mirror of
https://github.com/openssl/openssl.git
synced 2024-12-27 06:21:43 +08:00
a566864b60
The new write record layer architecture splits record writing into a "write_records" call and a "retry_write_records" call - where multiple records can be sent to "write_records" in one go. We restructure the code into that format in order that future commits can move these functions into the new record layer more easily. Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19198)
1411 lines
43 KiB
C
1411 lines
43 KiB
C
/*
|
|
* Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <openssl/bio.h>
|
|
#include <openssl/ssl.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/core_names.h>
|
|
#include "internal/e_os.h"
|
|
#include "internal/packet.h"
|
|
#include "../../ssl_local.h"
|
|
#include "../record_local.h"
|
|
#include "recmethod_local.h"
|
|
|
|
static void tls_int_free(OSSL_RECORD_LAYER *rl);
|
|
|
|
void ossl_rlayer_fatal(OSSL_RECORD_LAYER *rl, int al, int reason,
|
|
const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
ERR_vset_error(ERR_LIB_SSL, reason, fmt, args);
|
|
va_end(args);
|
|
|
|
rl->alert = al;
|
|
}
|
|
|
|
int ossl_set_tls_provider_parameters(OSSL_RECORD_LAYER *rl,
|
|
EVP_CIPHER_CTX *ctx,
|
|
const EVP_CIPHER *ciph,
|
|
const EVP_MD *md)
|
|
{
|
|
/*
|
|
* Provided cipher, the TLS padding/MAC removal is performed provider
|
|
* side so we need to tell the ctx about our TLS version and mac size
|
|
*/
|
|
OSSL_PARAM params[3], *pprm = params;
|
|
size_t macsize = 0;
|
|
int imacsize = -1;
|
|
|
|
if ((EVP_CIPHER_get_flags(ciph) & EVP_CIPH_FLAG_AEAD_CIPHER) == 0
|
|
&& !rl->use_etm)
|
|
imacsize = EVP_MD_get_size(md);
|
|
if (imacsize >= 0)
|
|
macsize = (size_t)imacsize;
|
|
|
|
*pprm++ = OSSL_PARAM_construct_int(OSSL_CIPHER_PARAM_TLS_VERSION,
|
|
&rl->version);
|
|
*pprm++ = OSSL_PARAM_construct_size_t(OSSL_CIPHER_PARAM_TLS_MAC_SIZE,
|
|
&macsize);
|
|
*pprm = OSSL_PARAM_construct_end();
|
|
|
|
if (!EVP_CIPHER_CTX_set_params(ctx, params)) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
|
|
* which ssl3_cbc_digest_record supports.
|
|
*/
|
|
char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
|
|
{
|
|
switch (EVP_MD_CTX_get_type(ctx)) {
|
|
case NID_md5:
|
|
case NID_sha1:
|
|
case NID_sha224:
|
|
case NID_sha256:
|
|
case NID_sha384:
|
|
case NID_sha512:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_COMP
|
|
static int tls_allow_compression(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
if (rl->options & SSL_OP_NO_COMPRESSION)
|
|
return 0;
|
|
|
|
return rl->security == NULL
|
|
|| rl->security(rl->cbarg, SSL_SECOP_COMPRESSION, 0, 0, NULL);
|
|
}
|
|
#endif
|
|
|
|
int tls_setup_read_buffer(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
unsigned char *p;
|
|
size_t len, align = 0, headerlen;
|
|
SSL3_BUFFER *b;
|
|
|
|
b = &rl->rbuf;
|
|
|
|
if (rl->isdtls)
|
|
headerlen = DTLS1_RT_HEADER_LENGTH;
|
|
else
|
|
headerlen = SSL3_RT_HEADER_LENGTH;
|
|
|
|
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD != 0
|
|
align = (-SSL3_RT_HEADER_LENGTH) & (SSL3_ALIGN_PAYLOAD - 1);
|
|
#endif
|
|
|
|
if (b->buf == NULL) {
|
|
len = SSL3_RT_MAX_PLAIN_LENGTH
|
|
+ SSL3_RT_MAX_ENCRYPTED_OVERHEAD + headerlen + align;
|
|
#ifndef OPENSSL_NO_COMP
|
|
if (tls_allow_compression(rl))
|
|
len += SSL3_RT_MAX_COMPRESSED_OVERHEAD;
|
|
#endif
|
|
if (b->default_len > len)
|
|
len = b->default_len;
|
|
if ((p = OPENSSL_malloc(len)) == NULL) {
|
|
/*
|
|
* We've got a malloc failure, and we're still initialising buffers.
|
|
* We assume we're so doomed that we won't even be able to send an
|
|
* alert.
|
|
*/
|
|
RLAYERfatal(rl, SSL_AD_NO_ALERT, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
b->buf = p;
|
|
b->len = len;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int tls_release_read_buffer(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
SSL3_BUFFER *b;
|
|
|
|
b = &rl->rbuf;
|
|
if ((rl->options & SSL_OP_CLEANSE_PLAINTEXT) != 0)
|
|
OPENSSL_cleanse(b->buf, b->len);
|
|
OPENSSL_free(b->buf);
|
|
b->buf = NULL;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Return values are as per SSL_read()
|
|
*/
|
|
int tls_default_read_n(OSSL_RECORD_LAYER *rl, size_t n, size_t max, int extend,
|
|
int clearold, size_t *readbytes)
|
|
{
|
|
/*
|
|
* If extend == 0, obtain new n-byte packet; if extend == 1, increase
|
|
* packet by another n bytes. The packet will be in the sub-array of
|
|
* rl->rbuf.buf specified by rl->packet and rl->packet_length. (If
|
|
* rl->read_ahead is set, 'max' bytes may be stored in rbuf [plus
|
|
* rl->packet_length bytes if extend == 1].) if clearold == 1, move the
|
|
* packet to the start of the buffer; if clearold == 0 then leave any old
|
|
* packets where they were
|
|
*/
|
|
size_t len, left, align = 0;
|
|
unsigned char *pkt;
|
|
SSL3_BUFFER *rb;
|
|
|
|
if (n == 0)
|
|
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
|
|
|
|
rb = &rl->rbuf;
|
|
left = rb->left;
|
|
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD != 0
|
|
align = (size_t)rb->buf + SSL3_RT_HEADER_LENGTH;
|
|
align = SSL3_ALIGN_PAYLOAD - 1 - ((align - 1) % SSL3_ALIGN_PAYLOAD);
|
|
#endif
|
|
|
|
if (!extend) {
|
|
/* start with empty packet ... */
|
|
if (left == 0) {
|
|
rb->offset = align;
|
|
} else if (align != 0 && left >= SSL3_RT_HEADER_LENGTH) {
|
|
/*
|
|
* check if next packet length is large enough to justify payload
|
|
* alignment...
|
|
*/
|
|
pkt = rb->buf + rb->offset;
|
|
if (pkt[0] == SSL3_RT_APPLICATION_DATA
|
|
&& (pkt[3] << 8 | pkt[4]) >= 128) {
|
|
/*
|
|
* Note that even if packet is corrupted and its length field
|
|
* is insane, we can only be led to wrong decision about
|
|
* whether memmove will occur or not. Header values has no
|
|
* effect on memmove arguments and therefore no buffer
|
|
* overrun can be triggered.
|
|
*/
|
|
memmove(rb->buf + align, pkt, left);
|
|
rb->offset = align;
|
|
}
|
|
}
|
|
rl->packet = rb->buf + rb->offset;
|
|
rl->packet_length = 0;
|
|
/* ... now we can act as if 'extend' was set */
|
|
}
|
|
|
|
len = rl->packet_length;
|
|
pkt = rb->buf + align;
|
|
/*
|
|
* Move any available bytes to front of buffer: 'len' bytes already
|
|
* pointed to by 'packet', 'left' extra ones at the end
|
|
*/
|
|
if (rl->packet != pkt && clearold == 1) {
|
|
memmove(pkt, rl->packet, len + left);
|
|
rl->packet = pkt;
|
|
rb->offset = len + align;
|
|
}
|
|
|
|
/*
|
|
* For DTLS/UDP reads should not span multiple packets because the read
|
|
* operation returns the whole packet at once (as long as it fits into
|
|
* the buffer).
|
|
*/
|
|
if (rl->isdtls) {
|
|
if (left == 0 && extend)
|
|
return 0;
|
|
if (left > 0 && n > left)
|
|
n = left;
|
|
}
|
|
|
|
/* if there is enough in the buffer from a previous read, take some */
|
|
if (left >= n) {
|
|
rl->packet_length += n;
|
|
rb->left = left - n;
|
|
rb->offset += n;
|
|
*readbytes = n;
|
|
return OSSL_RECORD_RETURN_SUCCESS;
|
|
}
|
|
|
|
/* else we need to read more data */
|
|
|
|
if (n > rb->len - rb->offset) {
|
|
/* does not happen */
|
|
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
|
|
/* We always act like read_ahead is set for DTLS */
|
|
if (!rl->read_ahead && !rl->isdtls) {
|
|
/* ignore max parameter */
|
|
max = n;
|
|
} else {
|
|
if (max < n)
|
|
max = n;
|
|
if (max > rb->len - rb->offset)
|
|
max = rb->len - rb->offset;
|
|
}
|
|
|
|
while (left < n) {
|
|
size_t bioread = 0;
|
|
int ret;
|
|
BIO *bio = rl->prev != NULL ? rl->prev : rl->bio;
|
|
|
|
/*
|
|
* Now we have len+left bytes at the front of rl->rbuf.buf and
|
|
* need to read in more until we have len + n (up to len + max if
|
|
* possible)
|
|
*/
|
|
|
|
clear_sys_error();
|
|
if (bio != NULL) {
|
|
ret = BIO_read(bio, pkt + len + left, max - left);
|
|
if (ret > 0) {
|
|
bioread = ret;
|
|
ret = OSSL_RECORD_RETURN_SUCCESS;
|
|
} else if (BIO_should_retry(bio)) {
|
|
if (rl->prev != NULL) {
|
|
/*
|
|
* We were reading from the previous epoch. Now there is no
|
|
* more data, so swap to the actual transport BIO
|
|
*/
|
|
BIO_free(rl->prev);
|
|
rl->prev = NULL;
|
|
continue;
|
|
}
|
|
ret = OSSL_RECORD_RETURN_RETRY;
|
|
} else if (BIO_eof(bio)) {
|
|
ret = OSSL_RECORD_RETURN_EOF;
|
|
} else {
|
|
ret = OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
} else {
|
|
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_READ_BIO_NOT_SET);
|
|
ret = OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
|
|
if (ret <= OSSL_RECORD_RETURN_RETRY) {
|
|
rb->left = left;
|
|
if ((rl->mode & SSL_MODE_RELEASE_BUFFERS) != 0 && !rl->isdtls)
|
|
if (len + left == 0)
|
|
tls_release_read_buffer(rl);
|
|
return ret;
|
|
}
|
|
left += bioread;
|
|
/*
|
|
* reads should *never* span multiple packets for DTLS because the
|
|
* underlying transport protocol is message oriented as opposed to
|
|
* byte oriented as in the TLS case.
|
|
*/
|
|
if (rl->isdtls) {
|
|
if (n > left)
|
|
n = left; /* makes the while condition false */
|
|
}
|
|
}
|
|
|
|
/* done reading, now the book-keeping */
|
|
rb->offset += n;
|
|
rb->left = left - n;
|
|
rl->packet_length += n;
|
|
*readbytes = n;
|
|
return OSSL_RECORD_RETURN_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Peeks ahead into "read_ahead" data to see if we have a whole record waiting
|
|
* for us in the buffer.
|
|
*/
|
|
static int tls_record_app_data_waiting(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
SSL3_BUFFER *rbuf;
|
|
size_t left, len;
|
|
unsigned char *p;
|
|
|
|
rbuf = &rl->rbuf;
|
|
|
|
p = SSL3_BUFFER_get_buf(rbuf);
|
|
if (p == NULL)
|
|
return 0;
|
|
|
|
left = SSL3_BUFFER_get_left(rbuf);
|
|
|
|
if (left < SSL3_RT_HEADER_LENGTH)
|
|
return 0;
|
|
|
|
p += SSL3_BUFFER_get_offset(rbuf);
|
|
|
|
/*
|
|
* We only check the type and record length, we will sanity check version
|
|
* etc later
|
|
*/
|
|
if (*p != SSL3_RT_APPLICATION_DATA)
|
|
return 0;
|
|
|
|
p += 3;
|
|
n2s(p, len);
|
|
|
|
if (left < SSL3_RT_HEADER_LENGTH + len)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int rlayer_early_data_count_ok(OSSL_RECORD_LAYER *rl, size_t length,
|
|
size_t overhead, int send)
|
|
{
|
|
uint32_t max_early_data = rl->max_early_data;
|
|
|
|
if (max_early_data == 0) {
|
|
RLAYERfatal(rl, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
|
|
SSL_R_TOO_MUCH_EARLY_DATA);
|
|
return 0;
|
|
}
|
|
|
|
/* If we are dealing with ciphertext we need to allow for the overhead */
|
|
max_early_data += overhead;
|
|
|
|
if (rl->early_data_count + length > max_early_data) {
|
|
RLAYERfatal(rl, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
|
|
SSL_R_TOO_MUCH_EARLY_DATA);
|
|
return 0;
|
|
}
|
|
rl->early_data_count += length;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* MAX_EMPTY_RECORDS defines the number of consecutive, empty records that
|
|
* will be processed per call to tls_get_more_records. Without this limit an
|
|
* attacker could send empty records at a faster rate than we can process and
|
|
* cause tls_get_more_records to loop forever.
|
|
*/
|
|
#define MAX_EMPTY_RECORDS 32
|
|
|
|
#define SSL2_RT_HEADER_LENGTH 2
|
|
|
|
/*-
|
|
* Call this to buffer new input records in rl->rrec.
|
|
* It will return a OSSL_RECORD_RETURN_* value.
|
|
* When it finishes successfully (OSSL_RECORD_RETURN_SUCCESS), |rl->num_recs|
|
|
* records have been decoded. For each record 'i':
|
|
* rrec[i].type - is the type of record
|
|
* rrec[i].data, - data
|
|
* rrec[i].length, - number of bytes
|
|
* Multiple records will only be returned if the record types are all
|
|
* SSL3_RT_APPLICATION_DATA. The number of records returned will always be <=
|
|
* |max_pipelines|
|
|
*/
|
|
int tls_get_more_records(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
int enc_err, rret;
|
|
int i;
|
|
size_t more, n;
|
|
SSL3_RECORD *rr, *thisrr;
|
|
SSL3_BUFFER *rbuf;
|
|
unsigned char *p;
|
|
unsigned char md[EVP_MAX_MD_SIZE];
|
|
unsigned int version;
|
|
size_t mac_size = 0;
|
|
int imac_size;
|
|
size_t num_recs = 0, max_recs, j;
|
|
PACKET pkt, sslv2pkt;
|
|
SSL_MAC_BUF *macbufs = NULL;
|
|
int ret = OSSL_RECORD_RETURN_FATAL;
|
|
|
|
rr = rl->rrec;
|
|
rbuf = &rl->rbuf;
|
|
if (rbuf->buf == NULL) {
|
|
if (!tls_setup_read_buffer(rl)) {
|
|
/* RLAYERfatal() already called */
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
}
|
|
|
|
max_recs = rl->max_pipelines;
|
|
|
|
if (max_recs == 0)
|
|
max_recs = 1;
|
|
|
|
do {
|
|
thisrr = &rr[num_recs];
|
|
|
|
/* check if we have the header */
|
|
if ((rl->rstate != SSL_ST_READ_BODY) ||
|
|
(rl->packet_length < SSL3_RT_HEADER_LENGTH)) {
|
|
size_t sslv2len;
|
|
unsigned int type;
|
|
|
|
rret = rl->funcs->read_n(rl, SSL3_RT_HEADER_LENGTH,
|
|
SSL3_BUFFER_get_len(rbuf), 0,
|
|
num_recs == 0 ? 1 : 0, &n);
|
|
|
|
if (rret < OSSL_RECORD_RETURN_SUCCESS)
|
|
return rret; /* error or non-blocking */
|
|
|
|
rl->rstate = SSL_ST_READ_BODY;
|
|
|
|
p = rl->packet;
|
|
if (!PACKET_buf_init(&pkt, p, rl->packet_length)) {
|
|
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
sslv2pkt = pkt;
|
|
if (!PACKET_get_net_2_len(&sslv2pkt, &sslv2len)
|
|
|| !PACKET_get_1(&sslv2pkt, &type)) {
|
|
RLAYERfatal(rl, SSL_AD_DECODE_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
/*
|
|
* The first record received by the server may be a V2ClientHello.
|
|
*/
|
|
if (rl->role == OSSL_RECORD_ROLE_SERVER
|
|
&& rl->is_first_record
|
|
&& (sslv2len & 0x8000) != 0
|
|
&& (type == SSL2_MT_CLIENT_HELLO)) {
|
|
/*
|
|
* SSLv2 style record
|
|
*
|
|
* |num_recs| here will actually always be 0 because
|
|
* |num_recs > 0| only ever occurs when we are processing
|
|
* multiple app data records - which we know isn't the case here
|
|
* because it is an SSLv2ClientHello. We keep it using
|
|
* |num_recs| for the sake of consistency
|
|
*/
|
|
thisrr->type = SSL3_RT_HANDSHAKE;
|
|
thisrr->rec_version = SSL2_VERSION;
|
|
|
|
thisrr->length = sslv2len & 0x7fff;
|
|
|
|
if (thisrr->length > SSL3_BUFFER_get_len(rbuf)
|
|
- SSL2_RT_HEADER_LENGTH) {
|
|
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
|
|
SSL_R_PACKET_LENGTH_TOO_LONG);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
} else {
|
|
/* SSLv3+ style record */
|
|
|
|
/* Pull apart the header into the SSL3_RECORD */
|
|
if (!PACKET_get_1(&pkt, &type)
|
|
|| !PACKET_get_net_2(&pkt, &version)
|
|
|| !PACKET_get_net_2_len(&pkt, &thisrr->length)) {
|
|
if (rl->msg_callback != NULL)
|
|
rl->msg_callback(0, 0, SSL3_RT_HEADER, p, 5, rl->cbarg);
|
|
RLAYERfatal(rl, SSL_AD_DECODE_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
thisrr->type = type;
|
|
thisrr->rec_version = version;
|
|
|
|
/*
|
|
* When we call validate_record_header() only records actually
|
|
* received in SSLv2 format should have the record version set
|
|
* to SSL2_VERSION. This way validate_record_header() can know
|
|
* what format the record was in based on the version.
|
|
*/
|
|
if (thisrr->rec_version == SSL2_VERSION) {
|
|
RLAYERfatal(rl, SSL_AD_PROTOCOL_VERSION,
|
|
SSL_R_WRONG_VERSION_NUMBER);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
|
|
if (rl->msg_callback != NULL)
|
|
rl->msg_callback(0, version, SSL3_RT_HEADER, p, 5, rl->cbarg);
|
|
|
|
if (thisrr->length >
|
|
SSL3_BUFFER_get_len(rbuf) - SSL3_RT_HEADER_LENGTH) {
|
|
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
|
|
SSL_R_PACKET_LENGTH_TOO_LONG);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
}
|
|
|
|
if (!rl->funcs->validate_record_header(rl, thisrr)) {
|
|
/* RLAYERfatal already called */
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
|
|
/* now rl->rstate == SSL_ST_READ_BODY */
|
|
}
|
|
|
|
/*
|
|
* rl->rstate == SSL_ST_READ_BODY, get and decode the data. Calculate
|
|
* how much more data we need to read for the rest of the record
|
|
*/
|
|
if (thisrr->rec_version == SSL2_VERSION) {
|
|
more = thisrr->length + SSL2_RT_HEADER_LENGTH
|
|
- SSL3_RT_HEADER_LENGTH;
|
|
} else {
|
|
more = thisrr->length;
|
|
}
|
|
|
|
if (more > 0) {
|
|
/* now rl->packet_length == SSL3_RT_HEADER_LENGTH */
|
|
|
|
rret = rl->funcs->read_n(rl, more, more, 1, 0, &n);
|
|
if (rret < OSSL_RECORD_RETURN_SUCCESS)
|
|
return rret; /* error or non-blocking io */
|
|
}
|
|
|
|
/* set state for later operations */
|
|
rl->rstate = SSL_ST_READ_HEADER;
|
|
|
|
/*
|
|
* At this point, rl->packet_length == SSL3_RT_HEADER_LENGTH
|
|
* + thisrr->length, or rl->packet_length == SSL2_RT_HEADER_LENGTH
|
|
* + thisrr->length and we have that many bytes in rl->packet
|
|
*/
|
|
if (thisrr->rec_version == SSL2_VERSION)
|
|
thisrr->input = &(rl->packet[SSL2_RT_HEADER_LENGTH]);
|
|
else
|
|
thisrr->input = &(rl->packet[SSL3_RT_HEADER_LENGTH]);
|
|
|
|
/*
|
|
* ok, we can now read from 'rl->packet' data into 'thisrr'.
|
|
* thisrr->input points at thisrr->length bytes, which need to be copied
|
|
* into thisrr->data by either the decryption or by the decompression.
|
|
* When the data is 'copied' into the thisrr->data buffer,
|
|
* thisrr->input will be updated to point at the new buffer
|
|
*/
|
|
|
|
/*
|
|
* We now have - encrypted [ MAC [ compressed [ plain ] ] ]
|
|
* thisrr->length bytes of encrypted compressed stuff.
|
|
*/
|
|
|
|
/* decrypt in place in 'thisrr->input' */
|
|
thisrr->data = thisrr->input;
|
|
thisrr->orig_len = thisrr->length;
|
|
|
|
num_recs++;
|
|
|
|
/* we have pulled in a full packet so zero things */
|
|
rl->packet_length = 0;
|
|
rl->is_first_record = 0;
|
|
} while (num_recs < max_recs
|
|
&& thisrr->type == SSL3_RT_APPLICATION_DATA
|
|
&& RLAYER_USE_EXPLICIT_IV(rl)
|
|
&& rl->enc_ctx != NULL
|
|
&& (EVP_CIPHER_get_flags(EVP_CIPHER_CTX_get0_cipher(rl->enc_ctx))
|
|
& EVP_CIPH_FLAG_PIPELINE) != 0
|
|
&& tls_record_app_data_waiting(rl));
|
|
|
|
if (num_recs == 1
|
|
&& thisrr->type == SSL3_RT_CHANGE_CIPHER_SPEC
|
|
/* The following can happen in tlsany_meth after HRR */
|
|
&& rl->version == TLS1_3_VERSION
|
|
&& rl->is_first_handshake) {
|
|
/*
|
|
* CCS messages must be exactly 1 byte long, containing the value 0x01
|
|
*/
|
|
if (thisrr->length != 1 || thisrr->data[0] != 0x01) {
|
|
RLAYERfatal(rl, SSL_AD_ILLEGAL_PARAMETER,
|
|
SSL_R_INVALID_CCS_MESSAGE);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
/*
|
|
* CCS messages are ignored in TLSv1.3. We treat it like an empty
|
|
* handshake record
|
|
*/
|
|
thisrr->type = SSL3_RT_HANDSHAKE;
|
|
if (++(rl->empty_record_count) > MAX_EMPTY_RECORDS) {
|
|
RLAYERfatal(rl, SSL_AD_UNEXPECTED_MESSAGE,
|
|
SSL_R_UNEXPECTED_CCS_MESSAGE);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
rl->num_recs = 0;
|
|
rl->curr_rec = 0;
|
|
rl->num_released = 0;
|
|
|
|
return OSSL_RECORD_RETURN_SUCCESS;
|
|
}
|
|
|
|
if (rl->md_ctx != NULL) {
|
|
const EVP_MD *tmpmd = EVP_MD_CTX_get0_md(rl->md_ctx);
|
|
|
|
if (tmpmd != NULL) {
|
|
imac_size = EVP_MD_get_size(tmpmd);
|
|
if (!ossl_assert(imac_size >= 0 && imac_size <= EVP_MAX_MD_SIZE)) {
|
|
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
mac_size = (size_t)imac_size;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If in encrypt-then-mac mode calculate mac from encrypted record. All
|
|
* the details below are public so no timing details can leak.
|
|
*/
|
|
if (rl->use_etm && rl->md_ctx) {
|
|
unsigned char *mac;
|
|
|
|
for (j = 0; j < num_recs; j++) {
|
|
thisrr = &rr[j];
|
|
|
|
if (thisrr->length < mac_size) {
|
|
RLAYERfatal(rl, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_TOO_SHORT);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
thisrr->length -= mac_size;
|
|
mac = thisrr->data + thisrr->length;
|
|
i = rl->funcs->mac(rl, thisrr, md, 0 /* not send */);
|
|
if (i == 0 || CRYPTO_memcmp(md, mac, mac_size) != 0) {
|
|
RLAYERfatal(rl, SSL_AD_BAD_RECORD_MAC,
|
|
SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
}
|
|
/*
|
|
* We've handled the mac now - there is no MAC inside the encrypted
|
|
* record
|
|
*/
|
|
mac_size = 0;
|
|
}
|
|
|
|
if (mac_size > 0) {
|
|
macbufs = OPENSSL_zalloc(sizeof(*macbufs) * num_recs);
|
|
if (macbufs == NULL) {
|
|
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
}
|
|
|
|
enc_err = rl->funcs->cipher(rl, rr, num_recs, 0, macbufs, mac_size);
|
|
|
|
/*-
|
|
* enc_err is:
|
|
* 0: if the record is publicly invalid, or an internal error, or AEAD
|
|
* decryption failed, or ETM decryption failed.
|
|
* 1: Success or MTE decryption failed (MAC will be randomised)
|
|
*/
|
|
if (enc_err == 0) {
|
|
if (rl->alert != SSL_AD_NO_ALERT) {
|
|
/* RLAYERfatal() already got called */
|
|
goto end;
|
|
}
|
|
if (num_recs == 1
|
|
&& rl->skip_early_data != NULL
|
|
&& rl->skip_early_data(rl->cbarg)) {
|
|
/*
|
|
* Valid early_data that we cannot decrypt will fail here. We treat
|
|
* it like an empty record.
|
|
*/
|
|
|
|
thisrr = &rr[0];
|
|
|
|
if (!rlayer_early_data_count_ok(rl, thisrr->length,
|
|
EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) {
|
|
/* RLAYERfatal() already called */
|
|
goto end;
|
|
}
|
|
|
|
thisrr->length = 0;
|
|
rl->num_recs = 0;
|
|
rl->curr_rec = 0;
|
|
rl->num_released = 0;
|
|
/* Reset the read sequence */
|
|
memset(rl->sequence, 0, sizeof(rl->sequence));
|
|
ret = 1;
|
|
goto end;
|
|
}
|
|
RLAYERfatal(rl, SSL_AD_BAD_RECORD_MAC,
|
|
SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
|
|
goto end;
|
|
}
|
|
OSSL_TRACE_BEGIN(TLS) {
|
|
BIO_printf(trc_out, "dec %lu\n", (unsigned long)rr[0].length);
|
|
BIO_dump_indent(trc_out, rr[0].data, rr[0].length, 4);
|
|
} OSSL_TRACE_END(TLS);
|
|
|
|
/* r->length is now the compressed data plus mac */
|
|
if (rl->enc_ctx != NULL
|
|
&& !rl->use_etm
|
|
&& EVP_MD_CTX_get0_md(rl->md_ctx) != NULL) {
|
|
/* rl->md_ctx != NULL => mac_size != -1 */
|
|
|
|
for (j = 0; j < num_recs; j++) {
|
|
SSL_MAC_BUF *thismb = &macbufs[j];
|
|
|
|
thisrr = &rr[j];
|
|
|
|
i = rl->funcs->mac(rl, thisrr, md, 0 /* not send */);
|
|
if (i == 0 || thismb == NULL || thismb->mac == NULL
|
|
|| CRYPTO_memcmp(md, thismb->mac, (size_t)mac_size) != 0)
|
|
enc_err = 0;
|
|
if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size)
|
|
enc_err = 0;
|
|
}
|
|
}
|
|
|
|
if (enc_err == 0) {
|
|
if (rl->alert != SSL_AD_NO_ALERT) {
|
|
/* We already called RLAYERfatal() */
|
|
goto end;
|
|
}
|
|
/*
|
|
* A separate 'decryption_failed' alert was introduced with TLS 1.0,
|
|
* SSL 3.0 only has 'bad_record_mac'. But unless a decryption
|
|
* failure is directly visible from the ciphertext anyway, we should
|
|
* not reveal which kind of error occurred -- this might become
|
|
* visible to an attacker (e.g. via a logfile)
|
|
*/
|
|
RLAYERfatal(rl, SSL_AD_BAD_RECORD_MAC,
|
|
SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
|
|
goto end;
|
|
}
|
|
|
|
for (j = 0; j < num_recs; j++) {
|
|
thisrr = &rr[j];
|
|
|
|
if (!rl->funcs->post_process_record(rl, thisrr)) {
|
|
/* RLAYERfatal already called */
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* Check if the received packet overflows the current
|
|
* Max Fragment Length setting.
|
|
* Note: rl->max_frag_len > 0 and KTLS are mutually exclusive.
|
|
*/
|
|
if (rl->max_frag_len > 0 && thisrr->length > rl->max_frag_len) {
|
|
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW, SSL_R_DATA_LENGTH_TOO_LONG);
|
|
goto end;
|
|
}
|
|
|
|
thisrr->off = 0;
|
|
/*-
|
|
* So at this point the following is true
|
|
* thisrr->type is the type of record
|
|
* thisrr->length == number of bytes in record
|
|
* thisrr->off == offset to first valid byte
|
|
* thisrr->data == where to take bytes from, increment after use :-).
|
|
*/
|
|
|
|
/* just read a 0 length packet */
|
|
if (thisrr->length == 0) {
|
|
if (++(rl->empty_record_count) > MAX_EMPTY_RECORDS) {
|
|
RLAYERfatal(rl, SSL_AD_UNEXPECTED_MESSAGE,
|
|
SSL_R_RECORD_TOO_SMALL);
|
|
goto end;
|
|
}
|
|
} else {
|
|
rl->empty_record_count = 0;
|
|
}
|
|
}
|
|
|
|
if (rl->level == OSSL_RECORD_PROTECTION_LEVEL_EARLY) {
|
|
thisrr = &rr[0];
|
|
if (thisrr->type == SSL3_RT_APPLICATION_DATA
|
|
&& !rlayer_early_data_count_ok(rl, thisrr->length, 0, 0)) {
|
|
/* RLAYERfatal already called */
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
rl->num_recs = num_recs;
|
|
rl->curr_rec = 0;
|
|
rl->num_released = 0;
|
|
ret = OSSL_RECORD_RETURN_SUCCESS;
|
|
end:
|
|
if (macbufs != NULL) {
|
|
for (j = 0; j < num_recs; j++) {
|
|
if (macbufs[j].alloced)
|
|
OPENSSL_free(macbufs[j].mac);
|
|
}
|
|
OPENSSL_free(macbufs);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Shared by ssl3_meth and tls1_meth */
|
|
int tls_default_validate_record_header(OSSL_RECORD_LAYER *rl, SSL3_RECORD *rec)
|
|
{
|
|
size_t len = SSL3_RT_MAX_ENCRYPTED_LENGTH;
|
|
|
|
if (rec->rec_version != rl->version) {
|
|
RLAYERfatal(rl, SSL_AD_PROTOCOL_VERSION, SSL_R_WRONG_VERSION_NUMBER);
|
|
return 0;
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_COMP
|
|
/*
|
|
* If OPENSSL_NO_COMP is defined then SSL3_RT_MAX_ENCRYPTED_LENGTH
|
|
* does not include the compression overhead anyway.
|
|
*/
|
|
if (rl->expand == NULL)
|
|
len -= SSL3_RT_MAX_COMPRESSED_OVERHEAD;
|
|
#endif
|
|
|
|
if (rec->length > len) {
|
|
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
|
|
SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int tls_do_uncompress(OSSL_RECORD_LAYER *rl, SSL3_RECORD *rec)
|
|
{
|
|
#ifndef OPENSSL_NO_COMP
|
|
int i;
|
|
|
|
if (rec->comp == NULL) {
|
|
rec->comp = (unsigned char *)
|
|
OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH);
|
|
}
|
|
if (rec->comp == NULL)
|
|
return 0;
|
|
|
|
i = COMP_expand_block(rl->expand, rec->comp, SSL3_RT_MAX_PLAIN_LENGTH,
|
|
rec->data, (int)rec->length);
|
|
if (i < 0)
|
|
return 0;
|
|
else
|
|
rec->length = i;
|
|
rec->data = rec->comp;
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Shared by tlsany_meth, ssl3_meth and tls1_meth */
|
|
int tls_default_post_process_record(OSSL_RECORD_LAYER *rl, SSL3_RECORD *rec)
|
|
{
|
|
if (rl->expand != NULL) {
|
|
if (rec->length > SSL3_RT_MAX_COMPRESSED_LENGTH) {
|
|
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
|
|
SSL_R_COMPRESSED_LENGTH_TOO_LONG);
|
|
return 0;
|
|
}
|
|
if (!tls_do_uncompress(rl, rec)) {
|
|
RLAYERfatal(rl, SSL_AD_DECOMPRESSION_FAILURE,
|
|
SSL_R_BAD_DECOMPRESSION);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (rec->length > SSL3_RT_MAX_PLAIN_LENGTH) {
|
|
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW, SSL_R_DATA_LENGTH_TOO_LONG);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Shared by tls13_meth and ktls_meth */
|
|
int tls13_common_post_process_record(OSSL_RECORD_LAYER *rl, SSL3_RECORD *rec)
|
|
{
|
|
if (rec->type != SSL3_RT_APPLICATION_DATA
|
|
&& rec->type != SSL3_RT_ALERT
|
|
&& rec->type != SSL3_RT_HANDSHAKE) {
|
|
RLAYERfatal(rl, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_BAD_RECORD_TYPE);
|
|
return 0;
|
|
}
|
|
|
|
if (rl->msg_callback != NULL)
|
|
rl->msg_callback(0, rl->version, SSL3_RT_INNER_CONTENT_TYPE, &rec->type,
|
|
1, rl->cbarg);
|
|
|
|
/*
|
|
* TLSv1.3 alert and handshake records are required to be non-zero in
|
|
* length.
|
|
*/
|
|
if ((rec->type == SSL3_RT_HANDSHAKE || rec->type == SSL3_RT_ALERT)
|
|
&& rec->length == 0) {
|
|
RLAYERfatal(rl, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_BAD_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int tls_read_record(OSSL_RECORD_LAYER *rl, void **rechandle, int *rversion,
|
|
int *type, unsigned char **data, size_t *datalen,
|
|
uint16_t *epoch, unsigned char *seq_num)
|
|
{
|
|
SSL3_RECORD *rec;
|
|
|
|
/*
|
|
* tls_get_more_records() can return success without actually reading
|
|
* anything useful (i.e. if empty records are read). We loop here until
|
|
* we have something useful. tls_get_more_records() will eventually fail if
|
|
* too many sequential empty records are read.
|
|
*/
|
|
while (rl->curr_rec >= rl->num_recs) {
|
|
int ret;
|
|
|
|
if (rl->num_released != rl->num_recs) {
|
|
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_RECORDS_NOT_RELEASED);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
|
|
ret = rl->funcs->get_more_records(rl);
|
|
|
|
if (ret != OSSL_RECORD_RETURN_SUCCESS)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We have now got rl->num_recs records buffered in rl->rrec. rl->curr_rec
|
|
* points to the next one to read.
|
|
*/
|
|
rec = &rl->rrec[rl->curr_rec++];
|
|
|
|
*rechandle = rec;
|
|
*rversion = rec->rec_version;
|
|
*type = rec->type;
|
|
*data = rec->data + rec->off;
|
|
*datalen = rec->length;
|
|
if (rl->isdtls) {
|
|
*epoch = rec->epoch;
|
|
memcpy(seq_num, rec->seq_num, sizeof(rec->seq_num));
|
|
}
|
|
|
|
return OSSL_RECORD_RETURN_SUCCESS;
|
|
}
|
|
|
|
int tls_release_record(OSSL_RECORD_LAYER *rl, void *rechandle)
|
|
{
|
|
if (!ossl_assert(rl->num_released < rl->curr_rec)
|
|
|| !ossl_assert(rechandle == &rl->rrec[rl->num_released])) {
|
|
/* Should not happen */
|
|
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_INVALID_RECORD);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
|
|
rl->num_released++;
|
|
|
|
if (rl->curr_rec == rl->num_released
|
|
&& (rl->mode & SSL_MODE_RELEASE_BUFFERS) != 0
|
|
&& SSL3_BUFFER_get_left(&rl->rbuf) == 0)
|
|
tls_release_read_buffer(rl);
|
|
|
|
return OSSL_RECORD_RETURN_SUCCESS;
|
|
}
|
|
|
|
int tls_set_options(OSSL_RECORD_LAYER *rl, const OSSL_PARAM *options)
|
|
{
|
|
const OSSL_PARAM *p;
|
|
|
|
p = OSSL_PARAM_locate_const(options, OSSL_LIBSSL_RECORD_LAYER_PARAM_OPTIONS);
|
|
if (p != NULL && !OSSL_PARAM_get_uint64(p, &rl->options)) {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
|
|
return 0;
|
|
}
|
|
|
|
p = OSSL_PARAM_locate_const(options, OSSL_LIBSSL_RECORD_LAYER_PARAM_MODE);
|
|
if (p != NULL && !OSSL_PARAM_get_uint32(p, &rl->mode)) {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
|
|
return 0;
|
|
}
|
|
|
|
p = OSSL_PARAM_locate_const(options,
|
|
OSSL_LIBSSL_RECORD_LAYER_READ_BUFFER_LEN);
|
|
if (p != NULL && !OSSL_PARAM_get_size_t(p, &rl->rbuf.default_len)) {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
|
|
return 0;
|
|
}
|
|
|
|
if (rl->level == OSSL_RECORD_PROTECTION_LEVEL_APPLICATION) {
|
|
/*
|
|
* We ignore any read_ahead setting prior to the application protection
|
|
* level. Otherwise we may read ahead data in a lower protection level
|
|
* that is destined for a higher protection level. To simplify the logic
|
|
* we don't support that at this stage.
|
|
*/
|
|
p = OSSL_PARAM_locate_const(options,
|
|
OSSL_LIBSSL_RECORD_LAYER_PARAM_READ_AHEAD);
|
|
if (p != NULL && !OSSL_PARAM_get_int(p, &rl->read_ahead)) {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
tls_int_new_record_layer(OSSL_LIB_CTX *libctx, const char *propq, int vers,
|
|
int role, int direction, int level, unsigned char *key,
|
|
size_t keylen, unsigned char *iv, size_t ivlen,
|
|
unsigned char *mackey, size_t mackeylen,
|
|
const EVP_CIPHER *ciph, size_t taglen,
|
|
int mactype,
|
|
const EVP_MD *md, const SSL_COMP *comp, BIO *prev,
|
|
BIO *transport, BIO *next, BIO_ADDR *local,
|
|
BIO_ADDR *peer, const OSSL_PARAM *settings,
|
|
const OSSL_PARAM *options,
|
|
const OSSL_DISPATCH *fns, void *cbarg,
|
|
OSSL_RECORD_LAYER **retrl)
|
|
{
|
|
OSSL_RECORD_LAYER *rl = OPENSSL_zalloc(sizeof(*rl));
|
|
const OSSL_PARAM *p;
|
|
|
|
*retrl = NULL;
|
|
|
|
if (rl == NULL) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
|
|
/* Loop through all the settings since they must all be understood */
|
|
if (settings != NULL) {
|
|
for (p = settings; p->key != NULL; p++) {
|
|
if (strcmp(p->key, OSSL_LIBSSL_RECORD_LAYER_PARAM_USE_ETM) == 0) {
|
|
if (!OSSL_PARAM_get_int(p, &rl->use_etm)) {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
|
|
goto err;
|
|
}
|
|
} else if (strcmp(p->key,
|
|
OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_FRAG_LEN) == 0) {
|
|
if (!OSSL_PARAM_get_uint(p, &rl->max_frag_len)) {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
|
|
goto err;
|
|
}
|
|
} else if (strcmp(p->key,
|
|
OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_EARLY_DATA) == 0) {
|
|
if (!OSSL_PARAM_get_uint32(p, &rl->max_early_data)) {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
|
|
goto err;
|
|
}
|
|
} else if (strcmp(p->key,
|
|
OSSL_LIBSSL_RECORD_LAYER_PARAM_STREAM_MAC) == 0) {
|
|
if (!OSSL_PARAM_get_int(p, &rl->stream_mac)) {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
|
|
goto err;
|
|
}
|
|
} else if (strcmp(p->key,
|
|
OSSL_LIBSSL_RECORD_LAYER_PARAM_TLSTREE) == 0) {
|
|
if (!OSSL_PARAM_get_int(p, &rl->tlstree)) {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
|
|
goto err;
|
|
}
|
|
} else {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_UNKNOWN_MANDATORY_PARAMETER);
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
rl->libctx = libctx;
|
|
rl->propq = propq;
|
|
|
|
rl->version = vers;
|
|
rl->role = role;
|
|
rl->direction = direction;
|
|
rl->level = level;
|
|
|
|
rl->alert = SSL_AD_NO_ALERT;
|
|
|
|
if (level == OSSL_RECORD_PROTECTION_LEVEL_NONE)
|
|
rl->is_first_record = 1;
|
|
|
|
if (!tls_set1_bio(rl, transport))
|
|
goto err;
|
|
|
|
if (prev != NULL && !BIO_up_ref(prev))
|
|
goto err;
|
|
rl->prev = prev;
|
|
|
|
if (next != NULL && !BIO_up_ref(next))
|
|
goto err;
|
|
rl->next = next;
|
|
|
|
rl->cbarg = cbarg;
|
|
if (fns != NULL) {
|
|
for (; fns->function_id != 0; fns++) {
|
|
switch (fns->function_id) {
|
|
case OSSL_FUNC_RLAYER_SKIP_EARLY_DATA:
|
|
rl->skip_early_data = OSSL_FUNC_rlayer_skip_early_data(fns);
|
|
break;
|
|
case OSSL_FUNC_RLAYER_MSG_CALLBACK:
|
|
rl->msg_callback = OSSL_FUNC_rlayer_msg_callback(fns);
|
|
break;
|
|
case OSSL_FUNC_RLAYER_SECURITY:
|
|
rl->security = OSSL_FUNC_rlayer_security(fns);
|
|
break;
|
|
default:
|
|
/* Just ignore anything we don't understand */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!tls_set_options(rl, options)) {
|
|
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
|
|
goto err;
|
|
}
|
|
|
|
*retrl = rl;
|
|
return OSSL_RECORD_RETURN_SUCCESS;
|
|
err:
|
|
tls_int_free(rl);
|
|
return OSSL_RECORD_RETURN_FATAL;
|
|
}
|
|
|
|
static int
|
|
tls_new_record_layer(OSSL_LIB_CTX *libctx, const char *propq, int vers,
|
|
int role, int direction, int level, uint16_t epoch,
|
|
unsigned char *key, size_t keylen, unsigned char *iv,
|
|
size_t ivlen, unsigned char *mackey, size_t mackeylen,
|
|
const EVP_CIPHER *ciph, size_t taglen,
|
|
int mactype,
|
|
const EVP_MD *md, const SSL_COMP *comp, BIO *prev,
|
|
BIO *transport, BIO *next, BIO_ADDR *local, BIO_ADDR *peer,
|
|
const OSSL_PARAM *settings, const OSSL_PARAM *options,
|
|
const OSSL_DISPATCH *fns, void *cbarg,
|
|
OSSL_RECORD_LAYER **retrl)
|
|
{
|
|
int ret;
|
|
|
|
ret = tls_int_new_record_layer(libctx, propq, vers, role, direction, level,
|
|
key, keylen, iv, ivlen, mackey, mackeylen,
|
|
ciph, taglen, mactype, md, comp, prev,
|
|
transport, next, local, peer, settings,
|
|
options, fns, cbarg, retrl);
|
|
|
|
if (ret != OSSL_RECORD_RETURN_SUCCESS)
|
|
return ret;
|
|
|
|
switch (vers) {
|
|
case TLS_ANY_VERSION:
|
|
(*retrl)->funcs = &tls_any_funcs;
|
|
break;
|
|
case TLS1_3_VERSION:
|
|
(*retrl)->funcs = &tls_1_3_funcs;
|
|
break;
|
|
case TLS1_2_VERSION:
|
|
case TLS1_1_VERSION:
|
|
case TLS1_VERSION:
|
|
(*retrl)->funcs = &tls_1_funcs;
|
|
break;
|
|
case SSL3_VERSION:
|
|
(*retrl)->funcs = &ssl_3_0_funcs;
|
|
break;
|
|
default:
|
|
/* Should not happen */
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
|
|
ret = OSSL_RECORD_RETURN_FATAL;
|
|
goto err;
|
|
}
|
|
|
|
ret = (*retrl)->funcs->set_crypto_state(*retrl, level, key, keylen, iv,
|
|
ivlen, mackey, mackeylen, ciph,
|
|
taglen, mactype, md, comp);
|
|
|
|
err:
|
|
if (ret != OSSL_RECORD_RETURN_SUCCESS) {
|
|
OPENSSL_free(*retrl);
|
|
*retrl = NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void tls_int_free(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
BIO_free(rl->prev);
|
|
BIO_free(rl->bio);
|
|
BIO_free(rl->next);
|
|
SSL3_BUFFER_release(&rl->rbuf);
|
|
|
|
EVP_CIPHER_CTX_free(rl->enc_ctx);
|
|
EVP_MD_CTX_free(rl->md_ctx);
|
|
#ifndef OPENSSL_NO_COMP
|
|
COMP_CTX_free(rl->expand);
|
|
#endif
|
|
|
|
if (rl->version == SSL3_VERSION)
|
|
OPENSSL_cleanse(rl->mac_secret, sizeof(rl->mac_secret));
|
|
|
|
SSL3_RECORD_release(rl->rrec, SSL_MAX_PIPELINES);
|
|
|
|
OPENSSL_free(rl);
|
|
}
|
|
|
|
int tls_free(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
SSL3_BUFFER *rbuf;
|
|
size_t left, written;
|
|
int ret = 1;
|
|
|
|
rbuf = &rl->rbuf;
|
|
|
|
left = SSL3_BUFFER_get_left(rbuf);
|
|
if (left > 0) {
|
|
/*
|
|
* This record layer is closing but we still have data left in our
|
|
* buffer. It must be destined for the next epoch - so push it there.
|
|
*/
|
|
ret = BIO_write_ex(rl->next, rbuf->buf + rbuf->offset, left, &written);
|
|
}
|
|
tls_int_free(rl);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int tls_reset(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
memset(rl, 0, sizeof(*rl));
|
|
return 1;
|
|
}
|
|
|
|
int tls_unprocessed_read_pending(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
return SSL3_BUFFER_get_left(&rl->rbuf) != 0;
|
|
}
|
|
|
|
int tls_processed_read_pending(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
return rl->curr_rec < rl->num_recs;
|
|
}
|
|
|
|
size_t tls_app_data_pending(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
size_t i;
|
|
size_t num = 0;
|
|
|
|
for (i = rl->curr_rec; i < rl->num_recs; i++) {
|
|
if (rl->rrec[i].type != SSL3_RT_APPLICATION_DATA)
|
|
return num;
|
|
num += rl->rrec[i].length;
|
|
}
|
|
return num;
|
|
}
|
|
|
|
int tls_write_pending(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
size_t tls_get_max_record_len(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
size_t tls_get_max_records(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int tls_write_records_tmp(OSSL_RECORD_LAYER *rl, OSSL_RECORD_TEMPLATE **templates,
|
|
size_t numtempl, size_t allowance, size_t *sent)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int tls_retry_write_records_tmp(OSSL_RECORD_LAYER *rl, size_t allowance,
|
|
size_t *sent)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int tls_get_alert_code(OSSL_RECORD_LAYER *rl)
|
|
{
|
|
return rl->alert;
|
|
}
|
|
|
|
int tls_set1_bio(OSSL_RECORD_LAYER *rl, BIO *bio)
|
|
{
|
|
if (bio != NULL && !BIO_up_ref(bio))
|
|
return 0;
|
|
BIO_free(rl->bio);
|
|
rl->bio = bio;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Shared by most methods except tlsany_meth */
|
|
int tls_default_set_protocol_version(OSSL_RECORD_LAYER *rl, int version)
|
|
{
|
|
if (rl->version != version)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int tls_set_protocol_version(OSSL_RECORD_LAYER *rl, int version)
|
|
{
|
|
return rl->funcs->set_protocol_version(rl, version);
|
|
}
|
|
|
|
void tls_set_plain_alerts(OSSL_RECORD_LAYER *rl, int allow)
|
|
{
|
|
rl->allow_plain_alerts = allow;
|
|
}
|
|
|
|
void tls_set_first_handshake(OSSL_RECORD_LAYER *rl, int first)
|
|
{
|
|
rl->is_first_handshake = first;
|
|
}
|
|
|
|
void tls_set_max_pipelines(OSSL_RECORD_LAYER *rl, size_t max_pipelines)
|
|
{
|
|
rl->max_pipelines = max_pipelines;
|
|
if (max_pipelines > 1)
|
|
rl->read_ahead = 1;
|
|
}
|
|
|
|
void tls_get_state(OSSL_RECORD_LAYER *rl, const char **shortstr,
|
|
const char **longstr)
|
|
{
|
|
const char *shrt, *lng;
|
|
|
|
switch (rl->rstate) {
|
|
case SSL_ST_READ_HEADER:
|
|
shrt = "RH";
|
|
lng = "read header";
|
|
break;
|
|
case SSL_ST_READ_BODY:
|
|
shrt = "RB";
|
|
lng = "read body";
|
|
break;
|
|
default:
|
|
shrt = lng = "unknown";
|
|
break;
|
|
}
|
|
if (shortstr != NULL)
|
|
*shortstr = shrt;
|
|
if (longstr != NULL)
|
|
*longstr = lng;
|
|
}
|
|
|
|
const OSSL_RECORD_METHOD ossl_tls_record_method = {
|
|
tls_new_record_layer,
|
|
tls_free,
|
|
tls_reset,
|
|
tls_unprocessed_read_pending,
|
|
tls_processed_read_pending,
|
|
tls_app_data_pending,
|
|
tls_write_pending,
|
|
tls_get_max_record_len,
|
|
tls_get_max_records,
|
|
tls_write_records_tmp,
|
|
tls_retry_write_records_tmp,
|
|
tls_read_record,
|
|
tls_release_record,
|
|
tls_get_alert_code,
|
|
tls_set1_bio,
|
|
tls_set_protocol_version,
|
|
tls_set_plain_alerts,
|
|
tls_set_first_handshake,
|
|
tls_set_max_pipelines,
|
|
NULL,
|
|
tls_get_state,
|
|
tls_set_options
|
|
};
|