openssl/crypto/asn1/d2i_pr.c
Matt Caswell 472a88b79e Teach d2i_PrivateKey et al about libctx
The Ed448 private key decoding makes algorithm fetches. Therefore we teach
d2i_PrivateKey et al about libctx and make sure it is passed through the
layers.

Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/11494)
2020-04-15 11:24:13 +01:00

140 lines
4.1 KiB
C

/*
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/bn.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#include <openssl/engine.h>
#include <openssl/x509.h>
#include <openssl/asn1.h>
#include "crypto/asn1.h"
#include "crypto/evp.h"
EVP_PKEY *d2i_PrivateKey_ex(int type, EVP_PKEY **a, const unsigned char **pp,
long length, OPENSSL_CTX *libctx, const char *propq)
{
EVP_PKEY *ret;
const unsigned char *p = *pp;
if ((a == NULL) || (*a == NULL)) {
if ((ret = EVP_PKEY_new()) == NULL) {
ASN1err(0, ERR_R_EVP_LIB);
return NULL;
}
} else {
ret = *a;
#ifndef OPENSSL_NO_ENGINE
ENGINE_finish(ret->engine);
ret->engine = NULL;
#endif
}
if (!EVP_PKEY_set_type(ret, type)) {
ASN1err(0, ASN1_R_UNKNOWN_PUBLIC_KEY_TYPE);
goto err;
}
if (!ret->ameth->old_priv_decode ||
!ret->ameth->old_priv_decode(ret, &p, length)) {
if (ret->ameth->priv_decode != NULL
|| ret->ameth->priv_decode_with_libctx != NULL) {
EVP_PKEY *tmp;
PKCS8_PRIV_KEY_INFO *p8 = NULL;
p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, length);
if (p8 == NULL)
goto err;
tmp = evp_pkcs82pkey_int(p8, libctx, propq);
PKCS8_PRIV_KEY_INFO_free(p8);
if (tmp == NULL)
goto err;
EVP_PKEY_free(ret);
ret = tmp;
} else {
ASN1err(0, ERR_R_ASN1_LIB);
goto err;
}
}
*pp = p;
if (a != NULL)
(*a) = ret;
return ret;
err:
if (a == NULL || *a != ret)
EVP_PKEY_free(ret);
return NULL;
}
EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **a, const unsigned char **pp,
long length)
{
return d2i_PrivateKey_ex(type, a, pp, length, NULL, NULL);
}
/*
* This works like d2i_PrivateKey() except it automatically works out the
* type
*/
EVP_PKEY *d2i_AutoPrivateKey_ex(EVP_PKEY **a, const unsigned char **pp,
long length, OPENSSL_CTX *libctx,
const char *propq)
{
STACK_OF(ASN1_TYPE) *inkey;
const unsigned char *p;
int keytype;
p = *pp;
/*
* Dirty trick: read in the ASN1 data into a STACK_OF(ASN1_TYPE): by
* analyzing it we can determine the passed structure: this assumes the
* input is surrounded by an ASN1 SEQUENCE.
*/
inkey = d2i_ASN1_SEQUENCE_ANY(NULL, &p, length);
p = *pp;
/*
* Since we only need to discern "traditional format" RSA and DSA keys we
* can just count the elements.
*/
if (sk_ASN1_TYPE_num(inkey) == 6) {
keytype = EVP_PKEY_DSA;
} else if (sk_ASN1_TYPE_num(inkey) == 4) {
keytype = EVP_PKEY_EC;
} else if (sk_ASN1_TYPE_num(inkey) == 3) { /* This seems to be PKCS8, not
* traditional format */
PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, length);
EVP_PKEY *ret;
sk_ASN1_TYPE_pop_free(inkey, ASN1_TYPE_free);
if (p8 == NULL) {
ASN1err(0, ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE);
return NULL;
}
ret = evp_pkcs82pkey_int(p8, libctx, propq);
PKCS8_PRIV_KEY_INFO_free(p8);
if (ret == NULL)
return NULL;
*pp = p;
if (a) {
*a = ret;
}
return ret;
} else {
keytype = EVP_PKEY_RSA;
}
sk_ASN1_TYPE_pop_free(inkey, ASN1_TYPE_free);
return d2i_PrivateKey_ex(keytype, a, pp, length, libctx, propq);
}
EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **a, const unsigned char **pp,
long length)
{
return d2i_AutoPrivateKey_ex(a, pp, length, NULL, NULL);
}