mirror of
https://github.com/openssl/openssl.git
synced 2024-12-09 05:51:54 +08:00
4bffc025fd
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com> (Merged from https://github.com/openssl/openssl/pull/11682)
524 lines
14 KiB
C
524 lines
14 KiB
C
/*
|
|
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
#include "internal/cryptlib.h"
|
|
#include <openssl/opensslconf.h>
|
|
#include "crypto/rand.h"
|
|
#include <openssl/engine.h>
|
|
#include "internal/thread_once.h"
|
|
#include "rand_local.h"
|
|
#include "e_os.h"
|
|
|
|
#ifndef FIPS_MODULE
|
|
# ifndef OPENSSL_NO_ENGINE
|
|
/* non-NULL if default_RAND_meth is ENGINE-provided */
|
|
static ENGINE *funct_ref;
|
|
static CRYPTO_RWLOCK *rand_engine_lock;
|
|
# endif
|
|
static CRYPTO_RWLOCK *rand_meth_lock;
|
|
static const RAND_METHOD *default_RAND_meth;
|
|
static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
|
|
|
|
static int rand_inited = 0;
|
|
#endif /* FIPS_MODULE */
|
|
|
|
#ifdef OPENSSL_RAND_SEED_RDTSC
|
|
/*
|
|
* IMPORTANT NOTE: It is not currently possible to use this code
|
|
* because we are not sure about the amount of randomness it provides.
|
|
* Some SP900 tests have been run, but there is internal skepticism.
|
|
* So for now this code is not used.
|
|
*/
|
|
# error "RDTSC enabled? Should not be possible!"
|
|
|
|
/*
|
|
* Acquire entropy from high-speed clock
|
|
*
|
|
* Since we get some randomness from the low-order bits of the
|
|
* high-speed clock, it can help.
|
|
*
|
|
* Returns the total entropy count, if it exceeds the requested
|
|
* entropy count. Otherwise, returns an entropy count of 0.
|
|
*/
|
|
size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
|
|
{
|
|
unsigned char c;
|
|
int i;
|
|
|
|
if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
|
|
for (i = 0; i < TSC_READ_COUNT; i++) {
|
|
c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
|
|
rand_pool_add(pool, &c, 1, 4);
|
|
}
|
|
}
|
|
return rand_pool_entropy_available(pool);
|
|
}
|
|
#endif
|
|
|
|
#ifdef OPENSSL_RAND_SEED_RDCPU
|
|
size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len);
|
|
size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len);
|
|
|
|
/*
|
|
* Acquire entropy using Intel-specific cpu instructions
|
|
*
|
|
* Uses the RDSEED instruction if available, otherwise uses
|
|
* RDRAND if available.
|
|
*
|
|
* For the differences between RDSEED and RDRAND, and why RDSEED
|
|
* is the preferred choice, see https://goo.gl/oK3KcN
|
|
*
|
|
* Returns the total entropy count, if it exceeds the requested
|
|
* entropy count. Otherwise, returns an entropy count of 0.
|
|
*/
|
|
size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool)
|
|
{
|
|
size_t bytes_needed;
|
|
unsigned char *buffer;
|
|
|
|
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
|
if (bytes_needed > 0) {
|
|
buffer = rand_pool_add_begin(pool, bytes_needed);
|
|
|
|
if (buffer != NULL) {
|
|
/* Whichever comes first, use RDSEED, RDRAND or nothing */
|
|
if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
|
|
if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed)
|
|
== bytes_needed) {
|
|
rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
|
|
}
|
|
} else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
|
|
if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed)
|
|
== bytes_needed) {
|
|
rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
|
|
}
|
|
} else {
|
|
rand_pool_add_end(pool, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
return rand_pool_entropy_available(pool);
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
/*
|
|
* Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
|
|
*
|
|
* If the DRBG has a parent, then the required amount of entropy input
|
|
* is fetched using the parent's RAND_DRBG_generate().
|
|
*
|
|
* Otherwise, the entropy is polled from the system entropy sources
|
|
* using rand_pool_acquire_entropy().
|
|
*
|
|
* If a random pool has been added to the DRBG using RAND_add(), then
|
|
* its entropy will be used up first.
|
|
*/
|
|
size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
|
|
unsigned char **pout,
|
|
int entropy, size_t min_len, size_t max_len,
|
|
int prediction_resistance)
|
|
{
|
|
size_t ret = 0;
|
|
size_t entropy_available = 0;
|
|
RAND_POOL *pool;
|
|
|
|
if (drbg->parent != NULL && drbg->strength > drbg->parent->strength) {
|
|
/*
|
|
* We currently don't support the algorithm from NIST SP 800-90C
|
|
* 10.1.2 to use a weaker DRBG as source
|
|
*/
|
|
RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK);
|
|
return 0;
|
|
}
|
|
|
|
if (drbg->seed_pool != NULL) {
|
|
pool = drbg->seed_pool;
|
|
pool->entropy_requested = entropy;
|
|
} else {
|
|
pool = rand_pool_new(entropy, drbg->secure, min_len, max_len);
|
|
if (pool == NULL)
|
|
return 0;
|
|
}
|
|
|
|
if (drbg->parent != NULL) {
|
|
size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
|
unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed);
|
|
|
|
if (buffer != NULL) {
|
|
size_t bytes = 0;
|
|
|
|
/*
|
|
* Get random data from parent. Include our address as additional input,
|
|
* in order to provide some additional distinction between different
|
|
* DRBG child instances.
|
|
* Our lock is already held, but we need to lock our parent before
|
|
* generating bits from it. (Note: taking the lock will be a no-op
|
|
* if locking if drbg->parent->lock == NULL.)
|
|
*/
|
|
rand_drbg_lock(drbg->parent);
|
|
if (RAND_DRBG_generate(drbg->parent,
|
|
buffer, bytes_needed,
|
|
prediction_resistance,
|
|
(unsigned char *)&drbg, sizeof(drbg)) != 0)
|
|
bytes = bytes_needed;
|
|
drbg->reseed_next_counter
|
|
= tsan_load(&drbg->parent->reseed_prop_counter);
|
|
rand_drbg_unlock(drbg->parent);
|
|
|
|
rand_pool_add_end(pool, bytes, 8 * bytes);
|
|
entropy_available = rand_pool_entropy_available(pool);
|
|
}
|
|
|
|
} else {
|
|
/* Get entropy by polling system entropy sources. */
|
|
entropy_available = rand_pool_acquire_entropy(pool);
|
|
}
|
|
|
|
if (entropy_available > 0) {
|
|
ret = rand_pool_length(pool);
|
|
*pout = rand_pool_detach(pool);
|
|
}
|
|
|
|
if (drbg->seed_pool == NULL)
|
|
rand_pool_free(pool);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
|
|
*
|
|
*/
|
|
void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
|
|
unsigned char *out, size_t outlen)
|
|
{
|
|
if (drbg->seed_pool == NULL) {
|
|
if (drbg->secure)
|
|
OPENSSL_secure_clear_free(out, outlen);
|
|
else
|
|
OPENSSL_clear_free(out, outlen);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate additional data that can be used for the drbg. The data does
|
|
* not need to contain entropy, but it's useful if it contains at least
|
|
* some bits that are unpredictable.
|
|
*
|
|
* Returns 0 on failure.
|
|
*
|
|
* On success it allocates a buffer at |*pout| and returns the length of
|
|
* the data. The buffer should get freed using OPENSSL_secure_clear_free().
|
|
*/
|
|
size_t rand_drbg_get_additional_data(RAND_POOL *pool, unsigned char **pout)
|
|
{
|
|
size_t ret = 0;
|
|
|
|
if (rand_pool_add_additional_data(pool) == 0)
|
|
goto err;
|
|
|
|
ret = rand_pool_length(pool);
|
|
*pout = rand_pool_detach(pool);
|
|
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
void rand_drbg_cleanup_additional_data(RAND_POOL *pool, unsigned char *out)
|
|
{
|
|
rand_pool_reattach(pool, out);
|
|
}
|
|
#endif
|
|
|
|
#ifndef FIPS_MODULE
|
|
DEFINE_RUN_ONCE_STATIC(do_rand_init)
|
|
{
|
|
# ifndef OPENSSL_NO_ENGINE
|
|
rand_engine_lock = CRYPTO_THREAD_lock_new();
|
|
if (rand_engine_lock == NULL)
|
|
return 0;
|
|
# endif
|
|
|
|
rand_meth_lock = CRYPTO_THREAD_lock_new();
|
|
if (rand_meth_lock == NULL)
|
|
goto err;
|
|
|
|
if (!rand_pool_init())
|
|
goto err;
|
|
|
|
rand_inited = 1;
|
|
return 1;
|
|
|
|
err:
|
|
CRYPTO_THREAD_lock_free(rand_meth_lock);
|
|
rand_meth_lock = NULL;
|
|
# ifndef OPENSSL_NO_ENGINE
|
|
CRYPTO_THREAD_lock_free(rand_engine_lock);
|
|
rand_engine_lock = NULL;
|
|
# endif
|
|
return 0;
|
|
}
|
|
|
|
void rand_cleanup_int(void)
|
|
{
|
|
const RAND_METHOD *meth = default_RAND_meth;
|
|
|
|
if (!rand_inited)
|
|
return;
|
|
|
|
if (meth != NULL && meth->cleanup != NULL)
|
|
meth->cleanup();
|
|
RAND_set_rand_method(NULL);
|
|
rand_pool_cleanup();
|
|
# ifndef OPENSSL_NO_ENGINE
|
|
CRYPTO_THREAD_lock_free(rand_engine_lock);
|
|
rand_engine_lock = NULL;
|
|
# endif
|
|
CRYPTO_THREAD_lock_free(rand_meth_lock);
|
|
rand_meth_lock = NULL;
|
|
rand_inited = 0;
|
|
}
|
|
|
|
/* TODO(3.0): Do we need to handle this somehow in the FIPS module? */
|
|
/*
|
|
* RAND_close_seed_files() ensures that any seed file descriptors are
|
|
* closed after use.
|
|
*/
|
|
void RAND_keep_random_devices_open(int keep)
|
|
{
|
|
if (RUN_ONCE(&rand_init, do_rand_init))
|
|
rand_pool_keep_random_devices_open(keep);
|
|
}
|
|
|
|
/*
|
|
* RAND_poll() reseeds the default RNG using random input
|
|
*
|
|
* The random input is obtained from polling various entropy
|
|
* sources which depend on the operating system and are
|
|
* configurable via the --with-rand-seed configure option.
|
|
*/
|
|
int RAND_poll(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
|
|
|
if (meth == NULL)
|
|
return 0;
|
|
|
|
if (meth == RAND_OpenSSL()) {
|
|
/* fill random pool and seed the master DRBG */
|
|
RAND_DRBG *drbg = RAND_DRBG_get0_master();
|
|
|
|
if (drbg == NULL)
|
|
return 0;
|
|
|
|
#if 0
|
|
ret = rand_drbg_restart(drbg, NULL, 0, 0);
|
|
#endif
|
|
|
|
return ret;
|
|
|
|
} else {
|
|
RAND_POOL *pool = NULL;
|
|
|
|
/* fill random pool and seed the current legacy RNG */
|
|
pool = rand_pool_new(RAND_DRBG_STRENGTH, 1,
|
|
(RAND_DRBG_STRENGTH + 7) / 8,
|
|
RAND_POOL_MAX_LENGTH);
|
|
if (pool == NULL)
|
|
return 0;
|
|
#if 0
|
|
if (rand_pool_acquire_entropy(pool) == 0)
|
|
goto err;
|
|
#endif
|
|
if (meth->add == NULL
|
|
|| meth->add(rand_pool_buffer(pool),
|
|
rand_pool_length(pool),
|
|
(rand_pool_entropy(pool) / 8.0)) == 0)
|
|
goto err;
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
rand_pool_free(pool);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int RAND_set_rand_method(const RAND_METHOD *meth)
|
|
{
|
|
if (!RUN_ONCE(&rand_init, do_rand_init))
|
|
return 0;
|
|
|
|
CRYPTO_THREAD_write_lock(rand_meth_lock);
|
|
# ifndef OPENSSL_NO_ENGINE
|
|
ENGINE_finish(funct_ref);
|
|
funct_ref = NULL;
|
|
# endif
|
|
default_RAND_meth = meth;
|
|
CRYPTO_THREAD_unlock(rand_meth_lock);
|
|
return 1;
|
|
}
|
|
#endif /* FIPS_MODULE */
|
|
|
|
const RAND_METHOD *RAND_get_rand_method(void)
|
|
{
|
|
#ifdef FIPS_MODULE
|
|
return NULL;
|
|
#else
|
|
const RAND_METHOD *tmp_meth = NULL;
|
|
|
|
if (!RUN_ONCE(&rand_init, do_rand_init))
|
|
return NULL;
|
|
|
|
CRYPTO_THREAD_write_lock(rand_meth_lock);
|
|
if (default_RAND_meth == NULL) {
|
|
# ifndef OPENSSL_NO_ENGINE
|
|
ENGINE *e;
|
|
|
|
/* If we have an engine that can do RAND, use it. */
|
|
if ((e = ENGINE_get_default_RAND()) != NULL
|
|
&& (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
|
|
funct_ref = e;
|
|
default_RAND_meth = tmp_meth;
|
|
} else {
|
|
ENGINE_finish(e);
|
|
default_RAND_meth = &rand_meth;
|
|
}
|
|
# else
|
|
default_RAND_meth = &rand_meth;
|
|
# endif
|
|
}
|
|
tmp_meth = default_RAND_meth;
|
|
CRYPTO_THREAD_unlock(rand_meth_lock);
|
|
return tmp_meth;
|
|
#endif
|
|
}
|
|
|
|
#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
|
|
int RAND_set_rand_engine(ENGINE *engine)
|
|
{
|
|
const RAND_METHOD *tmp_meth = NULL;
|
|
|
|
if (!RUN_ONCE(&rand_init, do_rand_init))
|
|
return 0;
|
|
|
|
if (engine != NULL) {
|
|
if (!ENGINE_init(engine))
|
|
return 0;
|
|
tmp_meth = ENGINE_get_RAND(engine);
|
|
if (tmp_meth == NULL) {
|
|
ENGINE_finish(engine);
|
|
return 0;
|
|
}
|
|
}
|
|
CRYPTO_THREAD_write_lock(rand_engine_lock);
|
|
/* This function releases any prior ENGINE so call it first */
|
|
RAND_set_rand_method(tmp_meth);
|
|
funct_ref = engine;
|
|
CRYPTO_THREAD_unlock(rand_engine_lock);
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
void RAND_seed(const void *buf, int num)
|
|
{
|
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
|
|
|
if (meth != NULL && meth->seed != NULL)
|
|
meth->seed(buf, num);
|
|
}
|
|
|
|
void RAND_add(const void *buf, int num, double randomness)
|
|
{
|
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
|
|
|
if (meth != NULL && meth->add != NULL)
|
|
meth->add(buf, num, randomness);
|
|
}
|
|
|
|
/*
|
|
* This function is not part of RAND_METHOD, so if we're not using
|
|
* the default method, then just call RAND_bytes(). Otherwise make
|
|
* sure we're instantiated and use the private DRBG.
|
|
*/
|
|
int RAND_priv_bytes_ex(OPENSSL_CTX *ctx, unsigned char *buf, int num)
|
|
{
|
|
RAND_DRBG *drbg;
|
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
|
|
|
if (meth != NULL && meth != RAND_OpenSSL()) {
|
|
if (meth->bytes != NULL)
|
|
return meth->bytes(buf, num);
|
|
RANDerr(RAND_F_RAND_PRIV_BYTES_EX, RAND_R_FUNC_NOT_IMPLEMENTED);
|
|
return -1;
|
|
}
|
|
|
|
drbg = OPENSSL_CTX_get0_private_drbg(ctx);
|
|
if (drbg != NULL)
|
|
return RAND_DRBG_bytes(drbg, buf, num);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int RAND_priv_bytes(unsigned char *buf, int num)
|
|
{
|
|
return RAND_priv_bytes_ex(NULL, buf, num);
|
|
}
|
|
|
|
int RAND_bytes_ex(OPENSSL_CTX *ctx, unsigned char *buf, int num)
|
|
{
|
|
RAND_DRBG *drbg;
|
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
|
|
|
if (meth != NULL && meth != RAND_OpenSSL()) {
|
|
if (meth->bytes != NULL)
|
|
return meth->bytes(buf, num);
|
|
RANDerr(RAND_F_RAND_BYTES_EX, RAND_R_FUNC_NOT_IMPLEMENTED);
|
|
return -1;
|
|
}
|
|
|
|
drbg = OPENSSL_CTX_get0_public_drbg(ctx);
|
|
if (drbg != NULL)
|
|
return RAND_DRBG_bytes(drbg, buf, num);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int RAND_bytes(unsigned char *buf, int num)
|
|
{
|
|
return RAND_bytes_ex(NULL, buf, num);
|
|
}
|
|
|
|
#if !defined(OPENSSL_NO_DEPRECATED_1_1_0) && !defined(FIPS_MODULE)
|
|
int RAND_pseudo_bytes(unsigned char *buf, int num)
|
|
{
|
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
|
|
|
if (meth != NULL && meth->pseudorand != NULL)
|
|
return meth->pseudorand(buf, num);
|
|
RANDerr(RAND_F_RAND_PSEUDO_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
int RAND_status(void)
|
|
{
|
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
|
|
|
if (meth != NULL && meth->status != NULL)
|
|
return meth->status();
|
|
return 0;
|
|
}
|