openssl/include/internal/recordmethod.h
Dimitri Papadopoulos ad31628cfe Remove repeated words
Found by running the checkpatch.pl Linux script to enforce coding style.

Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/21468)
2023-09-11 10:15:30 +02:00

340 lines
14 KiB
C

/*
* Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifndef OSSL_INTERNAL_RECORDMETHOD_H
# define OSSL_INTERNAL_RECORDMETHOD_H
# pragma once
# include <openssl/ssl.h>
/*
* We use the term "record" here to refer to a packet of data. Records are
* typically protected via a cipher and MAC, or an AEAD cipher (although not
* always). This usage of the term record is consistent with the TLS concept.
* In QUIC the term "record" is not used but it is analogous to the QUIC term
* "packet". The interface in this file applies to all protocols that protect
* records/packets of data, i.e. (D)TLS and QUIC. The term record is used to
* refer to both contexts.
*/
/*
* An OSSL_RECORD_METHOD is a protocol specific method which provides the
* functions for reading and writing records for that protocol. Which
* OSSL_RECORD_METHOD to use for a given protocol is defined by the SSL_METHOD.
*/
typedef struct ossl_record_method_st OSSL_RECORD_METHOD;
/*
* An OSSL_RECORD_LAYER is just an externally defined opaque pointer created by
* the method
*/
typedef struct ossl_record_layer_st OSSL_RECORD_LAYER;
# define OSSL_RECORD_ROLE_CLIENT 0
# define OSSL_RECORD_ROLE_SERVER 1
# define OSSL_RECORD_DIRECTION_READ 0
# define OSSL_RECORD_DIRECTION_WRITE 1
/*
* Protection level. For <= TLSv1.2 only "NONE" and "APPLICATION" are used.
*/
# define OSSL_RECORD_PROTECTION_LEVEL_NONE 0
# define OSSL_RECORD_PROTECTION_LEVEL_EARLY 1
# define OSSL_RECORD_PROTECTION_LEVEL_HANDSHAKE 2
# define OSSL_RECORD_PROTECTION_LEVEL_APPLICATION 3
# define OSSL_RECORD_RETURN_SUCCESS 1
# define OSSL_RECORD_RETURN_RETRY 0
# define OSSL_RECORD_RETURN_NON_FATAL_ERR -1
# define OSSL_RECORD_RETURN_FATAL -2
# define OSSL_RECORD_RETURN_EOF -3
/*
* Template for creating a record. A record consists of the |type| of data it
* will contain (e.g. alert, handshake, application data, etc) along with a
* buffer of payload data in |buf| of length |buflen|.
*/
struct ossl_record_template_st {
unsigned char type;
unsigned int version;
const unsigned char *buf;
size_t buflen;
};
typedef struct ossl_record_template_st OSSL_RECORD_TEMPLATE;
/*
* Rather than a "method" approach, we could make this fetchable - Should we?
* There could be some complexity in finding suitable record layer implementations
* e.g. we need to find one that matches the negotiated protocol, cipher,
* extensions, etc. The selection_cb approach given above doesn't work so well
* if unknown third party providers with OSSL_RECORD_METHOD implementations are
* loaded.
*/
/*
* If this becomes public API then we will need functions to create and
* free an OSSL_RECORD_METHOD, as well as functions to get/set the various
* function pointers....unless we make it fetchable.
*/
struct ossl_record_method_st {
/*
* Create a new OSSL_RECORD_LAYER object for handling the protocol version
* set by |vers|. |role| is 0 for client and 1 for server. |direction|
* indicates either read or write. |level| is the protection level as
* described above. |settings| are mandatory settings that will cause the
* new() call to fail if they are not understood (for example to require
* Encrypt-Then-Mac support). |options| are optional settings that will not
* cause the new() call to fail if they are not understood (for example
* whether to use "read ahead" or not).
*
* The BIO in |transport| is the BIO for the underlying transport layer.
* Where the direction is "read", then this BIO will only ever be used for
* reading data. Where the direction is "write", then this BIO will only
* every be used for writing data.
*
* An SSL object will always have at least 2 OSSL_RECORD_LAYER objects in
* force at any one time (one for reading and one for writing). In some
* protocols more than 2 might be used (e.g. in DTLS for retransmitting
* messages from an earlier epoch).
*
* The created OSSL_RECORD_LAYER object is stored in *ret on success (or
* NULL otherwise). The return value will be one of
* OSSL_RECORD_RETURN_SUCCESS, OSSL_RECORD_RETURN_FATAL or
* OSSL_RECORD_RETURN_NON_FATAL. A non-fatal return means that creation of
* the record layer has failed because it is unsuitable, but an alternative
* record layer can be tried instead.
*/
/*
* If we eventually make this fetchable then we will need to use something
* other than EVP_CIPHER. Also mactype would not be a NID, but a string. For
* now though, this works.
*/
int (*new_record_layer)(OSSL_LIB_CTX *libctx,
const char *propq, int vers,
int role, int direction,
int level,
uint16_t epoch,
unsigned char *secret,
size_t secretlen,
unsigned char *key,
size_t keylen,
unsigned char *iv,
size_t ivlen,
unsigned char *mackey,
size_t mackeylen,
const EVP_CIPHER *ciph,
size_t taglen,
int mactype,
const EVP_MD *md,
COMP_METHOD *comp,
const EVP_MD *kdfdigest,
BIO *prev,
BIO *transport,
BIO *next,
BIO_ADDR *local,
BIO_ADDR *peer,
const OSSL_PARAM *settings,
const OSSL_PARAM *options,
const OSSL_DISPATCH *fns,
void *cbarg,
void *rlarg,
OSSL_RECORD_LAYER **ret);
int (*free)(OSSL_RECORD_LAYER *rl);
/* Returns 1 if we have unprocessed data buffered or 0 otherwise */
int (*unprocessed_read_pending)(OSSL_RECORD_LAYER *rl);
/*
* Returns 1 if we have processed data buffered that can be read or 0 otherwise
* - not necessarily app data
*/
int (*processed_read_pending)(OSSL_RECORD_LAYER *rl);
/*
* The amount of processed app data that is internally buffered and
* available to read
*/
size_t (*app_data_pending)(OSSL_RECORD_LAYER *rl);
/*
* Find out the maximum number of records that the record layer is prepared
* to process in a single call to write_records. It is the caller's
* responsibility to ensure that no call to write_records exceeds this
* number of records. |type| is the type of the records that the caller
* wants to write, and |len| is the total amount of data that it wants
* to send. |maxfrag| is the maximum allowed fragment size based on user
* configuration, or TLS parameter negotiation. |*preffrag| contains on
* entry the default fragment size that will actually be used based on user
* configuration. This will always be less than or equal to |maxfrag|. On
* exit the record layer may update this to an alternative fragment size to
* be used. This must always be less than or equal to |maxfrag|.
*/
size_t (*get_max_records)(OSSL_RECORD_LAYER *rl, uint8_t type, size_t len,
size_t maxfrag, size_t *preffrag);
/*
* Write |numtempl| records from the array of record templates pointed to
* by |templates|. Each record should be no longer than the value returned
* by get_max_record_len(), and there should be no more records than the
* value returned by get_max_records().
* Where possible the caller will attempt to ensure that all records are the
* same length, except the last record. This may not always be possible so
* the record method implementation should not rely on this being the case.
* In the event of a retry the caller should call retry_write_records()
* to try again. No more calls to write_records() should be attempted until
* retry_write_records() returns success.
* Buffers allocated for the record templates can be freed immediately after
* write_records() returns - even in the case a retry.
* The record templates represent the plaintext payload. The encrypted
* output is written to the |transport| BIO.
* Returns:
* 1 on success
* 0 on retry
* -1 on failure
*/
int (*write_records)(OSSL_RECORD_LAYER *rl, OSSL_RECORD_TEMPLATE *templates,
size_t numtempl);
/*
* Retry a previous call to write_records. The caller should continue to
* call this until the function returns with success or failure. After
* each retry more of the data may have been incrementally sent.
* Returns:
* 1 on success
* 0 on retry
* -1 on failure
*/
int (*retry_write_records)(OSSL_RECORD_LAYER *rl);
/*
* Read a record and return the record layer version and record type in
* the |rversion| and |type| parameters. |*data| is set to point to a
* record layer buffer containing the record payload data and |*datalen|
* is filled in with the length of that data. The |epoch| and |seq_num|
* values are only used if DTLS has been negotiated. In that case they are
* filled in with the epoch and sequence number from the record.
* An opaque record layer handle for the record is returned in |*rechandle|
* which is used in a subsequent call to |release_record|. The buffer must
* remain available until all the bytes from record are released via one or
* more release_record calls.
*
* Internally the OSSL_RECORD_METHOD implementation may read/process
* multiple records in one go and buffer them.
*/
int (*read_record)(OSSL_RECORD_LAYER *rl, void **rechandle, int *rversion,
uint8_t *type, const unsigned char **data, size_t *datalen,
uint16_t *epoch, unsigned char *seq_num);
/*
* Release length bytes from a buffer associated with a record previously
* read with read_record. Once all the bytes from a record are released, the
* whole record and its associated buffer is released. Records are
* guaranteed to be released in the order that they are read.
*/
int (*release_record)(OSSL_RECORD_LAYER *rl, void *rechandle, size_t length);
/*
* In the event that a fatal error is returned from the functions above then
* get_alert_code() can be called to obtain a more details identifier for
* the error. In (D)TLS this is the alert description code.
*/
int (*get_alert_code)(OSSL_RECORD_LAYER *rl);
/*
* Update the transport BIO from the one originally set in the
* new_record_layer call
*/
int (*set1_bio)(OSSL_RECORD_LAYER *rl, BIO *bio);
/* Called when protocol negotiation selects a protocol version to use */
int (*set_protocol_version)(OSSL_RECORD_LAYER *rl, int version);
/*
* Whether we are allowed to receive unencrypted alerts, even if we might
* otherwise expect encrypted records. Ignored by protocol versions where
* this isn't relevant
*/
void (*set_plain_alerts)(OSSL_RECORD_LAYER *rl, int allow);
/*
* Called immediately after creation of the record layer if we are in a
* first handshake. Also called at the end of the first handshake
*/
void (*set_first_handshake)(OSSL_RECORD_LAYER *rl, int first);
/*
* Set the maximum number of pipelines that the record layer should process.
* The default is 1.
*/
void (*set_max_pipelines)(OSSL_RECORD_LAYER *rl, size_t max_pipelines);
/*
* Called to tell the record layer whether we are currently "in init" or
* not. Default at creation of the record layer is "yes".
*/
void (*set_in_init)(OSSL_RECORD_LAYER *rl, int in_init);
/*
* Get a short or long human readable description of the record layer state
*/
void (*get_state)(OSSL_RECORD_LAYER *rl, const char **shortstr,
const char **longstr);
/*
* Set new options or modify ones that were originally specified in the
* new_record_layer call.
*/
int (*set_options)(OSSL_RECORD_LAYER *rl, const OSSL_PARAM *options);
const COMP_METHOD *(*get_compression)(OSSL_RECORD_LAYER *rl);
/*
* Set the maximum fragment length to be used for the record layer. This
* will override any previous value supplied for the "max_frag_len"
* setting during construction of the record layer.
*/
void (*set_max_frag_len)(OSSL_RECORD_LAYER *rl, size_t max_frag_len);
/*
* The maximum expansion in bytes that the record layer might add while
* writing a record
*/
size_t (*get_max_record_overhead)(OSSL_RECORD_LAYER *rl);
/*
* Increment the record sequence number
*/
int (*increment_sequence_ctr)(OSSL_RECORD_LAYER *rl);
/*
* Allocate read or write buffers. Does nothing if already allocated.
* Assumes default buffer length and 1 pipeline.
*/
int (*alloc_buffers)(OSSL_RECORD_LAYER *rl);
/*
* Free read or write buffers. Fails if there is pending read or write
* data. Buffers are automatically reallocated on next read/write.
*/
int (*free_buffers)(OSSL_RECORD_LAYER *rl);
};
/* Standard built-in record methods */
extern const OSSL_RECORD_METHOD ossl_tls_record_method;
# ifndef OPENSSL_NO_KTLS
extern const OSSL_RECORD_METHOD ossl_ktls_record_method;
# endif
extern const OSSL_RECORD_METHOD ossl_dtls_record_method;
#endif /* !defined(OSSL_INTERNAL_RECORDMETHOD_H) */