable_local_addr(b, 1) < 1)
data->local_addr_enabled = 0;
}
# endif
break;
case BIO_C_GET_FD:
if (b->init) {
ip = (int *)ptr;
if (ip != NULL)
*ip = b->num;
ret = b->num;
} else
ret = -1;
break;
case BIO_CTRL_GET_CLOSE:
ret = b->shutdown;
break;
case BIO_CTRL_SET_CLOSE:
b->shutdown = (int)num;
break;
case BIO_CTRL_PENDING:
case BIO_CTRL_WPENDING:
ret = 0;
break;
case BIO_CTRL_DUP:
case BIO_CTRL_FLUSH:
ret = 1;
break;
case BIO_CTRL_DGRAM_CONNECT:
BIO_ADDR_make(&data->peer, BIO_ADDR_sockaddr((BIO_ADDR *)ptr));
break;
/* (Linux)kernel sets DF bit on outgoing IP packets */
case BIO_CTRL_DGRAM_MTU_DISCOVER:
# if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DO)
addr_len = (socklen_t) sizeof(addr);
BIO_ADDR_clear(&addr);
if (getsockname(b->num, &addr.sa, &addr_len) < 0) {
ret = 0;
break;
}
switch (addr.sa.sa_family) {
case AF_INET:
sockopt_val = IP_PMTUDISC_DO;
if ((ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER,
&sockopt_val, sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
break;
# if OPENSSL_USE_IPV6 && defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DO)
case AF_INET6:
sockopt_val = IPV6_PMTUDISC_DO;
if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER,
&sockopt_val, sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
break;
# endif
default:
ret = -1;
break;
}
# else
ret = -1;
# endif
break;
case BIO_CTRL_DGRAM_QUERY_MTU:
# if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU)
addr_len = (socklen_t) sizeof(addr);
BIO_ADDR_clear(&addr);
if (getsockname(b->num, &addr.sa, &addr_len) < 0) {
ret = 0;
break;
}
sockopt_len = sizeof(sockopt_val);
switch (addr.sa.sa_family) {
case AF_INET:
if ((ret =
getsockopt(b->num, IPPROTO_IP, IP_MTU, (void *)&sockopt_val,
&sockopt_len)) < 0 || sockopt_val < 0) {
ret = 0;
} else {
/*
* we assume that the transport protocol is UDP and no IP
* options are used.
*/
data->mtu = sockopt_val - 8 - 20;
ret = data->mtu;
}
break;
# if OPENSSL_USE_IPV6 && defined(IPV6_MTU)
case AF_INET6:
if ((ret =
getsockopt(b->num, IPPROTO_IPV6, IPV6_MTU,
(void *)&sockopt_val, &sockopt_len)) < 0
|| sockopt_val < 0) {
ret = 0;
} else {
/*
* we assume that the transport protocol is UDP and no IPV6
* options are used.
*/
data->mtu = sockopt_val - 8 - 40;
ret = data->mtu;
}
break;
# endif
default:
ret = 0;
break;
}
# else
ret = 0;
# endif
break;
case BIO_CTRL_DGRAM_GET_FALLBACK_MTU:
ret = -dgram_get_mtu_overhead(data);
switch (BIO_ADDR_family(&data->peer)) {
case AF_INET:
ret += 576;
break;
# if OPENSSL_USE_IPV6
case AF_INET6:
{
# ifdef IN6_IS_ADDR_V4MAPPED
struct in6_addr tmp_addr;
if (BIO_ADDR_rawaddress(&data->peer, &tmp_addr, NULL)
&& IN6_IS_ADDR_V4MAPPED(&tmp_addr))
ret += 576;
else
# endif
ret += 1280;
}
break;
# endif
default:
ret += 576;
break;
}
break;
case BIO_CTRL_DGRAM_GET_MTU:
return data->mtu;
case BIO_CTRL_DGRAM_SET_MTU:
data->mtu = num;
ret = num;
break;
case BIO_CTRL_DGRAM_SET_CONNECTED:
if (ptr != NULL) {
data->connected = 1;
BIO_ADDR_make(&data->peer, BIO_ADDR_sockaddr((BIO_ADDR *)ptr));
} else {
data->connected = 0;
BIO_ADDR_clear(&data->peer);
}
break;
case BIO_CTRL_DGRAM_GET_PEER:
ret = BIO_ADDR_sockaddr_size(&data->peer);
/* FIXME: if num < ret, we will only return part of an address.
That should bee an error, no? */
if (num == 0 || num > ret)
num = ret;
memcpy(ptr, &data->peer, (ret = num));
break;
case BIO_CTRL_DGRAM_SET_PEER:
BIO_ADDR_make(&data->peer, BIO_ADDR_sockaddr((BIO_ADDR *)ptr));
break;
case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
data->next_timeout = ossl_time_from_timeval(*(struct timeval *)ptr);
break;
# if defined(SO_RCVTIMEO)
case BIO_CTRL_DGRAM_SET_RECV_TIMEOUT:
# ifdef OPENSSL_SYS_WINDOWS
{
struct timeval *tv = (struct timeval *)ptr;
int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000;
if ((ret = setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void *)&timeout, sizeof(timeout))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
}
# else
if ((ret = setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr,
sizeof(struct timeval))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# endif
break;
case BIO_CTRL_DGRAM_GET_RECV_TIMEOUT:
{
# ifdef OPENSSL_SYS_WINDOWS
int sz = 0;
int timeout;
struct timeval *tv = (struct timeval *)ptr;
sz = sizeof(timeout);
if ((ret = getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void *)&timeout, &sz)) < 0) {
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling getsockopt()");
} else {
tv->tv_sec = timeout / 1000;
tv->tv_usec = (timeout % 1000) * 1000;
ret = sizeof(*tv);
}
# else
socklen_t sz = sizeof(struct timeval);
if ((ret = getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
ptr, &sz)) < 0) {
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling getsockopt()");
} else {
OPENSSL_assert((size_t)sz <= sizeof(struct timeval));
ret = (int)sz;
}
# endif
}
break;
# endif
# if defined(SO_SNDTIMEO)
case BIO_CTRL_DGRAM_SET_SEND_TIMEOUT:
# ifdef OPENSSL_SYS_WINDOWS
{
struct timeval *tv = (struct timeval *)ptr;
int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000;
if ((ret = setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
(void *)&timeout, sizeof(timeout))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
}
# else
if ((ret = setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr,
sizeof(struct timeval))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# endif
break;
case BIO_CTRL_DGRAM_GET_SEND_TIMEOUT:
{
# ifdef OPENSSL_SYS_WINDOWS
int sz = 0;
int timeout;
struct timeval *tv = (struct timeval *)ptr;
sz = sizeof(timeout);
if ((ret = getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
(void *)&timeout, &sz)) < 0) {
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling getsockopt()");
} else {
tv->tv_sec = timeout / 1000;
tv->tv_usec = (timeout % 1000) * 1000;
ret = sizeof(*tv);
}
# else
socklen_t sz = sizeof(struct timeval);
if ((ret = getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
ptr, &sz)) < 0) {
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling getsockopt()");
} else {
OPENSSL_assert((size_t)sz <= sizeof(struct timeval));
ret = (int)sz;
}
# endif
}
break;
# endif
case BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP:
/* fall-through */
case BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP:
# ifdef OPENSSL_SYS_WINDOWS
d_errno = (data->_errno == WSAETIMEDOUT);
# else
d_errno = (data->_errno == EAGAIN);
# endif
if (d_errno) {
ret = 1;
data->_errno = 0;
} else
ret = 0;
break;
# ifdef EMSGSIZE
case BIO_CTRL_DGRAM_MTU_EXCEEDED:
if (data->_errno == EMSGSIZE) {
ret = 1;
data->_errno = 0;
} else
ret = 0;
break;
# endif
case BIO_CTRL_DGRAM_SET_DONT_FRAG:
switch (data->peer.sa.sa_family) {
case AF_INET:
# if defined(IP_DONTFRAG)
sockopt_val = num ? 1 : 0;
if ((ret = setsockopt(b->num, IPPROTO_IP, IP_DONTFRAG,
&sockopt_val, sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# elif defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined (IP_PMTUDISC_PROBE)
sockopt_val = num ? IP_PMTUDISC_PROBE : IP_PMTUDISC_DONT;
if ((ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER,
&sockopt_val, sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# elif defined(OPENSSL_SYS_WINDOWS) && defined(IP_DONTFRAGMENT)
sockopt_val = num ? 1 : 0;
if ((ret = setsockopt(b->num, IPPROTO_IP, IP_DONTFRAGMENT,
(const char *)&sockopt_val,
sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# else
ret = -1;
# endif
break;
# if OPENSSL_USE_IPV6
case AF_INET6:
# if defined(IPV6_DONTFRAG)
sockopt_val = num ? 1 : 0;
if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_DONTFRAG,
(const void *)&sockopt_val,
sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# elif defined(OPENSSL_SYS_LINUX) && defined(IPV6_MTUDISCOVER)
sockopt_val = num ? IP_PMTUDISC_PROBE : IP_PMTUDISC_DONT;
if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER,
&sockopt_val, sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# else
ret = -1;
# endif
break;
# endif
default:
ret = -1;
break;
}
break;
case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD:
ret = dgram_get_mtu_overhead(data);
break;
/*
* BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE is used here for compatibility
* reasons. When BIO_CTRL_DGRAM_SET_PEEK_MODE was first defined its value
* was incorrectly clashing with BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE. The
* value has been updated to a non-clashing value. However to preserve
* binary compatibility we now respond to both the old value and the new one
*/
case BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE:
case BIO_CTRL_DGRAM_SET_PEEK_MODE:
data->peekmode = (unsigned int)num;
break;
case BIO_CTRL_DGRAM_GET_LOCAL_ADDR_CAP:
# if defined(SUPPORT_LOCAL_ADDR)
ret = 1;
# else
ret = 0;
# endif
break;
case BIO_CTRL_DGRAM_SET_LOCAL_ADDR_ENABLE:
# if defined(SUPPORT_LOCAL_ADDR)
num = num > 0;
if (num != data->local_addr_enabled) {
if (enable_local_addr(b, num) < 1) {
ret = 0;
break;
}
data->local_addr_enabled = (char)num;
}
# else
ret = 0;
# endif
break;
case BIO_CTRL_DGRAM_GET_LOCAL_ADDR_ENABLE:
*(int *)ptr = data->local_addr_enabled;
break;
default:
ret = 0;
break;
}
/* Normalize if error */
if (ret < 0)
ret = -1;
return ret;
}
static int dgram_puts(BIO *bp, const char *str)
{
int n, ret;
n = strlen(str);
ret = dgram_write(bp, str, n);
return ret;
}
# if M_METHOD == M_METHOD_WSARECVMSG
static void translate_msg_win(BIO *b, WSAMSG *mh, WSABUF *iov,
unsigned char *control, BIO_MSG *msg)
{
iov->len = msg->data_len;
iov->buf = msg->data;
/* Windows requires namelen to be set exactly */
mh->name = msg->peer != NULL ? &msg->peer->sa : NULL;
if (msg->peer != NULL && dgram_get_sock_family(b) == AF_INET)
mh->namelen = sizeof(struct sockaddr_in);
# if OPENSSL_USE_IPV6
else if (msg->peer != NULL && dgram_get_sock_family(b) == AF_INET6)
mh->namelen = sizeof(struct sockaddr_in6);
# endif
else
mh->namelen = 0;
/*
* When local address reception (IP_PKTINFO, etc.) is enabled, on Windows
* this causes WSARecvMsg to fail if the control buffer is too small to hold
* the structure, or if no control buffer is passed. So we need to give it
* the control buffer even if we aren't actually going to examine the
* result.
*/
mh->lpBuffers = iov;
mh->dwBufferCount = 1;
mh->Control.len = BIO_CMSG_ALLOC_LEN;
mh->Control.buf = control;
mh->dwFlags = 0;
}
# endif
# if M_METHOD == M_METHOD_RECVMMSG || M_METHOD == M_METHOD_RECVMSG
/* Translates a BIO_MSG to a msghdr and iovec. */
static void translate_msg(BIO *b, struct msghdr *mh, struct iovec *iov,
unsigned char *control, BIO_MSG *msg)
{
iov->iov_base = msg->data;
iov->iov_len = msg->data_len;
/* macOS requires msg_namelen be 0 if msg_name is NULL */
mh->msg_name = msg->peer != NULL ? &msg->peer->sa : NULL;
if (msg->peer != NULL && dgram_get_sock_family(b) == AF_INET)
mh->msg_namelen = sizeof(struct sockaddr_in);
# if OPENSSL_USE_IPV6
else if (msg->peer != NULL && dgram_get_sock_family(b) == AF_INET6)
mh->msg_namelen = sizeof(struct sockaddr_in6);
# endif
else
mh->msg_namelen = 0;
mh->msg_iov = iov;
mh->msg_iovlen = 1;
mh->msg_control = msg->local != NULL ? control : NULL;
mh->msg_controllen = msg->local != NULL ? BIO_CMSG_ALLOC_LEN : 0;
mh->msg_flags = 0;
}
# endif
# if M_METHOD == M_METHOD_RECVMMSG || M_METHOD == M_METHOD_RECVMSG || M_METHOD == M_METHOD_WSARECVMSG
/* Extracts destination address from the control buffer. */
static int extract_local(BIO *b, MSGHDR_TYPE *mh, BIO_ADDR *local) {
# if defined(IP_PKTINFO) || defined(IP_RECVDSTADDR) || defined(IPV6_PKTINFO)
CMSGHDR_TYPE *cmsg;
int af = dgram_get_sock_family(b);
for (cmsg = BIO_CMSG_FIRSTHDR(mh); cmsg != NULL;
cmsg = BIO_CMSG_NXTHDR(mh, cmsg)) {
if (af == AF_INET) {
if (cmsg->cmsg_level != IPPROTO_IP)
continue;
# if defined(IP_PKTINFO)
if (cmsg->cmsg_type != IP_PKTINFO)
continue;
local->s_in.sin_addr =
((struct in_pktinfo *)BIO_CMSG_DATA(cmsg))->ipi_addr;
# elif defined(IP_RECVDSTADDR)
if (cmsg->cmsg_type != IP_RECVDSTADDR)
continue;
local->s_in.sin_addr = *(struct in_addr *)BIO_CMSG_DATA(cmsg);
# endif
# if defined(IP_PKTINFO) || defined(IP_RECVDSTADDR)
{
bio_dgram_data *data = b->ptr;
local->s_in.sin_family = AF_INET;
local->s_in.sin_port = data->local_addr.s_in.sin_port;
}
return 1;
# endif
}
# if OPENSSL_USE_IPV6
else if (af == AF_INET6) {
if (cmsg->cmsg_level != IPPROTO_IPV6)
continue;
# if defined(IPV6_RECVPKTINFO)
if (cmsg->cmsg_type != IPV6_PKTINFO)
continue;
{
bio_dgram_data *data = b->ptr;
local->s_in6.sin6_addr =
((struct in6_pktinfo *)BIO_CMSG_DATA(cmsg))->ipi6_addr;
local->s_in6.sin6_family = AF_INET6;
local->s_in6.sin6_port = data->local_addr.s_in6.sin6_port;
local->s_in6.sin6_scope_id =
data->local_addr.s_in6.sin6_scope_id;
local->s_in6.sin6_flowinfo = 0;
}
return 1;
# endif
}
# endif
}
# endif
return 0;
}
static int pack_local(BIO *b, MSGHDR_TYPE *mh, const BIO_ADDR *local) {
int af = dgram_get_sock_family(b);
# if defined(IP_PKTINFO) || defined(IP_RECVDSTADDR) || defined(IPV6_PKTINFO)
CMSGHDR_TYPE *cmsg;
bio_dgram_data *data = b->ptr;
# endif
if (af == AF_INET) {
# if defined(IP_PKTINFO)
struct in_pktinfo *info;
# if defined(OPENSSL_SYS_WINDOWS)
cmsg = (CMSGHDR_TYPE *)mh->Control.buf;
# else
cmsg = (CMSGHDR_TYPE *)mh->msg_control;
# endif
cmsg->cmsg_len = BIO_CMSG_LEN(sizeof(struct in_pktinfo));
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_PKTINFO;
info = (struct in_pktinfo *)BIO_CMSG_DATA(cmsg);
# if !defined(OPENSSL_SYS_WINDOWS) && !defined(OPENSSL_SYS_CYGWIN)
info->ipi_spec_dst = local->s_in.sin_addr;
# endif
info->ipi_addr.s_addr = 0;
info->ipi_ifindex = 0;
/*
* We cannot override source port using this API, therefore
* ensure the application specified a source port of 0
* or the one we are bound to. (Better to error than silently
* ignore this.)
*/
if (local->s_in.sin_port != 0
&& data->local_addr.s_in.sin_port != local->s_in.sin_port) {
ERR_raise(ERR_LIB_BIO, BIO_R_PORT_MISMATCH);
return 0;
}
# if defined(OPENSSL_SYS_WINDOWS)
mh->Control.len = BIO_CMSG_SPACE(sizeof(struct in_pktinfo));
# else
mh->msg_controllen = BIO_CMSG_SPACE(sizeof(struct in_pktinfo));
# endif
return 1;
# elif defined(IP_SENDSRCADDR)
struct in_addr *info;
/*
* At least FreeBSD is very pedantic about using IP_SENDSRCADDR when we
* are not bound to 0.0.0.0 or ::, even if the address matches what we
* bound to. Support this by not packing the structure if the address
* matches our understanding of our local address. IP_SENDSRCADDR is a
* BSD thing, so we don't need an explicit test for BSD here.
*/
if (local->s_in.sin_addr.s_addr == data->local_addr.s_in.sin_addr.s_addr) {
mh->msg_control = NULL;
mh->msg_controllen = 0;
return 1;
}
cmsg = (struct cmsghdr *)mh->msg_control;
cmsg->cmsg_len = BIO_CMSG_LEN(sizeof(struct in_addr));
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_SENDSRCADDR;
info = (struct in_addr *)BIO_CMSG_DATA(cmsg);
*info = local->s_in.sin_addr;
/* See comment above. */
if (local->s_in.sin_port != 0
&& data->local_addr.s_in.sin_port != local->s_in.sin_port) {
ERR_raise(ERR_LIB_BIO, BIO_R_PORT_MISMATCH);
return 0;
}
mh->msg_controllen = BIO_CMSG_SPACE(sizeof(struct in_addr));
return 1;
# endif
}
# if OPENSSL_USE_IPV6
else if (af == AF_INET6) {
# if defined(IPV6_PKTINFO)
struct in6_pktinfo *info;
# if defined(OPENSSL_SYS_WINDOWS)
cmsg = (CMSGHDR_TYPE *)mh->Control.buf;
# else
cmsg = (CMSGHDR_TYPE *)mh->msg_control;
# endif
cmsg->cmsg_len = BIO_CMSG_LEN(sizeof(struct in6_pktinfo));
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_PKTINFO;
info = (struct in6_pktinfo *)BIO_CMSG_DATA(cmsg);
info->ipi6_addr = local->s_in6.sin6_addr;
info->ipi6_ifindex = 0;
/*
* See comment above, but also applies to the other fields
* in sockaddr_in6.
*/
if (local->s_in6.sin6_port != 0
&& data->local_addr.s_in6.sin6_port != local->s_in6.sin6_port) {
ERR_raise(ERR_LIB_BIO, BIO_R_PORT_MISMATCH);
return 0;
}
if (local->s_in6.sin6_scope_id != 0
&& data->local_addr.s_in6.sin6_scope_id != local->s_in6.sin6_scope_id) {
ERR_raise(ERR_LIB_BIO, BIO_R_PORT_MISMATCH);
return 0;
}
# if defined(OPENSSL_SYS_WINDOWS)
mh->Control.len = BIO_CMSG_SPACE(sizeof(struct in6_pktinfo));
# else
mh->msg_controllen = BIO_CMSG_SPACE(sizeof(struct in6_pktinfo));
# endif
return 1;
# endif
}
# endif
return 0;
}
# endif
/*
* Converts flags passed to BIO_sendmmsg or BIO_recvmmsg to syscall flags. You
* should mask out any system flags returned by this function you cannot support
* in a particular circumstance. Currently no flags are defined.
*/
# if M_METHOD != M_METHOD_NONE
static int translate_flags(uint64_t flags) {
return 0;
}
# endif
static int dgram_sendmmsg(BIO *b, BIO_MSG *msg, size_t stride,
size_t num_msg, uint64_t flags, size_t *num_processed)
{
# if M_METHOD != M_METHOD_NONE && M_METHOD != M_METHOD_RECVMSG
int ret;
# endif
# if M_METHOD == M_METHOD_RECVMMSG
# define BIO_MAX_MSGS_PER_CALL 64
int sysflags;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
size_t i;
struct mmsghdr mh[BIO_MAX_MSGS_PER_CALL];
struct iovec iov[BIO_MAX_MSGS_PER_CALL];
unsigned char control[BIO_MAX_MSGS_PER_CALL][BIO_CMSG_ALLOC_LEN];
int have_local_enabled = data->local_addr_enabled;
# elif M_METHOD == M_METHOD_RECVMSG
int sysflags;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
ossl_ssize_t l;
struct msghdr mh;
struct iovec iov;
unsigned char control[BIO_CMSG_ALLOC_LEN];
int have_local_enabled = data->local_addr_enabled;
# elif M_METHOD == M_METHOD_WSARECVMSG
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
int have_local_enabled = data->local_addr_enabled;
WSAMSG wmsg;
WSABUF wbuf;
DWORD num_bytes_sent = 0;
unsigned char control[BIO_CMSG_ALLOC_LEN];
# endif
# if M_METHOD == M_METHOD_RECVFROM || M_METHOD == M_METHOD_WSARECVMSG
int sysflags;
# endif
if (num_msg == 0) {
*num_processed = 0;
return 1;
}
if (num_msg > OSSL_SSIZE_MAX)
num_msg = OSSL_SSIZE_MAX;
# if M_METHOD != M_METHOD_NONE
sysflags = translate_flags(flags);
# endif
# if M_METHOD == M_METHOD_RECVMMSG
/*
* In the sendmmsg/recvmmsg case, we need to allocate our translated struct
* msghdr and struct iovec on the stack to support multithreaded use. Thus
* we place a fixed limit on the number of messages per call, in the
* expectation that we will be called again if there were more messages to
* be sent.
*/
if (num_msg > BIO_MAX_MSGS_PER_CALL)
num_msg = BIO_MAX_MSGS_PER_CALL;
for (i = 0; i < num_msg; ++i) {
translate_msg(b, &mh[i].msg_hdr, &iov[i],
control[i], &BIO_MSG_N(msg, stride, i));
/* If local address was requested, it must have been enabled */
if (BIO_MSG_N(msg, stride, i).local != NULL) {
if (!have_local_enabled) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
if (pack_local(b, &mh[i].msg_hdr,
BIO_MSG_N(msg, stride, i).local) < 1) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
}
}
/* Do the batch */
ret = sendmmsg(b->num, mh, num_msg, sysflags);
if (ret < 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
for (i = 0; i < (size_t)ret; ++i) {
BIO_MSG_N(msg, stride, i).data_len = mh[i].msg_len;
BIO_MSG_N(msg, stride, i).flags = 0;
}
*num_processed = (size_t)ret;
return 1;
# elif M_METHOD == M_METHOD_RECVMSG
/*
* If sendmsg is available, use it.
*/
translate_msg(b, &mh, &iov, control, msg);
if (msg->local != NULL) {
if (!have_local_enabled) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
if (pack_local(b, &mh, msg->local) < 1) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
}
l = sendmsg(b->num, &mh, sysflags);
if (l < 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
msg->data_len = (size_t)l;
msg->flags = 0;
*num_processed = 1;
return 1;
# elif M_METHOD == M_METHOD_WSARECVMSG || M_METHOD == M_METHOD_RECVFROM
# if M_METHOD == M_METHOD_WSARECVMSG
if (bio_WSASendMsg != NULL) {
/* WSASendMsg-based implementation for Windows. */
translate_msg_win(b, &wmsg, &wbuf, control, msg);
if (msg[0].local != NULL) {
if (!have_local_enabled) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
if (pack_local(b, &wmsg, msg[0].local) < 1) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
}
ret = WSASendMsg((SOCKET)b->num, &wmsg, 0, &num_bytes_sent, NULL, NULL);
if (ret < 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
msg[0].data_len = num_bytes_sent;
msg[0].flags = 0;
*num_processed = 1;
return 1;
}
# endif
/*
* Fallback to sendto and send a single message.
*/
if (msg[0].local != NULL) {
/*
* We cannot set the local address if using sendto
* so fail in this case
*/
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
ret = sendto(b->num, msg[0].data,
# if defined(OPENSSL_SYS_WINDOWS)
(int)msg[0].data_len,
# else
msg[0].data_len,
# endif
sysflags,
msg[0].peer != NULL ? &msg[0].peer->sa : NULL,
msg[0].peer != NULL ? sizeof(*msg[0].peer) : 0);
if (ret <= 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
msg[0].data_len = ret;
msg[0].flags = 0;
*num_processed = 1;
return 1;
# else
ERR_raise(ERR_LIB_BIO, BIO_R_UNSUPPORTED_METHOD);
*num_processed = 0;
return 0;
# endif
}
static int dgram_recvmmsg(BIO *b, BIO_MSG *msg,
size_t stride, size_t num_msg,
uint64_t flags, size_t *num_processed)
{
# if M_METHOD != M_METHOD_NONE && M_METHOD != M_METHOD_RECVMSG
int ret;
# endif
# if M_METHOD == M_METHOD_RECVMMSG
int sysflags;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
size_t i;
struct mmsghdr mh[BIO_MAX_MSGS_PER_CALL];
struct iovec iov[BIO_MAX_MSGS_PER_CALL];
unsigned char control[BIO_MAX_MSGS_PER_CALL][BIO_CMSG_ALLOC_LEN];
int have_local_enabled = data->local_addr_enabled;
# elif M_METHOD == M_METHOD_RECVMSG
int sysflags;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
ossl_ssize_t l;
struct msghdr mh;
struct iovec iov;
unsigned char control[BIO_CMSG_ALLOC_LEN];
int have_local_enabled = data->local_addr_enabled;
# elif M_METHOD == M_METHOD_WSARECVMSG
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
int have_local_enabled = data->local_addr_enabled;
WSAMSG wmsg;
WSABUF wbuf;
DWORD num_bytes_received = 0;
unsigned char control[BIO_CMSG_ALLOC_LEN];
# endif
# if M_METHOD == M_METHOD_RECVFROM || M_METHOD == M_METHOD_WSARECVMSG
int sysflags;
socklen_t slen;
# endif
if (num_msg == 0) {
*num_processed = 0;
return 1;
}
if (num_msg > OSSL_SSIZE_MAX)
num_msg = OSSL_SSIZE_MAX;
# if M_METHOD != M_METHOD_NONE
sysflags = translate_flags(flags);
# endif
# if M_METHOD == M_METHOD_RECVMMSG
/*
* In the sendmmsg/recvmmsg case, we need to allocate our translated struct
* msghdr and struct iovec on the stack to support multithreaded use. Thus
* we place a fixed limit on the number of messages per call, in the
* expectation that we will be called again if there were more messages to
* be sent.
*/
if (num_msg > BIO_MAX_MSGS_PER_CALL)
num_msg = BIO_MAX_MSGS_PER_CALL;
for (i = 0; i < num_msg; ++i) {
translate_msg(b, &mh[i].msg_hdr, &iov[i],
control[i], &BIO_MSG_N(msg, stride, i));
/* If local address was requested, it must have been enabled */
if (BIO_MSG_N(msg, stride, i).local != NULL && !have_local_enabled) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
}
/* Do the batch */
ret = recvmmsg(b->num, mh, num_msg, sysflags, NULL);
if (ret < 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
for (i = 0; i < (size_t)ret; ++i) {
BIO_MSG_N(msg, stride, i).data_len = mh[i].msg_len;
BIO_MSG_N(msg, stride, i).flags = 0;
/*
* *(msg->peer) will have been filled in by recvmmsg;
* for msg->local we parse the control data returned
*/
if (BIO_MSG_N(msg, stride, i).local != NULL)
if (extract_local(b, &mh[i].msg_hdr,
BIO_MSG_N(msg, stride, i).local) < 1)
/*
* It appears BSDs do not support local addresses for
* loopback sockets. In this case, just clear the local
* address, as for OS X and Windows in some circumstances
* (see below).
*/
BIO_ADDR_clear(msg->local);
}
*num_processed = (size_t)ret;
return 1;
# elif M_METHOD == M_METHOD_RECVMSG
/*
* If recvmsg is available, use it.
*/
translate_msg(b, &mh, &iov, control, msg);
/* If local address was requested, it must have been enabled */
if (msg->local != NULL && !have_local_enabled) {
/*
* If we have done at least one message, we must return the
* count; if we haven't done any, we can give an error code
*/
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
l = recvmsg(b->num, &mh, sysflags);
if (l < 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
msg->data_len = (size_t)l;
msg->flags = 0;
if (msg->local != NULL)
if (extract_local(b, &mh, msg->local) < 1)
/*
* OS X exhibits odd behaviour where it appears that if a packet is
* sent before the receiving interface enables IP_PKTINFO, it will
* sometimes not have any control data returned even if the
* receiving interface enables IP_PKTINFO before calling recvmsg().
* This appears to occur non-deterministically. Presumably, OS X
* handles IP_PKTINFO at the time the packet is enqueued into a
* socket's receive queue, rather than at the time recvmsg() is
* called, unlike most other operating systems. Thus (if this
* hypothesis is correct) there is a race between where IP_PKTINFO
* is enabled by the process and when the kernel's network stack
* queues the incoming message.
*
* We cannot return the local address if we do not have it, but this
* is not a caller error either, so just return a zero address
* structure. This is similar to how we handle Windows loopback
* interfaces (see below). We enable this workaround for all
* platforms, not just Apple, as this kind of quirk in OS networking
* stacks seems to be common enough that failing hard if a local
* address is not provided appears to be too brittle.
*/
BIO_ADDR_clear(msg->local);
*num_processed = 1;
return 1;
# elif M_METHOD == M_METHOD_RECVFROM || M_METHOD == M_METHOD_WSARECVMSG
# if M_METHOD == M_METHOD_WSARECVMSG
if (bio_WSARecvMsg != NULL) {
/* WSARecvMsg-based implementation for Windows. */
translate_msg_win(b, &wmsg, &wbuf, control, msg);
/* If local address was requested, it must have been enabled */
if (msg[0].local != NULL && !have_local_enabled) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
ret = WSARecvMsg((SOCKET)b->num, &wmsg, &num_bytes_received, NULL, NULL);
if (ret < 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
msg[0].data_len = num_bytes_received;
msg[0].flags = 0;
if (msg[0].local != NULL)
if (extract_local(b, &wmsg, msg[0].local) < 1)
/*
* On Windows, loopback is not a "proper" interface and it works
* differently; packets are essentially short-circuited and
* don't go through all of the normal processing. A consequence
* of this is that packets sent from the local machine to the
* local machine _will not have IP_PKTINFO_ even if the
* IP_PKTINFO socket option is enabled. WSARecvMsg just sets
* Control.len to 0 on returning.
*
* This applies regardless of whether the loopback address,
* 127.0.0.1 is used, or a local interface address (e.g.
* 192.168.1.1); in both cases IP_PKTINFO will not be present.
*
* We report this condition by setting the local BIO_ADDR's
* family to 0.
*/
BIO_ADDR_clear(msg[0].local);
*num_processed = 1;
return 1;
}
# endif
/*
* Fallback to recvfrom and receive a single message.
*/
if (msg[0].local != NULL) {
/*
* We cannot determine the local address if using recvfrom
* so fail in this case
*/
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
slen = sizeof(*msg[0].peer);
ret = recvfrom(b->num, msg[0].data,
# if defined(OPENSSL_SYS_WINDOWS)
(int)msg[0].data_len,
# else
msg[0].data_len,
# endif
sysflags,
msg[0].peer != NULL ? &msg[0].peer->sa : NULL,
msg[0].peer != NULL ? &slen : NULL);
if (ret <= 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
return 0;
}
msg[0].data_len = ret;
msg[0].flags = 0;
*num_processed = 1;
return 1;
# else
ERR_raise(ERR_LIB_BIO, BIO_R_UNSUPPORTED_METHOD);
*num_processed = 0;
return 0;
# endif
}
# ifndef OPENSSL_NO_SCTP
const BIO_METHOD *BIO_s_datagram_sctp(void)
{
return &methods_dgramp_sctp;
}
BIO *BIO_new_dgram_sctp(int fd, int close_flag)
{
BIO *bio;
int ret, optval = 20000;
int auth_data = 0, auth_forward = 0;
unsigned char *p;
struct sctp_authchunk auth;
struct sctp_authchunks *authchunks;
socklen_t sockopt_len;
# ifdef SCTP_AUTHENTICATION_EVENT
# ifdef SCTP_EVENT
struct sctp_event event;
# else
struct sctp_event_subscribe event;
# endif
# endif
bio = BIO_new(BIO_s_datagram_sctp());
if (bio == NULL)
return NULL;
BIO_set_fd(bio, fd, close_flag);
/* Activate SCTP-AUTH for DATA and FORWARD-TSN chunks */
auth.sauth_chunk = OPENSSL_SCTP_DATA_CHUNK_TYPE;
ret =
setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth,
sizeof(struct sctp_authchunk));
if (ret < 0) {
BIO_vfree(bio);
ERR_raise_data(ERR_LIB_BIO, ERR_R_SYS_LIB,
"Ensure SCTP AUTH chunks are enabled in kernel");
return NULL;
}
auth.sauth_chunk = OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE;
ret =
setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth,
sizeof(struct sctp_authchunk));
if (ret < 0) {
BIO_vfree(bio);
ERR_raise_data(ERR_LIB_BIO, ERR_R_SYS_LIB,
"Ensure SCTP AUTH chunks are enabled in kernel");
return NULL;
}
/*
* Test if activation was successful. When using accept(), SCTP-AUTH has
* to be activated for the listening socket already, otherwise the
* connected socket won't use it. Similarly with connect(): the socket
* prior to connection must be activated for SCTP-AUTH
*/
sockopt_len = (socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t));
authchunks = OPENSSL_zalloc(sockopt_len);
if (authchunks == NULL) {
BIO_vfree(bio);
return NULL;
}
ret = getsockopt(fd, IPPROTO_SCTP, SCTP_LOCAL_AUTH_CHUNKS, authchunks,
&sockopt_len);
if (ret < 0) {
OPENSSL_free(authchunks);
BIO_vfree(bio);
return NULL;
}
for (p = (unsigned char *)authchunks->gauth_chunks;
p < (unsigned char *)authchunks + sockopt_len;
p += sizeof(uint8_t)) {
if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE)
auth_data = 1;
if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE)
auth_forward = 1;
}
OPENSSL_free(authchunks);
if (!auth_data || !auth_forward) {
BIO_vfree(bio);
ERR_raise_data(ERR_LIB_BIO, ERR_R_SYS_LIB,
"Ensure SCTP AUTH chunks are enabled on the "
"underlying socket");
return NULL;
}
# ifdef SCTP_AUTHENTICATION_EVENT
# ifdef SCTP_EVENT
memset(&event, 0, sizeof(event));
event.se_assoc_id = 0;
event.se_type = SCTP_AUTHENTICATION_EVENT;
event.se_on = 1;
ret =
setsockopt(fd, IPPROTO_SCTP, SCTP_EVENT, &event,
sizeof(struct sctp_event));
if (ret < 0) {
BIO_vfree(bio);
return NULL;
}
# else
sockopt_len = (socklen_t) sizeof(struct sctp_event_subscribe);
ret = getsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, &sockopt_len);
if (ret < 0) {
BIO_vfree(bio);
return NULL;
}
event.sctp_authentication_event = 1;
ret =
setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event,
sizeof(struct sctp_event_subscribe));
if (ret < 0) {
BIO_vfree(bio);
return NULL;
}
# endif
# endif
/*
* Disable partial delivery by setting the min size larger than the max
* record size of 2^14 + 2048 + 13
*/
ret =
setsockopt(fd, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT, &optval,
sizeof(optval));
if (ret < 0) {
BIO_vfree(bio);
return NULL;
}
return bio;
}
int BIO_dgram_is_sctp(BIO *bio)
{
return (BIO_method_type(bio) == BIO_TYPE_DGRAM_SCTP);
}
static int dgram_sctp_new(BIO *bi)
{
bio_dgram_sctp_data *data = NULL;
bi->init = 0;
bi->num = 0;
if ((data = OPENSSL_zalloc(sizeof(*data))) == NULL)
return 0;
# ifdef SCTP_PR_SCTP_NONE
data->prinfo.pr_policy = SCTP_PR_SCTP_NONE;
# endif
bi->ptr = data;
bi->flags = 0;
return 1;
}
static int dgram_sctp_free(BIO *a)
{
bio_dgram_sctp_data *data;
if (a == NULL)
return 0;
if (!dgram_clear(a))
return 0;
data = (bio_dgram_sctp_data *) a->ptr;
if (data != NULL)
OPENSSL_free(data);
return 1;
}
# ifdef SCTP_AUTHENTICATION_EVENT
void dgram_sctp_handle_auth_free_key_event(BIO *b,
union sctp_notification *snp)
{
int ret;
struct sctp_authkey_event *authkeyevent = &snp->sn_auth_event;
if (authkeyevent->auth_indication == SCTP_AUTH_FREE_KEY) {
struct sctp_authkeyid authkeyid;
/* delete key */
authkeyid.scact_keynumber = authkeyevent->auth_keynumber;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY,
&authkeyid, sizeof(struct sctp_authkeyid));
}
}
# endif
static int dgram_sctp_read(BIO *b, char *out, int outl)
{
int ret = 0, n = 0, i, optval;
socklen_t optlen;
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
struct msghdr msg;
struct iovec iov;
struct cmsghdr *cmsg;
char cmsgbuf[512];
if (out != NULL) {
clear_socket_error();
do {
memset(&data->rcvinfo, 0, sizeof(data->rcvinfo));
iov.iov_base = out;
iov.iov_len = outl;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = cmsgbuf;
msg.msg_controllen = 512;
msg.msg_flags = 0;
n = recvmsg(b->num, &msg, 0);
if (n <= 0) {
if (n < 0)
ret = n;
break;
}
if (msg.msg_controllen > 0) {
for (cmsg = CMSG_FIRSTHDR(&msg); cmsg;
cmsg = CMSG_NXTHDR(&msg, cmsg)) {
if (cmsg->cmsg_level != IPPROTO_SCTP)
continue;
# ifdef SCTP_RCVINFO
if (cmsg->cmsg_type == SCTP_RCVINFO) {
struct sctp_rcvinfo *rcvinfo;
rcvinfo = (struct sctp_rcvinfo *)CMSG_DATA(cmsg);
data->rcvinfo.rcv_sid = rcvinfo->rcv_sid;
data->rcvinfo.rcv_ssn = rcvinfo->rcv_ssn;
data->rcvinfo.rcv_flags = rcvinfo->rcv_flags;
data->rcvinfo.rcv_ppid = rcvinfo->rcv_ppid;
data->rcvinfo.rcv_tsn = rcvinfo->rcv_tsn;
data->rcvinfo.rcv_cumtsn = rcvinfo->rcv_cumtsn;
data->rcvinfo.rcv_context = rcvinfo->rcv_context;
}
# endif
# ifdef SCTP_SNDRCV
if (cmsg->cmsg_type == SCTP_SNDRCV) {
struct sctp_sndrcvinfo *sndrcvinfo;
sndrcvinfo =
(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
data->rcvinfo.rcv_sid = sndrcvinfo->sinfo_stream;
data->rcvinfo.rcv_ssn = sndrcvinfo->sinfo_ssn;
data->rcvinfo.rcv_flags = sndrcvinfo->sinfo_flags;
data->rcvinfo.rcv_ppid = sndrcvinfo->sinfo_ppid;
data->rcvinfo.rcv_tsn = sndrcvinfo->sinfo_tsn;
data->rcvinfo.rcv_cumtsn = sndrcvinfo->sinfo_cumtsn;
data->rcvinfo.rcv_context = sndrcvinfo->sinfo_context;
}
# endif
}
}
if (msg.msg_flags & MSG_NOTIFICATION) {
union sctp_notification snp;
memcpy(&snp, out, sizeof(snp));
if (snp.sn_header.sn_type == SCTP_SENDER_DRY_EVENT) {
# ifdef SCTP_EVENT
struct sctp_event event;
# else
struct sctp_event_subscribe event;
socklen_t eventsize;
# endif
/* disable sender dry event */
# ifdef SCTP_EVENT
memset(&event, 0, sizeof(event));
event.se_assoc_id = 0;
event.se_type = SCTP_SENDER_DRY_EVENT;
event.se_on = 0;
i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
sizeof(struct sctp_event));
if (i < 0) {
ret = i;
break;
}
# else
eventsize = sizeof(struct sctp_event_subscribe);
i = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
&eventsize);
if (i < 0) {
ret = i;
break;
}
event.sctp_sender_dry_event = 0;
i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
sizeof(struct sctp_event_subscribe));
if (i < 0) {
ret = i;
break;
}
# endif
}
# ifdef SCTP_AUTHENTICATION_EVENT
if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
dgram_sctp_handle_auth_free_key_event(b, &snp);
# endif
if (data->handle_notifications != NULL)
data->handle_notifications(b, data->notification_context,
(void *)out);
memset(&snp, 0, sizeof(snp));
memset(out, 0, outl);
} else {
ret += n;
}
}
while ((msg.msg_flags & MSG_NOTIFICATION) && (msg.msg_flags & MSG_EOR)
&& (ret < outl));
if (ret > 0 && !(msg.msg_flags & MSG_EOR)) {
/* Partial message read, this should never happen! */
/*
* The buffer was too small, this means the peer sent a message
* that was larger than allowed.
*/
if (ret == outl)
return -1;
/*
* Test if socket buffer can handle max record size (2^14 + 2048
* + 13)
*/
optlen = (socklen_t) sizeof(int);
ret = getsockopt(b->num, SOL_SOCKET, SO_RCVBUF, &optval, &optlen);
if (ret >= 0)
OPENSSL_assert(optval >= 18445);
/*
* Test if SCTP doesn't partially deliver below max record size
* (2^14 + 2048 + 13)
*/
optlen = (socklen_t) sizeof(int);
ret =
getsockopt(b->num, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT,
&optval, &optlen);
if (ret >= 0)
OPENSSL_assert(optval >= 18445);
/*
* Partially delivered notification??? Probably a bug....
*/
OPENSSL_assert(!(msg.msg_flags & MSG_NOTIFICATION));
/*
* Everything seems ok till now, so it's most likely a message
* dropped by PR-SCTP.
*/
memset(out, 0, outl);
BIO_set_retry_read(b);
return -1;
}
BIO_clear_retry_flags(b);
if (ret < 0) {
if (BIO_dgram_should_retry(ret)) {
BIO_set_retry_read(b);
data->_errno = get_last_socket_error();
}
}
/* Test if peer uses SCTP-AUTH before continuing */
if (!data->peer_auth_tested) {
int ii, auth_data = 0, auth_forward = 0;
unsigned char *p;
struct sctp_authchunks *authchunks;
optlen =
(socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t));
authchunks = OPENSSL_malloc(optlen);
if (authchunks == NULL)
return -1;
memset(authchunks, 0, optlen);
ii = getsockopt(b->num, IPPROTO_SCTP, SCTP_PEER_AUTH_CHUNKS,
authchunks, &optlen);
if (ii >= 0)
for (p = (unsigned char *)authchunks->gauth_chunks;
p < (unsigned char *)authchunks + optlen;
p += sizeof(uint8_t)) {
if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE)
auth_data = 1;
if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE)
auth_forward = 1;
}
OPENSSL_free(authchunks);
if (!auth_data || !auth_forward) {
ERR_raise(ERR_LIB_BIO, BIO_R_CONNECT_ERROR);
return -1;
}
data->peer_auth_tested = 1;
}
}
return ret;
}
/*
* dgram_sctp_write - send message on SCTP socket
* @b: BIO to write to
* @in: data to send
* @inl: amount of bytes in @in to send
*
* Returns -1 on error or the sent amount of bytes on success
*/
static int dgram_sctp_write(BIO *b, const char *in, int inl)
{
int ret;
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
struct bio_dgram_sctp_sndinfo *sinfo = &(data->sndinfo);
struct bio_dgram_sctp_prinfo *pinfo = &(data->prinfo);
struct bio_dgram_sctp_sndinfo handshake_sinfo;
struct iovec iov[1];
struct msghdr msg;
struct cmsghdr *cmsg;
# if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo)) +
CMSG_SPACE(sizeof(struct sctp_prinfo))];
struct sctp_sndinfo *sndinfo;
struct sctp_prinfo *prinfo;
# else
char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
struct sctp_sndrcvinfo *sndrcvinfo;
# endif
clear_socket_error();
/*
* If we're send anything else than application data, disable all user
* parameters and flags.
*/
if (in[0] != 23) {
memset(&handshake_sinfo, 0, sizeof(handshake_sinfo));
# ifdef SCTP_SACK_IMMEDIATELY
handshake_sinfo.snd_flags = SCTP_SACK_IMMEDIATELY;
# endif
sinfo = &handshake_sinfo;
}
/* We can only send a shutdown alert if the socket is dry */
if (data->save_shutdown) {
ret = BIO_dgram_sctp_wait_for_dry(b);
if (ret < 0)
return -1;
if (ret == 0) {
BIO_clear_retry_flags(b);
BIO_set_retry_write(b);
return -1;
}
}
iov[0].iov_base = (char *)in;
iov[0].iov_len = inl;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_control = (caddr_t) cmsgbuf;
msg.msg_controllen = 0;
msg.msg_flags = 0;
# if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
cmsg = (struct cmsghdr *)cmsgbuf;
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_SNDINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndinfo));
sndinfo = (struct sctp_sndinfo *)CMSG_DATA(cmsg);
memset(sndinfo, 0, sizeof(*sndinfo));
sndinfo->snd_sid = sinfo->snd_sid;
sndinfo->snd_flags = sinfo->snd_flags;
sndinfo->snd_ppid = sinfo->snd_ppid;
sndinfo->snd_context = sinfo->snd_context;
msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndinfo));
cmsg =
(struct cmsghdr *)&cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo))];
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_PRINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_prinfo));
prinfo = (struct sctp_prinfo *)CMSG_DATA(cmsg);
memset(prinfo, 0, sizeof(*prinfo));
prinfo->pr_policy = pinfo->pr_policy;
prinfo->pr_value = pinfo->pr_value;
msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_prinfo));
# else
cmsg = (struct cmsghdr *)cmsgbuf;
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_SNDRCV;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
sndrcvinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
memset(sndrcvinfo, 0, sizeof(*sndrcvinfo));
sndrcvinfo->sinfo_stream = sinfo->snd_sid;
sndrcvinfo->sinfo_flags = sinfo->snd_flags;
# ifdef __FreeBSD__
sndrcvinfo->sinfo_flags |= pinfo->pr_policy;
# endif
sndrcvinfo->sinfo_ppid = sinfo->snd_ppid;
sndrcvinfo->sinfo_context = sinfo->snd_context;
sndrcvinfo->sinfo_timetolive = pinfo->pr_value;
msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndrcvinfo));
# endif
ret = sendmsg(b->num, &msg, 0);
BIO_clear_retry_flags(b);
if (ret <= 0) {
if (BIO_dgram_should_retry(ret)) {
BIO_set_retry_write(b);
data->_errno = get_last_socket_error();
}
}
return ret;
}
static long dgram_sctp_ctrl(BIO *b, int cmd, long num, void *ptr)
{
long ret = 1;
bio_dgram_sctp_data *data = NULL;
socklen_t sockopt_len = 0;
struct sctp_authkeyid authkeyid;
struct sctp_authkey *authkey = NULL;
data = (bio_dgram_sctp_data *) b->ptr;
switch (cmd) {
case BIO_CTRL_DGRAM_QUERY_MTU:
/*
* Set to maximum (2^14) and ignore user input to enable transport
* protocol fragmentation. Returns always 2^14.
*/
data->mtu = 16384;
ret = data->mtu;
break;
case BIO_CTRL_DGRAM_SET_MTU:
/*
* Set to maximum (2^14) and ignore input to enable transport
* protocol fragmentation. Returns always 2^14.
*/
data->mtu = 16384;
ret = data->mtu;
break;
case BIO_CTRL_DGRAM_SET_CONNECTED:
case BIO_CTRL_DGRAM_CONNECT:
/* Returns always -1. */
ret = -1;
break;
case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
/*
* SCTP doesn't need the DTLS timer Returns always 1.
*/
break;
case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD:
/*
* We allow transport protocol fragmentation so this is irrelevant
*/
ret = 0;
break;
case BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE:
if (num > 0)
data->in_handshake = 1;
else
data->in_handshake = 0;
ret =
setsockopt(b->num, IPPROTO_SCTP, SCTP_NODELAY,
&data->in_handshake, sizeof(int));
break;
case BIO_CTRL_DGRAM_SCTP_ADD_AUTH_KEY:
/*
* New shared key for SCTP AUTH. Returns 0 on success, -1 otherwise.
*/
/* Get active key */
sockopt_len = sizeof(struct sctp_authkeyid);
ret =
getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid,
&sockopt_len);
if (ret < 0)
break;
/* Add new key */
sockopt_len = sizeof(struct sctp_authkey) + 64 * sizeof(uint8_t);
authkey = OPENSSL_malloc(sockopt_len);
if (authkey == NULL) {
ret = -1;
break;
}
memset(authkey, 0, sockopt_len);
authkey->sca_keynumber = authkeyid.scact_keynumber + 1;
# ifndef __FreeBSD__
/*
* This field is missing in FreeBSD 8.2 and earlier, and FreeBSD 8.3
* and higher work without it.
*/
authkey->sca_keylength = 64;
# endif
memcpy(&authkey->sca_key[0], ptr, 64 * sizeof(uint8_t));
ret =
setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_KEY, authkey,
sockopt_len);
OPENSSL_free(authkey);
authkey = NULL;
if (ret < 0)
break;
/* Reset active key */
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
&authkeyid, sizeof(struct sctp_authkeyid));
if (ret < 0)
break;
break;
case BIO_CTRL_DGRAM_SCTP_NEXT_AUTH_KEY:
/* Returns 0 on success, -1 otherwise. */
/* Get active key */
sockopt_len = sizeof(struct sctp_authkeyid);
ret =
getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid,
&sockopt_len);
if (ret < 0)
break;
/* Set active key */
authkeyid.scact_keynumber = authkeyid.scact_keynumber + 1;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
&authkeyid, sizeof(struct sctp_authkeyid));
if (ret < 0)
break;
/*
* CCS has been sent, so remember that and fall through to check if
* we need to deactivate an old key
*/
data->ccs_sent = 1;
/* fall-through */
case BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD:
/* Returns 0 on success, -1 otherwise. */
/*
* Has this command really been called or is this just a
* fall-through?
*/
if (cmd == BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD)
data->ccs_rcvd = 1;
/*
* CSS has been both, received and sent, so deactivate an old key
*/
if (data->ccs_rcvd == 1 && data->ccs_sent == 1) {
/* Get active key */
sockopt_len = sizeof(struct sctp_authkeyid);
ret =
getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
&authkeyid, &sockopt_len);
if (ret < 0)
break;
/*
* Deactivate key or delete second last key if
* SCTP_AUTHENTICATION_EVENT is not available.
*/
authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1;
# ifdef SCTP_AUTH_DEACTIVATE_KEY
sockopt_len = sizeof(struct sctp_authkeyid);
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DEACTIVATE_KEY,
&authkeyid, sockopt_len);
if (ret < 0)
break;
# endif
# ifndef SCTP_AUTHENTICATION_EVENT
if (authkeyid.scact_keynumber > 0) {
authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY,
&authkeyid, sizeof(struct sctp_authkeyid));
if (ret < 0)
break;
}
# endif
data->ccs_rcvd = 0;
data->ccs_sent = 0;
}
break;
case BIO_CTRL_DGRAM_SCTP_GET_SNDINFO:
/* Returns the size of the copied struct. */
if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo))
num = sizeof(struct bio_dgram_sctp_sndinfo);
memcpy(ptr, &(data->sndinfo), num);
ret = num;
break;
case BIO_CTRL_DGRAM_SCTP_SET_SNDINFO:
/* Returns the size of the copied struct. */
if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo))
num = sizeof(struct bio_dgram_sctp_sndinfo);
memcpy(&(data->sndinfo), ptr, num);
break;
case BIO_CTRL_DGRAM_SCTP_GET_RCVINFO:
/* Returns the size of the copied struct. */
if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo))
num = sizeof(struct bio_dgram_sctp_rcvinfo);
memcpy(ptr, &data->rcvinfo, num);
ret = num;
break;
case BIO_CTRL_DGRAM_SCTP_SET_RCVINFO:
/* Returns the size of the copied struct. */
if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo))
num = sizeof(struct bio_dgram_sctp_rcvinfo);
memcpy(&(data->rcvinfo), ptr, num);
break;
case BIO_CTRL_DGRAM_SCTP_GET_PRINFO:
/* Returns the size of the copied struct. */
if (num > (long)sizeof(struct bio_dgram_sctp_prinfo))
num = sizeof(struct bio_dgram_sctp_prinfo);
memcpy(ptr, &(data->prinfo), num);
ret = num;
break;
case BIO_CTRL_DGRAM_SCTP_SET_PRINFO:
/* Returns the size of the copied struct. */
if (num > (long)sizeof(struct bio_dgram_sctp_prinfo))
num = sizeof(struct bio_dgram_sctp_prinfo);
memcpy(&(data->prinfo), ptr, num);
break;
case BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN:
/* Returns always 1. */
if (num > 0)
data->save_shutdown = 1;
else
data->save_shutdown = 0;
break;
case BIO_CTRL_DGRAM_SCTP_WAIT_FOR_DRY:
return dgram_sctp_wait_for_dry(b);
case BIO_CTRL_DGRAM_SCTP_MSG_WAITING:
return dgram_sctp_msg_waiting(b);
default:
/*
* Pass to default ctrl function to process SCTP unspecific commands
*/
ret = dgram_ctrl(b, cmd, num, ptr);
break;
}
return ret;
}
int BIO_dgram_sctp_notification_cb(BIO *b,
BIO_dgram_sctp_notification_handler_fn handle_notifications,
void *context)
{
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
if (handle_notifications != NULL) {
data->handle_notifications = handle_notifications;
data->notification_context = context;
} else
return -1;
return 0;
}
/*
* BIO_dgram_sctp_wait_for_dry - Wait for SCTP SENDER_DRY event
* @b: The BIO to check for the dry event
*
* Wait until the peer confirms all packets have been received, and so that
* our kernel doesn't have anything to send anymore. This is only received by
* the peer's kernel, not the application.
*
* Returns:
* -1 on error
* 0 when not dry yet
* 1 when dry
*/
int BIO_dgram_sctp_wait_for_dry(BIO *b)
{
return (int)BIO_ctrl(b, BIO_CTRL_DGRAM_SCTP_WAIT_FOR_DRY, 0, NULL);
}
static int dgram_sctp_wait_for_dry(BIO *b)
{
int is_dry = 0;
int sockflags = 0;
int n, ret;
union sctp_notification snp;
struct msghdr msg;
struct iovec iov;
# ifdef SCTP_EVENT
struct sctp_event event;
# else
struct sctp_event_subscribe event;
socklen_t eventsize;
# endif
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
/* set sender dry event */
# ifdef SCTP_EVENT
memset(&event, 0, sizeof(event));
event.se_assoc_id = 0;
event.se_type = SCTP_SENDER_DRY_EVENT;
event.se_on = 1;
ret =
setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
sizeof(struct sctp_event));
# else
eventsize = sizeof(struct sctp_event_subscribe);
ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize);
if (ret < 0)
return -1;
event.sctp_sender_dry_event = 1;
ret =
setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
sizeof(struct sctp_event_subscribe));
# endif
if (ret < 0)
return -1;
/* peek for notification */
memset(&snp, 0, sizeof(snp));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
n = recvmsg(b->num, &msg, MSG_PEEK);
if (n <= 0) {
if ((n < 0) && (get_last_socket_error() != EAGAIN)
&& (get_last_socket_error() != EWOULDBLOCK))
return -1;
else
return 0;
}
/* if we find a notification, process it and try again if necessary */
while (msg.msg_flags & MSG_NOTIFICATION) {
memset(&snp, 0, sizeof(snp));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
n = recvmsg(b->num, &msg, 0);
if (n <= 0) {
if ((n < 0) && (get_last_socket_error() != EAGAIN)
&& (get_last_socket_error() != EWOULDBLOCK))
return -1;
else
return is_dry;
}
if (snp.sn_header.sn_type == SCTP_SENDER_DRY_EVENT) {
is_dry = 1;
/* disable sender dry event */
# ifdef SCTP_EVENT
memset(&event, 0, sizeof(event));
event.se_assoc_id = 0;
event.se_type = SCTP_SENDER_DRY_EVENT;
event.se_on = 0;
ret =
setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
sizeof(struct sctp_event));
# else
eventsize = (socklen_t) sizeof(struct sctp_event_subscribe);
ret =
getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
&eventsize);
if (ret < 0)
return -1;
event.sctp_sender_dry_event = 0;
ret =
setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
sizeof(struct sctp_event_subscribe));
# endif
if (ret < 0)
return -1;
}
# ifdef SCTP_AUTHENTICATION_EVENT
if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
dgram_sctp_handle_auth_free_key_event(b, &snp);
# endif
if (data->handle_notifications != NULL)
data->handle_notifications(b, data->notification_context,
(void *)&snp);
/* found notification, peek again */
memset(&snp, 0, sizeof(snp));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
/* if we have seen the dry already, don't wait */
if (is_dry) {
sockflags = fcntl(b->num, F_GETFL, 0);
fcntl(b->num, F_SETFL, O_NONBLOCK);
}
n = recvmsg(b->num, &msg, MSG_PEEK);
if (is_dry) {
fcntl(b->num, F_SETFL, sockflags);
}
if (n <= 0) {
if ((n < 0) && (get_last_socket_error() != EAGAIN)
&& (get_last_socket_error() != EWOULDBLOCK))
return -1;
else
return is_dry;
}
}
/* read anything else */
return is_dry;
}
int BIO_dgram_sctp_msg_waiting(BIO *b)
{
return (int)BIO_ctrl(b, BIO_CTRL_DGRAM_SCTP_MSG_WAITING, 0, NULL);
}
static int dgram_sctp_msg_waiting(BIO *b)
{
int n, sockflags;
union sctp_notification snp;
struct msghdr msg;
struct iovec iov;
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
/* Check if there are any messages waiting to be read */
do {
memset(&snp, 0, sizeof(snp));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
sockflags = fcntl(b->num, F_GETFL, 0);
fcntl(b->num, F_SETFL, O_NONBLOCK);
n = recvmsg(b->num, &msg, MSG_PEEK);
fcntl(b->num, F_SETFL, sockflags);
/* if notification, process and try again */
if (n > 0 && (msg.msg_flags & MSG_NOTIFICATION)) {
# ifdef SCTP_AUTHENTICATION_EVENT
if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
dgram_sctp_handle_auth_free_key_event(b, &snp);
# endif
memset(&snp, 0, sizeof(snp));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
n = recvmsg(b->num, &msg, 0);
if (data->handle_notifications != NULL)
data->handle_notifications(b, data->notification_context,
(void *)&snp);
}
} while (n > 0 && (msg.msg_flags & MSG_NOTIFICATION));
/* Return 1 if there is a message to be read, return 0 otherwise. */
if (n > 0)
return 1;
else
return 0;
}
static int dgram_sctp_puts(BIO *bp, const char *str)
{
int n, ret;
n = strlen(str);
ret = dgram_sctp_write(bp, str, n);
return ret;
}
# endif
static int BIO_dgram_should_retry(int i)
{
int err;
if ((i == 0) || (i == -1)) {
err = get_last_socket_error();
# if defined(OPENSSL_SYS_WINDOWS)
/*
* If the socket return value (i) is -1 and err is unexpectedly 0 at
* this point, the error code was overwritten by another system call
* before this error handling is called.
*/
# endif
return BIO_dgram_non_fatal_error(err);
}
return 0;
}
int BIO_dgram_non_fatal_error(int err)
{
switch (err) {
# if defined(OPENSSL_SYS_WINDOWS)
# if defined(WSAEWOULDBLOCK)
case WSAEWOULDBLOCK:
# endif
# endif
# ifdef EWOULDBLOCK
# ifdef WSAEWOULDBLOCK
# if WSAEWOULDBLOCK != EWOULDBLOCK
case EWOULDBLOCK:
# endif
# else
case EWOULDBLOCK:
# endif
# endif
# ifdef EINTR
case EINTR:
# endif
# ifdef EAGAIN
# if EWOULDBLOCK != EAGAIN
case EAGAIN:
# endif
# endif
# ifdef EPROTO
case EPROTO:
# endif
# ifdef EINPROGRESS
case EINPROGRESS:
# endif
# ifdef EALREADY
case EALREADY:
# endif
return 1;
default:
break;
}
return 0;
}
#endif