mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
474e469bbd
Remove support for SHA0 and DSS0 (they were broken), and remove the ability to attempt to build without SHA (it didn't work). For simplicity, remove the option of not building various SHA algorithms; you could argue that SHA_224/256/384/512 should be kept, since they're like crypto algorithms, but I decided to go the other way. So these options are gone: GENUINE_DSA OPENSSL_NO_SHA0 OPENSSL_NO_SHA OPENSSL_NO_SHA1 OPENSSL_NO_SHA224 OPENSSL_NO_SHA256 OPENSSL_NO_SHA384 OPENSSL_NO_SHA512 Reviewed-by: Richard Levitte <levitte@openssl.org>
474 lines
18 KiB
C
474 lines
18 KiB
C
/* crypto/sha/sha_locl.h */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/opensslconf.h>
|
|
#include <openssl/sha.h>
|
|
|
|
#define DATA_ORDER_IS_BIG_ENDIAN
|
|
|
|
#define HASH_LONG SHA_LONG
|
|
#define HASH_CTX SHA_CTX
|
|
#define HASH_CBLOCK SHA_CBLOCK
|
|
#define HASH_MAKE_STRING(c,s) do { \
|
|
unsigned long ll; \
|
|
ll=(c)->h0; (void)HOST_l2c(ll,(s)); \
|
|
ll=(c)->h1; (void)HOST_l2c(ll,(s)); \
|
|
ll=(c)->h2; (void)HOST_l2c(ll,(s)); \
|
|
ll=(c)->h3; (void)HOST_l2c(ll,(s)); \
|
|
ll=(c)->h4; (void)HOST_l2c(ll,(s)); \
|
|
} while (0)
|
|
|
|
#define HASH_UPDATE SHA1_Update
|
|
#define HASH_TRANSFORM SHA1_Transform
|
|
#define HASH_FINAL SHA1_Final
|
|
#define HASH_INIT SHA1_Init
|
|
#define HASH_BLOCK_DATA_ORDER sha1_block_data_order
|
|
#define Xupdate(a,ix,ia,ib,ic,id) ( (a)=(ia^ib^ic^id), \
|
|
ix=(a)=ROTATE((a),1) \
|
|
)
|
|
|
|
#ifndef SHA1_ASM
|
|
static void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
|
|
#else
|
|
void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
|
|
#endif
|
|
|
|
#include "md32_common.h"
|
|
|
|
#define INIT_DATA_h0 0x67452301UL
|
|
#define INIT_DATA_h1 0xefcdab89UL
|
|
#define INIT_DATA_h2 0x98badcfeUL
|
|
#define INIT_DATA_h3 0x10325476UL
|
|
#define INIT_DATA_h4 0xc3d2e1f0UL
|
|
|
|
int HASH_INIT(SHA_CTX *c)
|
|
{
|
|
memset(c, 0, sizeof(*c));
|
|
c->h0 = INIT_DATA_h0;
|
|
c->h1 = INIT_DATA_h1;
|
|
c->h2 = INIT_DATA_h2;
|
|
c->h3 = INIT_DATA_h3;
|
|
c->h4 = INIT_DATA_h4;
|
|
return 1;
|
|
}
|
|
|
|
#define K_00_19 0x5a827999UL
|
|
#define K_20_39 0x6ed9eba1UL
|
|
#define K_40_59 0x8f1bbcdcUL
|
|
#define K_60_79 0xca62c1d6UL
|
|
|
|
/*
|
|
* As pointed out by Wei Dai <weidai@eskimo.com>, F() below can be simplified
|
|
* to the code in F_00_19. Wei attributes these optimisations to Peter
|
|
* Gutmann's SHS code, and he attributes it to Rich Schroeppel. #define
|
|
* F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) I've just become aware of another
|
|
* tweak to be made, again from Wei Dai, in F_40_59, (x&a)|(y&a) -> (x|y)&a
|
|
*/
|
|
#define F_00_19(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
|
|
#define F_20_39(b,c,d) ((b) ^ (c) ^ (d))
|
|
#define F_40_59(b,c,d) (((b) & (c)) | (((b)|(c)) & (d)))
|
|
#define F_60_79(b,c,d) F_20_39(b,c,d)
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
|
|
# define BODY_00_15(i,a,b,c,d,e,f,xi) \
|
|
(f)=xi+(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
|
|
(b)=ROTATE((b),30);
|
|
|
|
# define BODY_16_19(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
|
|
Xupdate(f,xi,xa,xb,xc,xd); \
|
|
(f)+=(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
|
|
(b)=ROTATE((b),30);
|
|
|
|
# define BODY_20_31(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
|
|
Xupdate(f,xi,xa,xb,xc,xd); \
|
|
(f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
|
|
(b)=ROTATE((b),30);
|
|
|
|
# define BODY_32_39(i,a,b,c,d,e,f,xa,xb,xc,xd) \
|
|
Xupdate(f,xa,xa,xb,xc,xd); \
|
|
(f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
|
|
(b)=ROTATE((b),30);
|
|
|
|
# define BODY_40_59(i,a,b,c,d,e,f,xa,xb,xc,xd) \
|
|
Xupdate(f,xa,xa,xb,xc,xd); \
|
|
(f)+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \
|
|
(b)=ROTATE((b),30);
|
|
|
|
# define BODY_60_79(i,a,b,c,d,e,f,xa,xb,xc,xd) \
|
|
Xupdate(f,xa,xa,xb,xc,xd); \
|
|
(f)=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \
|
|
(b)=ROTATE((b),30);
|
|
|
|
# ifdef X
|
|
# undef X
|
|
# endif
|
|
# ifndef MD32_XARRAY
|
|
/*
|
|
* Originally X was an array. As it's automatic it's natural
|
|
* to expect RISC compiler to accomodate at least part of it in
|
|
* the register bank, isn't it? Unfortunately not all compilers
|
|
* "find" this expectation reasonable:-( On order to make such
|
|
* compilers generate better code I replace X[] with a bunch of
|
|
* X0, X1, etc. See the function body below...
|
|
* <appro@fy.chalmers.se>
|
|
*/
|
|
# define X(i) XX##i
|
|
# else
|
|
/*
|
|
* However! Some compilers (most notably HP C) get overwhelmed by
|
|
* that many local variables so that we have to have the way to
|
|
* fall down to the original behavior.
|
|
*/
|
|
# define X(i) XX[i]
|
|
# endif
|
|
|
|
# if !defined(SHA1_ASM)
|
|
static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
|
|
{
|
|
const unsigned char *data = p;
|
|
register unsigned MD32_REG_T A, B, C, D, E, T, l;
|
|
# ifndef MD32_XARRAY
|
|
unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
|
|
XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15;
|
|
# else
|
|
SHA_LONG XX[16];
|
|
# endif
|
|
|
|
A = c->h0;
|
|
B = c->h1;
|
|
C = c->h2;
|
|
D = c->h3;
|
|
E = c->h4;
|
|
|
|
for (;;) {
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = {
|
|
1
|
|
};
|
|
|
|
if (!is_endian.little && sizeof(SHA_LONG) == 4
|
|
&& ((size_t)p % 4) == 0) {
|
|
const SHA_LONG *W = (const SHA_LONG *)data;
|
|
|
|
X(0) = W[0];
|
|
X(1) = W[1];
|
|
BODY_00_15(0, A, B, C, D, E, T, X(0));
|
|
X(2) = W[2];
|
|
BODY_00_15(1, T, A, B, C, D, E, X(1));
|
|
X(3) = W[3];
|
|
BODY_00_15(2, E, T, A, B, C, D, X(2));
|
|
X(4) = W[4];
|
|
BODY_00_15(3, D, E, T, A, B, C, X(3));
|
|
X(5) = W[5];
|
|
BODY_00_15(4, C, D, E, T, A, B, X(4));
|
|
X(6) = W[6];
|
|
BODY_00_15(5, B, C, D, E, T, A, X(5));
|
|
X(7) = W[7];
|
|
BODY_00_15(6, A, B, C, D, E, T, X(6));
|
|
X(8) = W[8];
|
|
BODY_00_15(7, T, A, B, C, D, E, X(7));
|
|
X(9) = W[9];
|
|
BODY_00_15(8, E, T, A, B, C, D, X(8));
|
|
X(10) = W[10];
|
|
BODY_00_15(9, D, E, T, A, B, C, X(9));
|
|
X(11) = W[11];
|
|
BODY_00_15(10, C, D, E, T, A, B, X(10));
|
|
X(12) = W[12];
|
|
BODY_00_15(11, B, C, D, E, T, A, X(11));
|
|
X(13) = W[13];
|
|
BODY_00_15(12, A, B, C, D, E, T, X(12));
|
|
X(14) = W[14];
|
|
BODY_00_15(13, T, A, B, C, D, E, X(13));
|
|
X(15) = W[15];
|
|
BODY_00_15(14, E, T, A, B, C, D, X(14));
|
|
BODY_00_15(15, D, E, T, A, B, C, X(15));
|
|
|
|
data += SHA_CBLOCK;
|
|
} else {
|
|
(void)HOST_c2l(data, l);
|
|
X(0) = l;
|
|
(void)HOST_c2l(data, l);
|
|
X(1) = l;
|
|
BODY_00_15(0, A, B, C, D, E, T, X(0));
|
|
(void)HOST_c2l(data, l);
|
|
X(2) = l;
|
|
BODY_00_15(1, T, A, B, C, D, E, X(1));
|
|
(void)HOST_c2l(data, l);
|
|
X(3) = l;
|
|
BODY_00_15(2, E, T, A, B, C, D, X(2));
|
|
(void)HOST_c2l(data, l);
|
|
X(4) = l;
|
|
BODY_00_15(3, D, E, T, A, B, C, X(3));
|
|
(void)HOST_c2l(data, l);
|
|
X(5) = l;
|
|
BODY_00_15(4, C, D, E, T, A, B, X(4));
|
|
(void)HOST_c2l(data, l);
|
|
X(6) = l;
|
|
BODY_00_15(5, B, C, D, E, T, A, X(5));
|
|
(void)HOST_c2l(data, l);
|
|
X(7) = l;
|
|
BODY_00_15(6, A, B, C, D, E, T, X(6));
|
|
(void)HOST_c2l(data, l);
|
|
X(8) = l;
|
|
BODY_00_15(7, T, A, B, C, D, E, X(7));
|
|
(void)HOST_c2l(data, l);
|
|
X(9) = l;
|
|
BODY_00_15(8, E, T, A, B, C, D, X(8));
|
|
(void)HOST_c2l(data, l);
|
|
X(10) = l;
|
|
BODY_00_15(9, D, E, T, A, B, C, X(9));
|
|
(void)HOST_c2l(data, l);
|
|
X(11) = l;
|
|
BODY_00_15(10, C, D, E, T, A, B, X(10));
|
|
(void)HOST_c2l(data, l);
|
|
X(12) = l;
|
|
BODY_00_15(11, B, C, D, E, T, A, X(11));
|
|
(void)HOST_c2l(data, l);
|
|
X(13) = l;
|
|
BODY_00_15(12, A, B, C, D, E, T, X(12));
|
|
(void)HOST_c2l(data, l);
|
|
X(14) = l;
|
|
BODY_00_15(13, T, A, B, C, D, E, X(13));
|
|
(void)HOST_c2l(data, l);
|
|
X(15) = l;
|
|
BODY_00_15(14, E, T, A, B, C, D, X(14));
|
|
BODY_00_15(15, D, E, T, A, B, C, X(15));
|
|
}
|
|
|
|
BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13));
|
|
BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14));
|
|
BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15));
|
|
BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0));
|
|
|
|
BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1));
|
|
BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2));
|
|
BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3));
|
|
BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4));
|
|
BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5));
|
|
BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6));
|
|
BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7));
|
|
BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8));
|
|
BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9));
|
|
BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10));
|
|
BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11));
|
|
BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12));
|
|
|
|
BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13));
|
|
BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14));
|
|
BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15));
|
|
BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0));
|
|
BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1));
|
|
BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2));
|
|
BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3));
|
|
BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4));
|
|
|
|
BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5));
|
|
BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6));
|
|
BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7));
|
|
BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8));
|
|
BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9));
|
|
BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10));
|
|
BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11));
|
|
BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12));
|
|
BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13));
|
|
BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14));
|
|
BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15));
|
|
BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0));
|
|
BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1));
|
|
BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2));
|
|
BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3));
|
|
BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4));
|
|
BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5));
|
|
BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6));
|
|
BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7));
|
|
BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8));
|
|
|
|
BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9));
|
|
BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10));
|
|
BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11));
|
|
BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12));
|
|
BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13));
|
|
BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14));
|
|
BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15));
|
|
BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0));
|
|
BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1));
|
|
BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2));
|
|
BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3));
|
|
BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4));
|
|
BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5));
|
|
BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6));
|
|
BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7));
|
|
BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8));
|
|
BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9));
|
|
BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10));
|
|
BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11));
|
|
BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12));
|
|
|
|
c->h0 = (c->h0 + E) & 0xffffffffL;
|
|
c->h1 = (c->h1 + T) & 0xffffffffL;
|
|
c->h2 = (c->h2 + A) & 0xffffffffL;
|
|
c->h3 = (c->h3 + B) & 0xffffffffL;
|
|
c->h4 = (c->h4 + C) & 0xffffffffL;
|
|
|
|
if (--num == 0)
|
|
break;
|
|
|
|
A = c->h0;
|
|
B = c->h1;
|
|
C = c->h2;
|
|
D = c->h3;
|
|
E = c->h4;
|
|
|
|
}
|
|
}
|
|
# endif
|
|
|
|
#else /* OPENSSL_SMALL_FOOTPRINT */
|
|
|
|
# define BODY_00_15(xi) do { \
|
|
T=E+K_00_19+F_00_19(B,C,D); \
|
|
E=D, D=C, C=ROTATE(B,30), B=A; \
|
|
A=ROTATE(A,5)+T+xi; } while(0)
|
|
|
|
# define BODY_16_19(xa,xb,xc,xd) do { \
|
|
Xupdate(T,xa,xa,xb,xc,xd); \
|
|
T+=E+K_00_19+F_00_19(B,C,D); \
|
|
E=D, D=C, C=ROTATE(B,30), B=A; \
|
|
A=ROTATE(A,5)+T; } while(0)
|
|
|
|
# define BODY_20_39(xa,xb,xc,xd) do { \
|
|
Xupdate(T,xa,xa,xb,xc,xd); \
|
|
T+=E+K_20_39+F_20_39(B,C,D); \
|
|
E=D, D=C, C=ROTATE(B,30), B=A; \
|
|
A=ROTATE(A,5)+T; } while(0)
|
|
|
|
# define BODY_40_59(xa,xb,xc,xd) do { \
|
|
Xupdate(T,xa,xa,xb,xc,xd); \
|
|
T+=E+K_40_59+F_40_59(B,C,D); \
|
|
E=D, D=C, C=ROTATE(B,30), B=A; \
|
|
A=ROTATE(A,5)+T; } while(0)
|
|
|
|
# define BODY_60_79(xa,xb,xc,xd) do { \
|
|
Xupdate(T,xa,xa,xb,xc,xd); \
|
|
T=E+K_60_79+F_60_79(B,C,D); \
|
|
E=D, D=C, C=ROTATE(B,30), B=A; \
|
|
A=ROTATE(A,5)+T+xa; } while(0)
|
|
|
|
# if !defined(SHA1_ASM)
|
|
static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
|
|
{
|
|
const unsigned char *data = p;
|
|
register unsigned MD32_REG_T A, B, C, D, E, T, l;
|
|
int i;
|
|
SHA_LONG X[16];
|
|
|
|
A = c->h0;
|
|
B = c->h1;
|
|
C = c->h2;
|
|
D = c->h3;
|
|
E = c->h4;
|
|
|
|
for (;;) {
|
|
for (i = 0; i < 16; i++) {
|
|
HOST_c2l(data, l);
|
|
X[i] = l;
|
|
BODY_00_15(X[i]);
|
|
}
|
|
for (i = 0; i < 4; i++) {
|
|
BODY_16_19(X[i], X[i + 2], X[i + 8], X[(i + 13) & 15]);
|
|
}
|
|
for (; i < 24; i++) {
|
|
BODY_20_39(X[i & 15], X[(i + 2) & 15], X[(i + 8) & 15],
|
|
X[(i + 13) & 15]);
|
|
}
|
|
for (i = 0; i < 20; i++) {
|
|
BODY_40_59(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
|
|
X[(i + 5) & 15]);
|
|
}
|
|
for (i = 4; i < 24; i++) {
|
|
BODY_60_79(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
|
|
X[(i + 5) & 15]);
|
|
}
|
|
|
|
c->h0 = (c->h0 + A) & 0xffffffffL;
|
|
c->h1 = (c->h1 + B) & 0xffffffffL;
|
|
c->h2 = (c->h2 + C) & 0xffffffffL;
|
|
c->h3 = (c->h3 + D) & 0xffffffffL;
|
|
c->h4 = (c->h4 + E) & 0xffffffffL;
|
|
|
|
if (--num == 0)
|
|
break;
|
|
|
|
A = c->h0;
|
|
B = c->h1;
|
|
C = c->h2;
|
|
D = c->h3;
|
|
E = c->h4;
|
|
|
|
}
|
|
}
|
|
# endif
|
|
|
|
#endif
|