openssl/crypto/x509/x_req.c
Dr. Matthias St. Pierre 25f2138b0a Reorganize private crypto header files
Currently, there are two different directories which contain internal
header files of libcrypto which are meant to be shared internally:

While header files in 'include/internal' are intended to be shared
between libcrypto and libssl, the files in 'crypto/include/internal'
are intended to be shared inside libcrypto only.

To make things complicated, the include search path is set up in such
a way that the directive #include "internal/file.h" could refer to
a file in either of these two directoroes. This makes it necessary
in some cases to add a '_int.h' suffix to some files to resolve this
ambiguity:

  #include "internal/file.h"      # located in 'include/internal'
  #include "internal/file_int.h"  # located in 'crypto/include/internal'

This commit moves the private crypto headers from

  'crypto/include/internal'  to  'include/crypto'

As a result, the include directives become unambiguous

  #include "internal/file.h"       # located in 'include/internal'
  #include "crypto/file.h"         # located in 'include/crypto'

hence the superfluous '_int.h' suffixes can be stripped.

The files 'store_int.h' and 'store.h' need to be treated specially;
they are joined into a single file.

Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9333)
2019-09-28 20:26:34 +02:00

105 lines
3.0 KiB
C

/*
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/asn1t.h>
#include <openssl/x509.h>
#include "crypto/x509.h"
/*-
* X509_REQ_INFO is handled in an unusual way to get round
* invalid encodings. Some broken certificate requests don't
* encode the attributes field if it is empty. This is in
* violation of PKCS#10 but we need to tolerate it. We do
* this by making the attributes field OPTIONAL then using
* the callback to initialise it to an empty STACK.
*
* This means that the field will be correctly encoded unless
* we NULL out the field.
*
* As a result we no longer need the req_kludge field because
* the information is now contained in the attributes field:
* 1. If it is NULL then it's the invalid omission.
* 2. If it is empty it is the correct encoding.
* 3. If it is not empty then some attributes are present.
*
*/
static int rinf_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg)
{
X509_REQ_INFO *rinf = (X509_REQ_INFO *)*pval;
if (operation == ASN1_OP_NEW_POST) {
rinf->attributes = sk_X509_ATTRIBUTE_new_null();
if (!rinf->attributes)
return 0;
}
return 1;
}
static int req_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg)
{
#ifndef OPENSSL_NO_SM2
X509_REQ *ret = (X509_REQ *)*pval;
switch (operation) {
case ASN1_OP_D2I_PRE:
ASN1_OCTET_STRING_free(ret->sm2_id);
/* fall thru */
case ASN1_OP_NEW_POST:
ret->sm2_id = NULL;
break;
case ASN1_OP_FREE_POST:
ASN1_OCTET_STRING_free(ret->sm2_id);
break;
}
#endif
return 1;
}
ASN1_SEQUENCE_enc(X509_REQ_INFO, enc, rinf_cb) = {
ASN1_SIMPLE(X509_REQ_INFO, version, ASN1_INTEGER),
ASN1_SIMPLE(X509_REQ_INFO, subject, X509_NAME),
ASN1_SIMPLE(X509_REQ_INFO, pubkey, X509_PUBKEY),
/* This isn't really OPTIONAL but it gets round invalid
* encodings
*/
ASN1_IMP_SET_OF_OPT(X509_REQ_INFO, attributes, X509_ATTRIBUTE, 0)
} ASN1_SEQUENCE_END_enc(X509_REQ_INFO, X509_REQ_INFO)
IMPLEMENT_ASN1_FUNCTIONS(X509_REQ_INFO)
ASN1_SEQUENCE_ref(X509_REQ, req_cb) = {
ASN1_EMBED(X509_REQ, req_info, X509_REQ_INFO),
ASN1_EMBED(X509_REQ, sig_alg, X509_ALGOR),
ASN1_SIMPLE(X509_REQ, signature, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END_ref(X509_REQ, X509_REQ)
IMPLEMENT_ASN1_FUNCTIONS(X509_REQ)
IMPLEMENT_ASN1_DUP_FUNCTION(X509_REQ)
#ifndef OPENSSL_NO_SM2
void X509_REQ_set0_sm2_id(X509_REQ *x, ASN1_OCTET_STRING *sm2_id)
{
ASN1_OCTET_STRING_free(x->sm2_id);
x->sm2_id = sm2_id;
}
ASN1_OCTET_STRING *X509_REQ_get0_sm2_id(X509_REQ *x)
{
return x->sm2_id;
}
#endif