mirror of
https://github.com/openssl/openssl.git
synced 2024-12-21 06:09:35 +08:00
f844f9eb44
This macro is used to determine if certain pieces of code should become part of the FIPS module or not. The old name was confusing. Fixes #11538 Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org> (Merged from https://github.com/openssl/openssl/pull/11539)
401 lines
13 KiB
C
401 lines
13 KiB
C
/*
|
|
* Copyright 2002-2020 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* Low level APIs are deprecated for public use, but still ok for internal use.
|
|
*/
|
|
#include "internal/deprecated.h"
|
|
|
|
#include <openssl/opensslconf.h> /* To see if OPENSSL_NO_EC is defined */
|
|
#include "testutil.h"
|
|
|
|
#ifndef OPENSSL_NO_EC
|
|
|
|
# include <openssl/evp.h>
|
|
# include <openssl/bn.h>
|
|
# include <openssl/ec.h>
|
|
# include <openssl/rand.h>
|
|
# include "internal/nelem.h"
|
|
# include "ecdsatest.h"
|
|
|
|
/* functions to change the RAND_METHOD */
|
|
static int fbytes(unsigned char *buf, int num);
|
|
|
|
static RAND_METHOD fake_rand;
|
|
static const RAND_METHOD *old_rand;
|
|
static int use_fake = 0;
|
|
static const char *numbers[2];
|
|
static size_t crv_len = 0;
|
|
static EC_builtin_curve *curves = NULL;
|
|
|
|
static int change_rand(void)
|
|
{
|
|
/* save old rand method */
|
|
if (!TEST_ptr(old_rand = RAND_get_rand_method()))
|
|
return 0;
|
|
|
|
fake_rand = *old_rand;
|
|
/* use own random function */
|
|
fake_rand.bytes = fbytes;
|
|
/* set new RAND_METHOD */
|
|
if (!TEST_true(RAND_set_rand_method(&fake_rand)))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int restore_rand(void)
|
|
{
|
|
if (!TEST_true(RAND_set_rand_method(old_rand)))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int fbytes(unsigned char *buf, int num)
|
|
{
|
|
int ret = 0;
|
|
static int fbytes_counter = 0;
|
|
BIGNUM *tmp = NULL;
|
|
|
|
if (use_fake == 0)
|
|
return old_rand->bytes(buf, num);
|
|
|
|
use_fake = 0;
|
|
|
|
if (!TEST_ptr(tmp = BN_new())
|
|
|| !TEST_int_lt(fbytes_counter, OSSL_NELEM(numbers))
|
|
|| !TEST_true(BN_hex2bn(&tmp, numbers[fbytes_counter]))
|
|
/* tmp might need leading zeros so pad it out */
|
|
|| !TEST_int_le(BN_num_bytes(tmp), num)
|
|
|| !TEST_true(BN_bn2binpad(tmp, buf, num)))
|
|
goto err;
|
|
|
|
fbytes_counter = (fbytes_counter + 1) % OSSL_NELEM(numbers);
|
|
ret = 1;
|
|
err:
|
|
BN_free(tmp);
|
|
return ret;
|
|
}
|
|
|
|
/*-
|
|
* This function hijacks the RNG to feed it the chosen ECDSA key and nonce.
|
|
* The ECDSA KATs are from:
|
|
* - the X9.62 draft (4)
|
|
* - NIST CAVP (720)
|
|
*
|
|
* It uses the low-level ECDSA_sign_setup instead of EVP to control the RNG.
|
|
* NB: This is not how applications should use ECDSA; this is only for testing.
|
|
*
|
|
* Tests the library can successfully:
|
|
* - generate public keys that matches those KATs
|
|
* - create ECDSA signatures that match those KATs
|
|
* - accept those signatures as valid
|
|
*/
|
|
static int x9_62_tests(int n)
|
|
{
|
|
int nid, md_nid, ret = 0;
|
|
const char *r_in = NULL, *s_in = NULL, *tbs = NULL;
|
|
unsigned char *pbuf = NULL, *qbuf = NULL, *message = NULL;
|
|
unsigned char digest[EVP_MAX_MD_SIZE];
|
|
unsigned int dgst_len = 0;
|
|
long q_len, msg_len = 0;
|
|
size_t p_len;
|
|
EVP_MD_CTX *mctx = NULL;
|
|
EC_KEY *key = NULL;
|
|
ECDSA_SIG *signature = NULL;
|
|
BIGNUM *r = NULL, *s = NULL;
|
|
BIGNUM *kinv = NULL, *rp = NULL;
|
|
const BIGNUM *sig_r = NULL, *sig_s = NULL;
|
|
|
|
nid = ecdsa_cavs_kats[n].nid;
|
|
md_nid = ecdsa_cavs_kats[n].md_nid;
|
|
r_in = ecdsa_cavs_kats[n].r;
|
|
s_in = ecdsa_cavs_kats[n].s;
|
|
tbs = ecdsa_cavs_kats[n].msg;
|
|
numbers[0] = ecdsa_cavs_kats[n].d;
|
|
numbers[1] = ecdsa_cavs_kats[n].k;
|
|
|
|
TEST_info("ECDSA KATs for curve %s", OBJ_nid2sn(nid));
|
|
|
|
#ifdef FIPS_MODULE
|
|
if (EC_curve_nid2nist(nid) == NULL)
|
|
return TEST_skip("skip non approved curves");
|
|
#endif /* FIPS_MODULE */
|
|
|
|
if (!TEST_ptr(mctx = EVP_MD_CTX_new())
|
|
/* get the message digest */
|
|
|| !TEST_ptr(message = OPENSSL_hexstr2buf(tbs, &msg_len))
|
|
|| !TEST_true(EVP_DigestInit_ex(mctx, EVP_get_digestbynid(md_nid), NULL))
|
|
|| !TEST_true(EVP_DigestUpdate(mctx, message, msg_len))
|
|
|| !TEST_true(EVP_DigestFinal_ex(mctx, digest, &dgst_len))
|
|
/* create the key */
|
|
|| !TEST_ptr(key = EC_KEY_new_by_curve_name(nid))
|
|
/* load KAT variables */
|
|
|| !TEST_ptr(r = BN_new())
|
|
|| !TEST_ptr(s = BN_new())
|
|
|| !TEST_true(BN_hex2bn(&r, r_in))
|
|
|| !TEST_true(BN_hex2bn(&s, s_in))
|
|
/* swap the RNG source */
|
|
|| !TEST_true(change_rand()))
|
|
goto err;
|
|
|
|
/* public key must match KAT */
|
|
use_fake = 1;
|
|
if (!TEST_true(EC_KEY_generate_key(key))
|
|
|| !TEST_true(p_len = EC_KEY_key2buf(key, POINT_CONVERSION_UNCOMPRESSED,
|
|
&pbuf, NULL))
|
|
|| !TEST_ptr(qbuf = OPENSSL_hexstr2buf(ecdsa_cavs_kats[n].Q, &q_len))
|
|
|| !TEST_int_eq(q_len, p_len)
|
|
|| !TEST_mem_eq(qbuf, q_len, pbuf, p_len))
|
|
goto err;
|
|
|
|
/* create the signature via ECDSA_sign_setup to avoid use of ECDSA nonces */
|
|
use_fake = 1;
|
|
if (!TEST_true(ECDSA_sign_setup(key, NULL, &kinv, &rp))
|
|
|| !TEST_ptr(signature = ECDSA_do_sign_ex(digest, dgst_len,
|
|
kinv, rp, key))
|
|
/* verify the signature */
|
|
|| !TEST_int_eq(ECDSA_do_verify(digest, dgst_len, signature, key), 1))
|
|
goto err;
|
|
|
|
/* compare the created signature with the expected signature */
|
|
ECDSA_SIG_get0(signature, &sig_r, &sig_s);
|
|
if (!TEST_BN_eq(sig_r, r)
|
|
|| !TEST_BN_eq(sig_s, s))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
/* restore the RNG source */
|
|
if (!TEST_true(restore_rand()))
|
|
ret = 0;
|
|
|
|
OPENSSL_free(message);
|
|
OPENSSL_free(pbuf);
|
|
OPENSSL_free(qbuf);
|
|
EC_KEY_free(key);
|
|
ECDSA_SIG_free(signature);
|
|
BN_free(r);
|
|
BN_free(s);
|
|
EVP_MD_CTX_free(mctx);
|
|
BN_clear_free(kinv);
|
|
BN_clear_free(rp);
|
|
return ret;
|
|
}
|
|
|
|
/*-
|
|
* Positive and negative ECDSA testing through EVP interface:
|
|
* - EVP_DigestSign (this is the one-shot version)
|
|
* - EVP_DigestVerify
|
|
*
|
|
* Tests the library can successfully:
|
|
* - create a key
|
|
* - create a signature
|
|
* - accept that signature
|
|
* - reject that signature with a different public key
|
|
* - reject that signature if its length is not correct
|
|
* - reject that signature after modifying the message
|
|
* - accept that signature after un-modifying the message
|
|
* - reject that signature after modifying the signature
|
|
* - accept that signature after un-modifying the signature
|
|
*/
|
|
static int set_sm2_id(EVP_MD_CTX *mctx, EVP_PKEY *pkey)
|
|
{
|
|
/* With the SM2 key type, the SM2 ID is mandatory */
|
|
static const char sm2_id[] = { 1, 2, 3, 4, 'l', 'e', 't', 't', 'e', 'r' };
|
|
EVP_PKEY_CTX *pctx;
|
|
|
|
if (!TEST_ptr(pctx = EVP_MD_CTX_pkey_ctx(mctx))
|
|
|| !TEST_int_gt(EVP_PKEY_CTX_set1_id(pctx, sm2_id, sizeof(sm2_id)), 0))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int test_builtin(int n, int as)
|
|
{
|
|
EC_KEY *eckey_neg = NULL, *eckey = NULL;
|
|
unsigned char dirt, offset, tbs[128];
|
|
unsigned char *sig = NULL;
|
|
EVP_PKEY *pkey_neg = NULL, *pkey = NULL;
|
|
EVP_MD_CTX *mctx = NULL;
|
|
size_t sig_len;
|
|
int nid, ret = 0;
|
|
int temp;
|
|
|
|
nid = curves[n].nid;
|
|
|
|
/* skip built-in curves where ord(G) is not prime */
|
|
if (nid == NID_ipsec4 || nid == NID_ipsec3) {
|
|
TEST_info("skipped: ECDSA unsupported for curve %s", OBJ_nid2sn(nid));
|
|
return 1;
|
|
}
|
|
|
|
TEST_info("testing ECDSA for curve %s as %s key type", OBJ_nid2sn(nid),
|
|
as == EVP_PKEY_EC ? "EC" : "SM2");
|
|
|
|
if (!TEST_ptr(mctx = EVP_MD_CTX_new())
|
|
/* get some random message data */
|
|
|| !TEST_true(RAND_bytes(tbs, sizeof(tbs)))
|
|
/* real key */
|
|
|| !TEST_ptr(eckey = EC_KEY_new_by_curve_name(nid))
|
|
|| !TEST_true(EC_KEY_generate_key(eckey))
|
|
|| !TEST_ptr(pkey = EVP_PKEY_new())
|
|
|| !TEST_true(EVP_PKEY_assign_EC_KEY(pkey, eckey))
|
|
/* fake key for negative testing */
|
|
|| !TEST_ptr(eckey_neg = EC_KEY_new_by_curve_name(nid))
|
|
|| !TEST_true(EC_KEY_generate_key(eckey_neg))
|
|
|| !TEST_ptr(pkey_neg = EVP_PKEY_new())
|
|
|| !TEST_true(EVP_PKEY_assign_EC_KEY(pkey_neg, eckey_neg)))
|
|
goto err;
|
|
|
|
temp = ECDSA_size(eckey);
|
|
|
|
/*
|
|
* |as| indicates how we want to treat the key, i.e. what sort of
|
|
* computation we want to do with it. The two choices are the key
|
|
* types EVP_PKEY_EC and EVP_PKEY_SM2. It's perfectly possible to
|
|
* switch back and forth between those two key types, regardless of
|
|
* curve, even though the default is to have EVP_PKEY_SM2 for the
|
|
* SM2 curve and EVP_PKEY_EC for all other curves.
|
|
*/
|
|
if (!TEST_true(EVP_PKEY_set_alias_type(pkey, as))
|
|
|| !TEST_true(EVP_PKEY_set_alias_type(pkey_neg, as)))
|
|
goto err;
|
|
|
|
if (!TEST_int_ge(temp, 0)
|
|
|| !TEST_ptr(sig = OPENSSL_malloc(sig_len = (size_t)temp))
|
|
/* create a signature */
|
|
|| !TEST_true(EVP_DigestSignInit(mctx, NULL, NULL, NULL, pkey))
|
|
|| (as == EVP_PKEY_SM2 && !set_sm2_id(mctx, pkey))
|
|
|| !TEST_true(EVP_DigestSign(mctx, sig, &sig_len, tbs, sizeof(tbs)))
|
|
|| !TEST_int_le(sig_len, ECDSA_size(eckey))
|
|
|| !TEST_true(EVP_MD_CTX_reset(mctx))
|
|
/* negative test, verify with wrong key, 0 return */
|
|
|| !TEST_true(EVP_DigestVerifyInit(mctx, NULL, NULL, NULL, pkey_neg))
|
|
|| (as == EVP_PKEY_SM2 && !set_sm2_id(mctx, pkey_neg))
|
|
|| !TEST_int_eq(EVP_DigestVerify(mctx, sig, sig_len, tbs, sizeof(tbs)), 0)
|
|
|| !TEST_true(EVP_MD_CTX_reset(mctx))
|
|
/* negative test, verify with wrong signature length, -1 return */
|
|
|| !TEST_true(EVP_DigestVerifyInit(mctx, NULL, NULL, NULL, pkey))
|
|
|| (as == EVP_PKEY_SM2 && !set_sm2_id(mctx, pkey))
|
|
|| !TEST_int_eq(EVP_DigestVerify(mctx, sig, sig_len - 1, tbs, sizeof(tbs)), -1)
|
|
|| !TEST_true(EVP_MD_CTX_reset(mctx))
|
|
/* positive test, verify with correct key, 1 return */
|
|
|| !TEST_true(EVP_DigestVerifyInit(mctx, NULL, NULL, NULL, pkey))
|
|
|| (as == EVP_PKEY_SM2 && !set_sm2_id(mctx, pkey))
|
|
|| !TEST_int_eq(EVP_DigestVerify(mctx, sig, sig_len, tbs, sizeof(tbs)), 1)
|
|
|| !TEST_true(EVP_MD_CTX_reset(mctx)))
|
|
goto err;
|
|
|
|
/* muck with the message, test it fails with 0 return */
|
|
tbs[0] ^= 1;
|
|
if (!TEST_true(EVP_DigestVerifyInit(mctx, NULL, NULL, NULL, pkey))
|
|
|| (as == EVP_PKEY_SM2 && !set_sm2_id(mctx, pkey))
|
|
|| !TEST_int_eq(EVP_DigestVerify(mctx, sig, sig_len, tbs, sizeof(tbs)), 0)
|
|
|| !TEST_true(EVP_MD_CTX_reset(mctx)))
|
|
goto err;
|
|
/* un-muck and test it verifies */
|
|
tbs[0] ^= 1;
|
|
if (!TEST_true(EVP_DigestVerifyInit(mctx, NULL, NULL, NULL, pkey))
|
|
|| (as == EVP_PKEY_SM2 && !set_sm2_id(mctx, pkey))
|
|
|| !TEST_int_eq(EVP_DigestVerify(mctx, sig, sig_len, tbs, sizeof(tbs)), 1)
|
|
|| !TEST_true(EVP_MD_CTX_reset(mctx)))
|
|
goto err;
|
|
|
|
/*-
|
|
* Muck with the ECDSA signature. The DER encoding is one of:
|
|
* - 30 LL 02 ..
|
|
* - 30 81 LL 02 ..
|
|
*
|
|
* - Sometimes this mucks with the high level DER sequence wrapper:
|
|
* in that case, DER-parsing of the whole signature should fail.
|
|
*
|
|
* - Sometimes this mucks with the DER-encoding of ECDSA.r:
|
|
* in that case, DER-parsing of ECDSA.r should fail.
|
|
*
|
|
* - Sometimes this mucks with the DER-encoding of ECDSA.s:
|
|
* in that case, DER-parsing of ECDSA.s should fail.
|
|
*
|
|
* - Sometimes this mucks with ECDSA.r:
|
|
* in that case, the signature verification should fail.
|
|
*
|
|
* - Sometimes this mucks with ECDSA.s:
|
|
* in that case, the signature verification should fail.
|
|
*
|
|
* The usual case is changing the integer value of ECDSA.r or ECDSA.s.
|
|
* Because the ratio of DER overhead to signature bytes is small.
|
|
* So most of the time it will be one of the last two cases.
|
|
*
|
|
* In any case, EVP_PKEY_verify should not return 1 for valid.
|
|
*/
|
|
offset = tbs[0] % sig_len;
|
|
dirt = tbs[1] ? tbs[1] : 1;
|
|
sig[offset] ^= dirt;
|
|
if (!TEST_true(EVP_DigestVerifyInit(mctx, NULL, NULL, NULL, pkey))
|
|
|| (as == EVP_PKEY_SM2 && !set_sm2_id(mctx, pkey))
|
|
|| !TEST_int_ne(EVP_DigestVerify(mctx, sig, sig_len, tbs, sizeof(tbs)), 1)
|
|
|| !TEST_true(EVP_MD_CTX_reset(mctx)))
|
|
goto err;
|
|
/* un-muck and test it verifies */
|
|
sig[offset] ^= dirt;
|
|
if (!TEST_true(EVP_DigestVerifyInit(mctx, NULL, NULL, NULL, pkey))
|
|
|| (as == EVP_PKEY_SM2 && !set_sm2_id(mctx, pkey))
|
|
|| !TEST_int_eq(EVP_DigestVerify(mctx, sig, sig_len, tbs, sizeof(tbs)), 1)
|
|
|| !TEST_true(EVP_MD_CTX_reset(mctx)))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
EVP_PKEY_free(pkey);
|
|
EVP_PKEY_free(pkey_neg);
|
|
EVP_MD_CTX_free(mctx);
|
|
OPENSSL_free(sig);
|
|
return ret;
|
|
}
|
|
|
|
static int test_builtin_as_ec(int n)
|
|
{
|
|
return test_builtin(n, EVP_PKEY_EC);
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_SM2
|
|
static int test_builtin_as_sm2(int n)
|
|
{
|
|
return test_builtin(n, EVP_PKEY_SM2);
|
|
}
|
|
# endif
|
|
#endif /* OPENSSL_NO_EC */
|
|
|
|
int setup_tests(void)
|
|
{
|
|
#ifdef OPENSSL_NO_EC
|
|
TEST_note("Elliptic curves are disabled.");
|
|
#else
|
|
/* get a list of all internal curves */
|
|
crv_len = EC_get_builtin_curves(NULL, 0);
|
|
if (!TEST_ptr(curves = OPENSSL_malloc(sizeof(*curves) * crv_len))
|
|
|| !TEST_true(EC_get_builtin_curves(curves, crv_len)))
|
|
return 0;
|
|
ADD_ALL_TESTS(test_builtin_as_ec, crv_len);
|
|
# ifndef OPENSSL_NO_SM2
|
|
ADD_ALL_TESTS(test_builtin_as_sm2, crv_len);
|
|
# endif
|
|
ADD_ALL_TESTS(x9_62_tests, OSSL_NELEM(ecdsa_cavs_kats));
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
void cleanup_tests(void)
|
|
{
|
|
#ifndef OPENSSL_NO_EC
|
|
OPENSSL_free(curves);
|
|
#endif
|
|
}
|