openssl/crypto/rsa/rsa_chk.c
Matt Caswell 518f1ee81d The rsa_validate_keypair_multiprime() function return is not boolean
A -ve return value from this function indicates an error which we should
treat as a failure to validate.

Fixes #18538

Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18651)
2022-06-28 17:05:10 +02:00

267 lines
6.8 KiB
C

/*
* Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* RSA low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <openssl/bn.h>
#include <openssl/err.h>
#include "crypto/rsa.h"
#include "rsa_local.h"
#ifndef FIPS_MODULE
static int rsa_validate_keypair_multiprime(const RSA *key, BN_GENCB *cb)
{
BIGNUM *i, *j, *k, *l, *m;
BN_CTX *ctx;
int ret = 1, ex_primes = 0, idx;
RSA_PRIME_INFO *pinfo;
if (key->p == NULL || key->q == NULL || key->n == NULL
|| key->e == NULL || key->d == NULL) {
ERR_raise(ERR_LIB_RSA, RSA_R_VALUE_MISSING);
return 0;
}
/* multi-prime? */
if (key->version == RSA_ASN1_VERSION_MULTI) {
ex_primes = sk_RSA_PRIME_INFO_num(key->prime_infos);
if (ex_primes <= 0
|| (ex_primes + 2) > ossl_rsa_multip_cap(BN_num_bits(key->n))) {
ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MULTI_PRIME_KEY);
return 0;
}
}
i = BN_new();
j = BN_new();
k = BN_new();
l = BN_new();
m = BN_new();
ctx = BN_CTX_new_ex(key->libctx);
if (i == NULL || j == NULL || k == NULL || l == NULL
|| m == NULL || ctx == NULL) {
ret = -1;
ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
goto err;
}
if (BN_is_one(key->e)) {
ret = 0;
ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);
}
if (!BN_is_odd(key->e)) {
ret = 0;
ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);
}
/* p prime? */
if (BN_check_prime(key->p, ctx, cb) != 1) {
ret = 0;
ERR_raise(ERR_LIB_RSA, RSA_R_P_NOT_PRIME);
}
/* q prime? */
if (BN_check_prime(key->q, ctx, cb) != 1) {
ret = 0;
ERR_raise(ERR_LIB_RSA, RSA_R_Q_NOT_PRIME);
}
/* r_i prime? */
for (idx = 0; idx < ex_primes; idx++) {
pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
if (BN_check_prime(pinfo->r, ctx, cb) != 1) {
ret = 0;
ERR_raise(ERR_LIB_RSA, RSA_R_MP_R_NOT_PRIME);
}
}
/* n = p*q * r_3...r_i? */
if (!BN_mul(i, key->p, key->q, ctx)) {
ret = -1;
goto err;
}
for (idx = 0; idx < ex_primes; idx++) {
pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
if (!BN_mul(i, i, pinfo->r, ctx)) {
ret = -1;
goto err;
}
}
if (BN_cmp(i, key->n) != 0) {
ret = 0;
if (ex_primes)
ERR_raise(ERR_LIB_RSA, RSA_R_N_DOES_NOT_EQUAL_PRODUCT_OF_PRIMES);
else
ERR_raise(ERR_LIB_RSA, RSA_R_N_DOES_NOT_EQUAL_P_Q);
}
/* d*e = 1 mod \lambda(n)? */
if (!BN_sub(i, key->p, BN_value_one())) {
ret = -1;
goto err;
}
if (!BN_sub(j, key->q, BN_value_one())) {
ret = -1;
goto err;
}
/* now compute k = \lambda(n) = LCM(i, j, r_3 - 1...) */
if (!BN_mul(l, i, j, ctx)) {
ret = -1;
goto err;
}
if (!BN_gcd(m, i, j, ctx)) {
ret = -1;
goto err;
}
for (idx = 0; idx < ex_primes; idx++) {
pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
if (!BN_sub(k, pinfo->r, BN_value_one())) {
ret = -1;
goto err;
}
if (!BN_mul(l, l, k, ctx)) {
ret = -1;
goto err;
}
if (!BN_gcd(m, m, k, ctx)) {
ret = -1;
goto err;
}
}
if (!BN_div(k, NULL, l, m, ctx)) { /* remainder is 0 */
ret = -1;
goto err;
}
if (!BN_mod_mul(i, key->d, key->e, k, ctx)) {
ret = -1;
goto err;
}
if (!BN_is_one(i)) {
ret = 0;
ERR_raise(ERR_LIB_RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1);
}
if (key->dmp1 != NULL && key->dmq1 != NULL && key->iqmp != NULL) {
/* dmp1 = d mod (p-1)? */
if (!BN_sub(i, key->p, BN_value_one())) {
ret = -1;
goto err;
}
if (!BN_mod(j, key->d, i, ctx)) {
ret = -1;
goto err;
}
if (BN_cmp(j, key->dmp1) != 0) {
ret = 0;
ERR_raise(ERR_LIB_RSA, RSA_R_DMP1_NOT_CONGRUENT_TO_D);
}
/* dmq1 = d mod (q-1)? */
if (!BN_sub(i, key->q, BN_value_one())) {
ret = -1;
goto err;
}
if (!BN_mod(j, key->d, i, ctx)) {
ret = -1;
goto err;
}
if (BN_cmp(j, key->dmq1) != 0) {
ret = 0;
ERR_raise(ERR_LIB_RSA, RSA_R_DMQ1_NOT_CONGRUENT_TO_D);
}
/* iqmp = q^-1 mod p? */
if (!BN_mod_inverse(i, key->q, key->p, ctx)) {
ret = -1;
goto err;
}
if (BN_cmp(i, key->iqmp) != 0) {
ret = 0;
ERR_raise(ERR_LIB_RSA, RSA_R_IQMP_NOT_INVERSE_OF_Q);
}
}
for (idx = 0; idx < ex_primes; idx++) {
pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
/* d_i = d mod (r_i - 1)? */
if (!BN_sub(i, pinfo->r, BN_value_one())) {
ret = -1;
goto err;
}
if (!BN_mod(j, key->d, i, ctx)) {
ret = -1;
goto err;
}
if (BN_cmp(j, pinfo->d) != 0) {
ret = 0;
ERR_raise(ERR_LIB_RSA, RSA_R_MP_EXPONENT_NOT_CONGRUENT_TO_D);
}
/* t_i = R_i ^ -1 mod r_i ? */
if (!BN_mod_inverse(i, pinfo->pp, pinfo->r, ctx)) {
ret = -1;
goto err;
}
if (BN_cmp(i, pinfo->t) != 0) {
ret = 0;
ERR_raise(ERR_LIB_RSA, RSA_R_MP_COEFFICIENT_NOT_INVERSE_OF_R);
}
}
err:
BN_free(i);
BN_free(j);
BN_free(k);
BN_free(l);
BN_free(m);
BN_CTX_free(ctx);
return ret;
}
#endif /* FIPS_MODULE */
int ossl_rsa_validate_public(const RSA *key)
{
return ossl_rsa_sp800_56b_check_public(key);
}
int ossl_rsa_validate_private(const RSA *key)
{
return ossl_rsa_sp800_56b_check_private(key);
}
int ossl_rsa_validate_pairwise(const RSA *key)
{
#ifdef FIPS_MODULE
return ossl_rsa_sp800_56b_check_keypair(key, NULL, -1, RSA_bits(key));
#else
return rsa_validate_keypair_multiprime(key, NULL) > 0;
#endif
}
int RSA_check_key(const RSA *key)
{
return RSA_check_key_ex(key, NULL);
}
int RSA_check_key_ex(const RSA *key, BN_GENCB *cb)
{
#ifdef FIPS_MODULE
return ossl_rsa_validate_public(key)
&& ossl_rsa_validate_private(key)
&& ossl_rsa_validate_pairwise(key);
#else
return rsa_validate_keypair_multiprime(key, cb);
#endif /* FIPS_MODULE */
}