openssl/ssl/record/methods/tls_common.c
Frederik Wedel-Heinen cfabddfb9f Remove unused function arguments from tls_int_new_record_layer
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/23514)
2024-02-09 14:27:00 +00:00

2160 lines
67 KiB
C

/*
* Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <assert.h>
#include <openssl/bio.h>
#include <openssl/ssl.h>
#include <openssl/err.h>
#include <openssl/core_names.h>
#include <openssl/comp.h>
#include <openssl/ssl.h>
#include "internal/e_os.h"
#include "internal/packet.h"
#include "internal/ssl3_cbc.h"
#include "../../ssl_local.h"
#include "../record_local.h"
#include "recmethod_local.h"
static void tls_int_free(OSSL_RECORD_LAYER *rl);
void ossl_tls_buffer_release(TLS_BUFFER *b)
{
OPENSSL_free(b->buf);
b->buf = NULL;
}
static void TLS_RL_RECORD_release(TLS_RL_RECORD *r, size_t num_recs)
{
size_t i;
for (i = 0; i < num_recs; i++) {
OPENSSL_free(r[i].comp);
r[i].comp = NULL;
}
}
void ossl_tls_rl_record_set_seq_num(TLS_RL_RECORD *r,
const unsigned char *seq_num)
{
memcpy(r->seq_num, seq_num, SEQ_NUM_SIZE);
}
void ossl_rlayer_fatal(OSSL_RECORD_LAYER *rl, int al, int reason,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
ERR_vset_error(ERR_LIB_SSL, reason, fmt, args);
va_end(args);
rl->alert = al;
}
int ossl_set_tls_provider_parameters(OSSL_RECORD_LAYER *rl,
EVP_CIPHER_CTX *ctx,
const EVP_CIPHER *ciph,
const EVP_MD *md)
{
/*
* Provided cipher, the TLS padding/MAC removal is performed provider
* side so we need to tell the ctx about our TLS version and mac size
*/
OSSL_PARAM params[3], *pprm = params;
size_t macsize = 0;
int imacsize = -1;
if ((EVP_CIPHER_get_flags(ciph) & EVP_CIPH_FLAG_AEAD_CIPHER) == 0
&& !rl->use_etm)
imacsize = EVP_MD_get_size(md);
if (imacsize >= 0)
macsize = (size_t)imacsize;
*pprm++ = OSSL_PARAM_construct_int(OSSL_CIPHER_PARAM_TLS_VERSION,
&rl->version);
*pprm++ = OSSL_PARAM_construct_size_t(OSSL_CIPHER_PARAM_TLS_MAC_SIZE,
&macsize);
*pprm = OSSL_PARAM_construct_end();
if (!EVP_CIPHER_CTX_set_params(ctx, params)) {
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
/*
* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
* which ssl3_cbc_digest_record supports.
*/
char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
{
switch (EVP_MD_CTX_get_type(ctx)) {
case NID_md5:
case NID_sha1:
case NID_sha224:
case NID_sha256:
case NID_sha384:
case NID_sha512:
return 1;
default:
return 0;
}
}
#ifndef OPENSSL_NO_COMP
static int tls_allow_compression(OSSL_RECORD_LAYER *rl)
{
if (rl->options & SSL_OP_NO_COMPRESSION)
return 0;
return rl->security == NULL
|| rl->security(rl->cbarg, SSL_SECOP_COMPRESSION, 0, 0, NULL);
}
#endif
static void tls_release_write_buffer_int(OSSL_RECORD_LAYER *rl, size_t start)
{
TLS_BUFFER *wb;
size_t pipes;
pipes = rl->numwpipes;
while (pipes > start) {
wb = &rl->wbuf[pipes - 1];
if (TLS_BUFFER_is_app_buffer(wb))
TLS_BUFFER_set_app_buffer(wb, 0);
else
OPENSSL_free(wb->buf);
wb->buf = NULL;
pipes--;
}
}
int tls_setup_write_buffer(OSSL_RECORD_LAYER *rl, size_t numwpipes,
size_t firstlen, size_t nextlen)
{
unsigned char *p;
size_t align = 0, headerlen;
TLS_BUFFER *wb;
size_t currpipe;
size_t defltlen = 0;
size_t contenttypelen = 0;
if (firstlen == 0 || (numwpipes > 1 && nextlen == 0)) {
if (rl->isdtls)
headerlen = DTLS1_RT_HEADER_LENGTH + 1;
else
headerlen = SSL3_RT_HEADER_LENGTH;
/* TLSv1.3 adds an extra content type byte after payload data */
if (rl->version == TLS1_3_VERSION)
contenttypelen = 1;
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD != 0
align = SSL3_ALIGN_PAYLOAD - 1;
#endif
defltlen = align + headerlen + rl->eivlen + rl->max_frag_len
+ contenttypelen + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD;
#ifndef OPENSSL_NO_COMP
if (tls_allow_compression(rl))
defltlen += SSL3_RT_MAX_COMPRESSED_OVERHEAD;
#endif
/*
* We don't need to add eivlen here since empty fragments only occur
* when we don't have an explicit IV. The contenttype byte will also
* always be 0 in these protocol versions
*/
if ((rl->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) == 0)
defltlen += headerlen + align + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD;
}
wb = rl->wbuf;
for (currpipe = 0; currpipe < numwpipes; currpipe++) {
TLS_BUFFER *thiswb = &wb[currpipe];
size_t len = (currpipe == 0) ? firstlen : nextlen;
if (len == 0)
len = defltlen;
if (thiswb->len != len) {
OPENSSL_free(thiswb->buf);
thiswb->buf = NULL; /* force reallocation */
}
p = thiswb->buf;
if (p == NULL) {
p = OPENSSL_malloc(len);
if (p == NULL) {
if (rl->numwpipes < currpipe)
rl->numwpipes = currpipe;
/*
* We've got a malloc failure, and we're still initialising
* buffers. We assume we're so doomed that we won't even be able
* to send an alert.
*/
RLAYERfatal(rl, SSL_AD_NO_ALERT, ERR_R_CRYPTO_LIB);
return 0;
}
}
memset(thiswb, 0, sizeof(TLS_BUFFER));
thiswb->buf = p;
thiswb->len = len;
}
/* Free any previously allocated buffers that we are no longer using */
tls_release_write_buffer_int(rl, currpipe);
rl->numwpipes = numwpipes;
return 1;
}
static void tls_release_write_buffer(OSSL_RECORD_LAYER *rl)
{
tls_release_write_buffer_int(rl, 0);
rl->numwpipes = 0;
}
int tls_setup_read_buffer(OSSL_RECORD_LAYER *rl)
{
unsigned char *p;
size_t len, align = 0, headerlen;
TLS_BUFFER *b;
b = &rl->rbuf;
if (rl->isdtls)
headerlen = DTLS1_RT_HEADER_LENGTH;
else
headerlen = SSL3_RT_HEADER_LENGTH;
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD != 0
align = (-SSL3_RT_HEADER_LENGTH) & (SSL3_ALIGN_PAYLOAD - 1);
#endif
if (b->buf == NULL) {
len = rl->max_frag_len
+ SSL3_RT_MAX_ENCRYPTED_OVERHEAD + headerlen + align;
#ifndef OPENSSL_NO_COMP
if (tls_allow_compression(rl))
len += SSL3_RT_MAX_COMPRESSED_OVERHEAD;
#endif
/* Ensure our buffer is large enough to support all our pipelines */
if (rl->max_pipelines > 1)
len *= rl->max_pipelines;
if (b->default_len > len)
len = b->default_len;
if ((p = OPENSSL_malloc(len)) == NULL) {
/*
* We've got a malloc failure, and we're still initialising buffers.
* We assume we're so doomed that we won't even be able to send an
* alert.
*/
RLAYERfatal(rl, SSL_AD_NO_ALERT, ERR_R_CRYPTO_LIB);
return 0;
}
b->buf = p;
b->len = len;
}
return 1;
}
static int tls_release_read_buffer(OSSL_RECORD_LAYER *rl)
{
TLS_BUFFER *b;
b = &rl->rbuf;
if ((rl->options & SSL_OP_CLEANSE_PLAINTEXT) != 0)
OPENSSL_cleanse(b->buf, b->len);
OPENSSL_free(b->buf);
b->buf = NULL;
return 1;
}
/*
* Return values are as per SSL_read()
*/
int tls_default_read_n(OSSL_RECORD_LAYER *rl, size_t n, size_t max, int extend,
int clearold, size_t *readbytes)
{
/*
* If extend == 0, obtain new n-byte packet; if extend == 1, increase
* packet by another n bytes. The packet will be in the sub-array of
* rl->rbuf.buf specified by rl->packet and rl->packet_length. (If
* rl->read_ahead is set, 'max' bytes may be stored in rbuf [plus
* rl->packet_length bytes if extend == 1].) if clearold == 1, move the
* packet to the start of the buffer; if clearold == 0 then leave any old
* packets where they were
*/
size_t len, left, align = 0;
unsigned char *pkt;
TLS_BUFFER *rb;
if (n == 0)
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
rb = &rl->rbuf;
left = rb->left;
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD != 0
align = (size_t)rb->buf + SSL3_RT_HEADER_LENGTH;
align = SSL3_ALIGN_PAYLOAD - 1 - ((align - 1) % SSL3_ALIGN_PAYLOAD);
#endif
if (!extend) {
/* start with empty packet ... */
if (left == 0)
rb->offset = align;
rl->packet = rb->buf + rb->offset;
rl->packet_length = 0;
/* ... now we can act as if 'extend' was set */
}
len = rl->packet_length;
pkt = rb->buf + align;
/*
* Move any available bytes to front of buffer: 'len' bytes already
* pointed to by 'packet', 'left' extra ones at the end
*/
if (rl->packet != pkt && clearold == 1) {
memmove(pkt, rl->packet, len + left);
rl->packet = pkt;
rb->offset = len + align;
}
/*
* For DTLS/UDP reads should not span multiple packets because the read
* operation returns the whole packet at once (as long as it fits into
* the buffer).
*/
if (rl->isdtls) {
if (left == 0 && extend) {
/*
* We received a record with a header but no body data. This will
* get dumped.
*/
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
}
if (left > 0 && n > left)
n = left;
}
/* if there is enough in the buffer from a previous read, take some */
if (left >= n) {
rl->packet_length += n;
rb->left = left - n;
rb->offset += n;
*readbytes = n;
return OSSL_RECORD_RETURN_SUCCESS;
}
/* else we need to read more data */
if (n > rb->len - rb->offset) {
/* does not happen */
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return OSSL_RECORD_RETURN_FATAL;
}
/* We always act like read_ahead is set for DTLS */
if (!rl->read_ahead && !rl->isdtls) {
/* ignore max parameter */
max = n;
} else {
if (max < n)
max = n;
if (max > rb->len - rb->offset)
max = rb->len - rb->offset;
}
while (left < n) {
size_t bioread = 0;
int ret;
BIO *bio = rl->prev != NULL ? rl->prev : rl->bio;
/*
* Now we have len+left bytes at the front of rl->rbuf.buf and
* need to read in more until we have len + n (up to len + max if
* possible)
*/
clear_sys_error();
if (bio != NULL) {
ret = BIO_read(bio, pkt + len + left, max - left);
if (ret > 0) {
bioread = ret;
ret = OSSL_RECORD_RETURN_SUCCESS;
} else if (BIO_should_retry(bio)) {
if (rl->prev != NULL) {
/*
* We were reading from the previous epoch. Now there is no
* more data, so swap to the actual transport BIO
*/
BIO_free(rl->prev);
rl->prev = NULL;
continue;
}
ret = OSSL_RECORD_RETURN_RETRY;
} else if (BIO_eof(bio)) {
ret = OSSL_RECORD_RETURN_EOF;
} else {
ret = OSSL_RECORD_RETURN_FATAL;
}
} else {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_READ_BIO_NOT_SET);
ret = OSSL_RECORD_RETURN_FATAL;
}
if (ret <= OSSL_RECORD_RETURN_RETRY) {
rb->left = left;
if ((rl->mode & SSL_MODE_RELEASE_BUFFERS) != 0 && !rl->isdtls)
if (len + left == 0)
tls_release_read_buffer(rl);
return ret;
}
left += bioread;
/*
* reads should *never* span multiple packets for DTLS because the
* underlying transport protocol is message oriented as opposed to
* byte oriented as in the TLS case.
*/
if (rl->isdtls) {
if (n > left)
n = left; /* makes the while condition false */
}
}
/* done reading, now the book-keeping */
rb->offset += n;
rb->left = left - n;
rl->packet_length += n;
*readbytes = n;
return OSSL_RECORD_RETURN_SUCCESS;
}
/*
* Peeks ahead into "read_ahead" data to see if we have a whole record waiting
* for us in the buffer.
*/
static int tls_record_app_data_waiting(OSSL_RECORD_LAYER *rl)
{
TLS_BUFFER *rbuf;
size_t left, len;
unsigned char *p;
rbuf = &rl->rbuf;
p = TLS_BUFFER_get_buf(rbuf);
if (p == NULL)
return 0;
left = TLS_BUFFER_get_left(rbuf);
if (left < SSL3_RT_HEADER_LENGTH)
return 0;
p += TLS_BUFFER_get_offset(rbuf);
/*
* We only check the type and record length, we will sanity check version
* etc later
*/
if (*p != SSL3_RT_APPLICATION_DATA)
return 0;
p += 3;
n2s(p, len);
if (left < SSL3_RT_HEADER_LENGTH + len)
return 0;
return 1;
}
static int rlayer_early_data_count_ok(OSSL_RECORD_LAYER *rl, size_t length,
size_t overhead, int send)
{
uint32_t max_early_data = rl->max_early_data;
if (max_early_data == 0) {
RLAYERfatal(rl, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_TOO_MUCH_EARLY_DATA);
return 0;
}
/* If we are dealing with ciphertext we need to allow for the overhead */
max_early_data += overhead;
if (rl->early_data_count + length > max_early_data) {
RLAYERfatal(rl, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_TOO_MUCH_EARLY_DATA);
return 0;
}
rl->early_data_count += length;
return 1;
}
/*
* MAX_EMPTY_RECORDS defines the number of consecutive, empty records that
* will be processed per call to tls_get_more_records. Without this limit an
* attacker could send empty records at a faster rate than we can process and
* cause tls_get_more_records to loop forever.
*/
#define MAX_EMPTY_RECORDS 32
#define SSL2_RT_HEADER_LENGTH 2
/*-
* Call this to buffer new input records in rl->rrec.
* It will return a OSSL_RECORD_RETURN_* value.
* When it finishes successfully (OSSL_RECORD_RETURN_SUCCESS), |rl->num_recs|
* records have been decoded. For each record 'i':
* rrec[i].type - is the type of record
* rrec[i].data, - data
* rrec[i].length, - number of bytes
* Multiple records will only be returned if the record types are all
* SSL3_RT_APPLICATION_DATA. The number of records returned will always be <=
* |max_pipelines|
*/
int tls_get_more_records(OSSL_RECORD_LAYER *rl)
{
int enc_err, rret;
int i;
size_t more, n;
TLS_RL_RECORD *rr, *thisrr;
TLS_BUFFER *rbuf;
unsigned char *p;
unsigned char md[EVP_MAX_MD_SIZE];
unsigned int version;
size_t mac_size = 0;
int imac_size;
size_t num_recs = 0, max_recs, j;
PACKET pkt, sslv2pkt;
SSL_MAC_BUF *macbufs = NULL;
int ret = OSSL_RECORD_RETURN_FATAL;
rr = rl->rrec;
rbuf = &rl->rbuf;
if (rbuf->buf == NULL) {
if (!tls_setup_read_buffer(rl)) {
/* RLAYERfatal() already called */
return OSSL_RECORD_RETURN_FATAL;
}
}
max_recs = rl->max_pipelines;
if (max_recs == 0)
max_recs = 1;
do {
thisrr = &rr[num_recs];
/* check if we have the header */
if ((rl->rstate != SSL_ST_READ_BODY) ||
(rl->packet_length < SSL3_RT_HEADER_LENGTH)) {
size_t sslv2len;
unsigned int type;
rret = rl->funcs->read_n(rl, SSL3_RT_HEADER_LENGTH,
TLS_BUFFER_get_len(rbuf), 0,
num_recs == 0 ? 1 : 0, &n);
if (rret < OSSL_RECORD_RETURN_SUCCESS)
return rret; /* error or non-blocking */
rl->rstate = SSL_ST_READ_BODY;
p = rl->packet;
if (!PACKET_buf_init(&pkt, p, rl->packet_length)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return OSSL_RECORD_RETURN_FATAL;
}
sslv2pkt = pkt;
if (!PACKET_get_net_2_len(&sslv2pkt, &sslv2len)
|| !PACKET_get_1(&sslv2pkt, &type)) {
RLAYERfatal(rl, SSL_AD_DECODE_ERROR, ERR_R_INTERNAL_ERROR);
return OSSL_RECORD_RETURN_FATAL;
}
/*
* The first record received by the server may be a V2ClientHello.
*/
if (rl->role == OSSL_RECORD_ROLE_SERVER
&& rl->is_first_record
&& (sslv2len & 0x8000) != 0
&& (type == SSL2_MT_CLIENT_HELLO)) {
/*
* SSLv2 style record
*
* |num_recs| here will actually always be 0 because
* |num_recs > 0| only ever occurs when we are processing
* multiple app data records - which we know isn't the case here
* because it is an SSLv2ClientHello. We keep it using
* |num_recs| for the sake of consistency
*/
thisrr->type = SSL3_RT_HANDSHAKE;
thisrr->rec_version = SSL2_VERSION;
thisrr->length = sslv2len & 0x7fff;
if (thisrr->length > TLS_BUFFER_get_len(rbuf)
- SSL2_RT_HEADER_LENGTH) {
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
SSL_R_PACKET_LENGTH_TOO_LONG);
return OSSL_RECORD_RETURN_FATAL;
}
} else {
/* SSLv3+ style record */
/* Pull apart the header into the TLS_RL_RECORD */
if (!PACKET_get_1(&pkt, &type)
|| !PACKET_get_net_2(&pkt, &version)
|| !PACKET_get_net_2_len(&pkt, &thisrr->length)) {
if (rl->msg_callback != NULL)
rl->msg_callback(0, 0, SSL3_RT_HEADER, p, 5, rl->cbarg);
RLAYERfatal(rl, SSL_AD_DECODE_ERROR, ERR_R_INTERNAL_ERROR);
return OSSL_RECORD_RETURN_FATAL;
}
thisrr->type = type;
thisrr->rec_version = version;
/*
* When we call validate_record_header() only records actually
* received in SSLv2 format should have the record version set
* to SSL2_VERSION. This way validate_record_header() can know
* what format the record was in based on the version.
*/
if (thisrr->rec_version == SSL2_VERSION) {
RLAYERfatal(rl, SSL_AD_PROTOCOL_VERSION,
SSL_R_WRONG_VERSION_NUMBER);
return OSSL_RECORD_RETURN_FATAL;
}
if (rl->msg_callback != NULL)
rl->msg_callback(0, version, SSL3_RT_HEADER, p, 5, rl->cbarg);
if (thisrr->length >
TLS_BUFFER_get_len(rbuf) - SSL3_RT_HEADER_LENGTH) {
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
SSL_R_PACKET_LENGTH_TOO_LONG);
return OSSL_RECORD_RETURN_FATAL;
}
}
if (!rl->funcs->validate_record_header(rl, thisrr)) {
/* RLAYERfatal already called */
return OSSL_RECORD_RETURN_FATAL;
}
/* now rl->rstate == SSL_ST_READ_BODY */
}
/*
* rl->rstate == SSL_ST_READ_BODY, get and decode the data. Calculate
* how much more data we need to read for the rest of the record
*/
if (thisrr->rec_version == SSL2_VERSION) {
more = thisrr->length + SSL2_RT_HEADER_LENGTH
- SSL3_RT_HEADER_LENGTH;
} else {
more = thisrr->length;
}
if (more > 0) {
/* now rl->packet_length == SSL3_RT_HEADER_LENGTH */
rret = rl->funcs->read_n(rl, more, more, 1, 0, &n);
if (rret < OSSL_RECORD_RETURN_SUCCESS)
return rret; /* error or non-blocking io */
}
/* set state for later operations */
rl->rstate = SSL_ST_READ_HEADER;
/*
* At this point, rl->packet_length == SSL3_RT_HEADER_LENGTH
* + thisrr->length, or rl->packet_length == SSL2_RT_HEADER_LENGTH
* + thisrr->length and we have that many bytes in rl->packet
*/
if (thisrr->rec_version == SSL2_VERSION)
thisrr->input = &(rl->packet[SSL2_RT_HEADER_LENGTH]);
else
thisrr->input = &(rl->packet[SSL3_RT_HEADER_LENGTH]);
/*
* ok, we can now read from 'rl->packet' data into 'thisrr'.
* thisrr->input points at thisrr->length bytes, which need to be copied
* into thisrr->data by either the decryption or by the decompression.
* When the data is 'copied' into the thisrr->data buffer,
* thisrr->input will be updated to point at the new buffer
*/
/*
* We now have - encrypted [ MAC [ compressed [ plain ] ] ]
* thisrr->length bytes of encrypted compressed stuff.
*/
/* decrypt in place in 'thisrr->input' */
thisrr->data = thisrr->input;
thisrr->orig_len = thisrr->length;
num_recs++;
/* we have pulled in a full packet so zero things */
rl->packet_length = 0;
rl->is_first_record = 0;
} while (num_recs < max_recs
&& thisrr->type == SSL3_RT_APPLICATION_DATA
&& RLAYER_USE_EXPLICIT_IV(rl)
&& rl->enc_ctx != NULL
&& (EVP_CIPHER_get_flags(EVP_CIPHER_CTX_get0_cipher(rl->enc_ctx))
& EVP_CIPH_FLAG_PIPELINE) != 0
&& tls_record_app_data_waiting(rl));
if (num_recs == 1
&& thisrr->type == SSL3_RT_CHANGE_CIPHER_SPEC
/* The following can happen in tlsany_meth after HRR */
&& rl->version == TLS1_3_VERSION
&& rl->is_first_handshake) {
/*
* CCS messages must be exactly 1 byte long, containing the value 0x01
*/
if (thisrr->length != 1 || thisrr->data[0] != 0x01) {
RLAYERfatal(rl, SSL_AD_ILLEGAL_PARAMETER,
SSL_R_INVALID_CCS_MESSAGE);
return OSSL_RECORD_RETURN_FATAL;
}
/*
* CCS messages are ignored in TLSv1.3. We treat it like an empty
* handshake record
*/
thisrr->type = SSL3_RT_HANDSHAKE;
if (++(rl->empty_record_count) > MAX_EMPTY_RECORDS) {
RLAYERfatal(rl, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_UNEXPECTED_CCS_MESSAGE);
return OSSL_RECORD_RETURN_FATAL;
}
rl->num_recs = 0;
rl->curr_rec = 0;
rl->num_released = 0;
return OSSL_RECORD_RETURN_SUCCESS;
}
if (rl->md_ctx != NULL) {
const EVP_MD *tmpmd = EVP_MD_CTX_get0_md(rl->md_ctx);
if (tmpmd != NULL) {
imac_size = EVP_MD_get_size(tmpmd);
if (!ossl_assert(imac_size >= 0 && imac_size <= EVP_MAX_MD_SIZE)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB);
return OSSL_RECORD_RETURN_FATAL;
}
mac_size = (size_t)imac_size;
}
}
/*
* If in encrypt-then-mac mode calculate mac from encrypted record. All
* the details below are public so no timing details can leak.
*/
if (rl->use_etm && rl->md_ctx != NULL) {
unsigned char *mac;
for (j = 0; j < num_recs; j++) {
thisrr = &rr[j];
if (thisrr->length < mac_size) {
RLAYERfatal(rl, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_TOO_SHORT);
return OSSL_RECORD_RETURN_FATAL;
}
thisrr->length -= mac_size;
mac = thisrr->data + thisrr->length;
i = rl->funcs->mac(rl, thisrr, md, 0 /* not send */);
if (i == 0 || CRYPTO_memcmp(md, mac, mac_size) != 0) {
RLAYERfatal(rl, SSL_AD_BAD_RECORD_MAC,
SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
return OSSL_RECORD_RETURN_FATAL;
}
}
/*
* We've handled the mac now - there is no MAC inside the encrypted
* record
*/
mac_size = 0;
}
if (mac_size > 0) {
macbufs = OPENSSL_zalloc(sizeof(*macbufs) * num_recs);
if (macbufs == NULL) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB);
return OSSL_RECORD_RETURN_FATAL;
}
}
ERR_set_mark();
enc_err = rl->funcs->cipher(rl, rr, num_recs, 0, macbufs, mac_size);
/*-
* enc_err is:
* 0: if the record is publicly invalid, or an internal error, or AEAD
* decryption failed, or ETM decryption failed.
* 1: Success or MTE decryption failed (MAC will be randomised)
*/
if (enc_err == 0) {
if (rl->alert != SSL_AD_NO_ALERT) {
/* RLAYERfatal() already got called */
ERR_clear_last_mark();
goto end;
}
if (num_recs == 1
&& rl->skip_early_data != NULL
&& rl->skip_early_data(rl->cbarg)) {
/*
* Valid early_data that we cannot decrypt will fail here. We treat
* it like an empty record.
*/
/*
* Remove any errors from the stack. Decryption failures are normal
* behaviour.
*/
ERR_pop_to_mark();
thisrr = &rr[0];
if (!rlayer_early_data_count_ok(rl, thisrr->length,
EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) {
/* RLAYERfatal() already called */
goto end;
}
thisrr->length = 0;
rl->num_recs = 0;
rl->curr_rec = 0;
rl->num_released = 0;
/* Reset the read sequence */
memset(rl->sequence, 0, sizeof(rl->sequence));
ret = 1;
goto end;
}
ERR_clear_last_mark();
RLAYERfatal(rl, SSL_AD_BAD_RECORD_MAC,
SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
goto end;
} else {
ERR_clear_last_mark();
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "dec %lu\n", (unsigned long)rr[0].length);
BIO_dump_indent(trc_out, rr[0].data, rr[0].length, 4);
} OSSL_TRACE_END(TLS);
/* r->length is now the compressed data plus mac */
if (rl->enc_ctx != NULL
&& !rl->use_etm
&& EVP_MD_CTX_get0_md(rl->md_ctx) != NULL) {
for (j = 0; j < num_recs; j++) {
SSL_MAC_BUF *thismb = &macbufs[j];
thisrr = &rr[j];
i = rl->funcs->mac(rl, thisrr, md, 0 /* not send */);
if (i == 0 || thismb == NULL || thismb->mac == NULL
|| CRYPTO_memcmp(md, thismb->mac, (size_t)mac_size) != 0)
enc_err = 0;
if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size)
enc_err = 0;
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if (enc_err == 0 && mac_size > 0 && thismb != NULL &&
thismb->mac != NULL && (md[0] ^ thismb->mac[0]) != 0xFF) {
enc_err = 1;
}
#endif
}
}
if (enc_err == 0) {
if (rl->alert != SSL_AD_NO_ALERT) {
/* We already called RLAYERfatal() */
goto end;
}
/*
* A separate 'decryption_failed' alert was introduced with TLS 1.0,
* SSL 3.0 only has 'bad_record_mac'. But unless a decryption
* failure is directly visible from the ciphertext anyway, we should
* not reveal which kind of error occurred -- this might become
* visible to an attacker (e.g. via a logfile)
*/
RLAYERfatal(rl, SSL_AD_BAD_RECORD_MAC,
SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
goto end;
}
for (j = 0; j < num_recs; j++) {
thisrr = &rr[j];
if (!rl->funcs->post_process_record(rl, thisrr)) {
/* RLAYERfatal already called */
goto end;
}
/*
* Record overflow checking (e.g. checking if
* thisrr->length > SSL3_RT_MAX_PLAIN_LENGTH) is the responsibility of
* the post_process_record() function above. However we check here if
* the received packet overflows the current Max Fragment Length setting
* if there is one.
* Note: rl->max_frag_len != SSL3_RT_MAX_PLAIN_LENGTH and KTLS are
* mutually exclusive. Also note that with KTLS thisrr->length can
* be > SSL3_RT_MAX_PLAIN_LENGTH (and rl->max_frag_len must be ignored)
*/
if (rl->max_frag_len != SSL3_RT_MAX_PLAIN_LENGTH
&& thisrr->length > rl->max_frag_len) {
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW, SSL_R_DATA_LENGTH_TOO_LONG);
goto end;
}
thisrr->off = 0;
/*-
* So at this point the following is true
* thisrr->type is the type of record
* thisrr->length == number of bytes in record
* thisrr->off == offset to first valid byte
* thisrr->data == where to take bytes from, increment after use :-).
*/
/* just read a 0 length packet */
if (thisrr->length == 0) {
if (++(rl->empty_record_count) > MAX_EMPTY_RECORDS) {
RLAYERfatal(rl, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_RECORD_TOO_SMALL);
goto end;
}
} else {
rl->empty_record_count = 0;
}
}
if (rl->level == OSSL_RECORD_PROTECTION_LEVEL_EARLY) {
thisrr = &rr[0];
if (thisrr->type == SSL3_RT_APPLICATION_DATA
&& !rlayer_early_data_count_ok(rl, thisrr->length, 0, 0)) {
/* RLAYERfatal already called */
goto end;
}
}
rl->num_recs = num_recs;
rl->curr_rec = 0;
rl->num_released = 0;
ret = OSSL_RECORD_RETURN_SUCCESS;
end:
if (macbufs != NULL) {
for (j = 0; j < num_recs; j++) {
if (macbufs[j].alloced)
OPENSSL_free(macbufs[j].mac);
}
OPENSSL_free(macbufs);
}
return ret;
}
/* Shared by ssl3_meth and tls1_meth */
int tls_default_validate_record_header(OSSL_RECORD_LAYER *rl, TLS_RL_RECORD *rec)
{
size_t len = SSL3_RT_MAX_ENCRYPTED_LENGTH;
if (rec->rec_version != rl->version) {
RLAYERfatal(rl, SSL_AD_PROTOCOL_VERSION, SSL_R_WRONG_VERSION_NUMBER);
return 0;
}
#ifndef OPENSSL_NO_COMP
/*
* If OPENSSL_NO_COMP is defined then SSL3_RT_MAX_ENCRYPTED_LENGTH
* does not include the compression overhead anyway.
*/
if (rl->compctx == NULL)
len -= SSL3_RT_MAX_COMPRESSED_OVERHEAD;
#endif
if (rec->length > len) {
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
return 0;
}
return 1;
}
int tls_do_compress(OSSL_RECORD_LAYER *rl, TLS_RL_RECORD *wr)
{
#ifndef OPENSSL_NO_COMP
int i;
i = COMP_compress_block(rl->compctx, wr->data,
(int)(wr->length + SSL3_RT_MAX_COMPRESSED_OVERHEAD),
wr->input, (int)wr->length);
if (i < 0)
return 0;
wr->length = i;
wr->input = wr->data;
return 1;
#else
return 0;
#endif
}
int tls_do_uncompress(OSSL_RECORD_LAYER *rl, TLS_RL_RECORD *rec)
{
#ifndef OPENSSL_NO_COMP
int i;
if (rec->comp == NULL) {
rec->comp = (unsigned char *)
OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH);
}
if (rec->comp == NULL)
return 0;
i = COMP_expand_block(rl->compctx, rec->comp, SSL3_RT_MAX_PLAIN_LENGTH,
rec->data, (int)rec->length);
if (i < 0)
return 0;
else
rec->length = i;
rec->data = rec->comp;
return 1;
#else
return 0;
#endif
}
/* Shared by tlsany_meth, ssl3_meth and tls1_meth */
int tls_default_post_process_record(OSSL_RECORD_LAYER *rl, TLS_RL_RECORD *rec)
{
if (rl->compctx != NULL) {
if (rec->length > SSL3_RT_MAX_COMPRESSED_LENGTH) {
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
SSL_R_COMPRESSED_LENGTH_TOO_LONG);
return 0;
}
if (!tls_do_uncompress(rl, rec)) {
RLAYERfatal(rl, SSL_AD_DECOMPRESSION_FAILURE,
SSL_R_BAD_DECOMPRESSION);
return 0;
}
}
if (rec->length > SSL3_RT_MAX_PLAIN_LENGTH) {
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW, SSL_R_DATA_LENGTH_TOO_LONG);
return 0;
}
return 1;
}
/* Shared by tls13_meth and ktls_meth */
int tls13_common_post_process_record(OSSL_RECORD_LAYER *rl, TLS_RL_RECORD *rec)
{
if (rec->type != SSL3_RT_APPLICATION_DATA
&& rec->type != SSL3_RT_ALERT
&& rec->type != SSL3_RT_HANDSHAKE) {
RLAYERfatal(rl, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_BAD_RECORD_TYPE);
return 0;
}
if (rl->msg_callback != NULL)
rl->msg_callback(0, rl->version, SSL3_RT_INNER_CONTENT_TYPE, &rec->type,
1, rl->cbarg);
/*
* TLSv1.3 alert and handshake records are required to be non-zero in
* length.
*/
if ((rec->type == SSL3_RT_HANDSHAKE || rec->type == SSL3_RT_ALERT)
&& rec->length == 0) {
RLAYERfatal(rl, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_BAD_LENGTH);
return 0;
}
return 1;
}
int tls_read_record(OSSL_RECORD_LAYER *rl, void **rechandle, int *rversion,
uint8_t *type, const unsigned char **data, size_t *datalen,
uint16_t *epoch, unsigned char *seq_num)
{
TLS_RL_RECORD *rec;
/*
* tls_get_more_records() can return success without actually reading
* anything useful (i.e. if empty records are read). We loop here until
* we have something useful. tls_get_more_records() will eventually fail if
* too many sequential empty records are read.
*/
while (rl->curr_rec >= rl->num_recs) {
int ret;
if (rl->num_released != rl->num_recs) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_RECORDS_NOT_RELEASED);
return OSSL_RECORD_RETURN_FATAL;
}
ret = rl->funcs->get_more_records(rl);
if (ret != OSSL_RECORD_RETURN_SUCCESS)
return ret;
}
/*
* We have now got rl->num_recs records buffered in rl->rrec. rl->curr_rec
* points to the next one to read.
*/
rec = &rl->rrec[rl->curr_rec++];
*rechandle = rec;
*rversion = rec->rec_version;
*type = rec->type;
*data = rec->data + rec->off;
*datalen = rec->length;
if (rl->isdtls) {
*epoch = rec->epoch;
memcpy(seq_num, rec->seq_num, sizeof(rec->seq_num));
}
return OSSL_RECORD_RETURN_SUCCESS;
}
int tls_release_record(OSSL_RECORD_LAYER *rl, void *rechandle, size_t length)
{
TLS_RL_RECORD *rec = &rl->rrec[rl->num_released];
if (!ossl_assert(rl->num_released < rl->curr_rec)
|| !ossl_assert(rechandle == rec)) {
/* Should not happen */
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_INVALID_RECORD);
return OSSL_RECORD_RETURN_FATAL;
}
if (rec->length < length) {
/* Should not happen */
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return OSSL_RECORD_RETURN_FATAL;
}
if ((rl->options & SSL_OP_CLEANSE_PLAINTEXT) != 0)
OPENSSL_cleanse(rec->data + rec->off, length);
rec->off += length;
rec->length -= length;
if (rec->length > 0)
return OSSL_RECORD_RETURN_SUCCESS;
rl->num_released++;
if (rl->curr_rec == rl->num_released
&& (rl->mode & SSL_MODE_RELEASE_BUFFERS) != 0
&& TLS_BUFFER_get_left(&rl->rbuf) == 0)
tls_release_read_buffer(rl);
return OSSL_RECORD_RETURN_SUCCESS;
}
int tls_set_options(OSSL_RECORD_LAYER *rl, const OSSL_PARAM *options)
{
const OSSL_PARAM *p;
p = OSSL_PARAM_locate_const(options, OSSL_LIBSSL_RECORD_LAYER_PARAM_OPTIONS);
if (p != NULL && !OSSL_PARAM_get_uint64(p, &rl->options)) {
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
return 0;
}
p = OSSL_PARAM_locate_const(options, OSSL_LIBSSL_RECORD_LAYER_PARAM_MODE);
if (p != NULL && !OSSL_PARAM_get_uint32(p, &rl->mode)) {
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
return 0;
}
if (rl->direction == OSSL_RECORD_DIRECTION_READ) {
p = OSSL_PARAM_locate_const(options,
OSSL_LIBSSL_RECORD_LAYER_READ_BUFFER_LEN);
if (p != NULL && !OSSL_PARAM_get_size_t(p, &rl->rbuf.default_len)) {
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
return 0;
}
} else {
p = OSSL_PARAM_locate_const(options,
OSSL_LIBSSL_RECORD_LAYER_PARAM_BLOCK_PADDING);
if (p != NULL && !OSSL_PARAM_get_size_t(p, &rl->block_padding)) {
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
return 0;
}
}
if (rl->level == OSSL_RECORD_PROTECTION_LEVEL_APPLICATION) {
/*
* We ignore any read_ahead setting prior to the application protection
* level. Otherwise we may read ahead data in a lower protection level
* that is destined for a higher protection level. To simplify the logic
* we don't support that at this stage.
*/
p = OSSL_PARAM_locate_const(options,
OSSL_LIBSSL_RECORD_LAYER_PARAM_READ_AHEAD);
if (p != NULL && !OSSL_PARAM_get_int(p, &rl->read_ahead)) {
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
return 0;
}
}
return 1;
}
int
tls_int_new_record_layer(OSSL_LIB_CTX *libctx, const char *propq, int vers,
int role, int direction, int level,
const EVP_CIPHER *ciph, size_t taglen,
const EVP_MD *md, COMP_METHOD *comp, BIO *prev,
BIO *transport, BIO *next, const OSSL_PARAM *settings,
const OSSL_PARAM *options,
const OSSL_DISPATCH *fns, void *cbarg,
OSSL_RECORD_LAYER **retrl)
{
OSSL_RECORD_LAYER *rl = OPENSSL_zalloc(sizeof(*rl));
const OSSL_PARAM *p;
*retrl = NULL;
if (rl == NULL)
return OSSL_RECORD_RETURN_FATAL;
/*
* Default the value for max_frag_len. This may be overridden by the
* settings
*/
rl->max_frag_len = SSL3_RT_MAX_PLAIN_LENGTH;
/* Loop through all the settings since they must all be understood */
if (settings != NULL) {
for (p = settings; p->key != NULL; p++) {
if (strcmp(p->key, OSSL_LIBSSL_RECORD_LAYER_PARAM_USE_ETM) == 0) {
if (!OSSL_PARAM_get_int(p, &rl->use_etm)) {
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
} else if (strcmp(p->key,
OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_FRAG_LEN) == 0) {
if (!OSSL_PARAM_get_uint(p, &rl->max_frag_len)) {
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
} else if (strcmp(p->key,
OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_EARLY_DATA) == 0) {
if (!OSSL_PARAM_get_uint32(p, &rl->max_early_data)) {
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
} else if (strcmp(p->key,
OSSL_LIBSSL_RECORD_LAYER_PARAM_STREAM_MAC) == 0) {
if (!OSSL_PARAM_get_int(p, &rl->stream_mac)) {
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
} else if (strcmp(p->key,
OSSL_LIBSSL_RECORD_LAYER_PARAM_TLSTREE) == 0) {
if (!OSSL_PARAM_get_int(p, &rl->tlstree)) {
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
} else {
ERR_raise(ERR_LIB_SSL, SSL_R_UNKNOWN_MANDATORY_PARAMETER);
goto err;
}
}
}
rl->libctx = libctx;
rl->propq = propq;
rl->version = vers;
rl->role = role;
rl->direction = direction;
rl->level = level;
rl->taglen = taglen;
rl->md = md;
rl->alert = SSL_AD_NO_ALERT;
rl->rstate = SSL_ST_READ_HEADER;
if (level == OSSL_RECORD_PROTECTION_LEVEL_NONE)
rl->is_first_record = 1;
if (!tls_set1_bio(rl, transport))
goto err;
if (prev != NULL && !BIO_up_ref(prev))
goto err;
rl->prev = prev;
if (next != NULL && !BIO_up_ref(next))
goto err;
rl->next = next;
rl->cbarg = cbarg;
if (fns != NULL) {
for (; fns->function_id != 0; fns++) {
switch (fns->function_id) {
case OSSL_FUNC_RLAYER_SKIP_EARLY_DATA:
rl->skip_early_data = OSSL_FUNC_rlayer_skip_early_data(fns);
break;
case OSSL_FUNC_RLAYER_MSG_CALLBACK:
rl->msg_callback = OSSL_FUNC_rlayer_msg_callback(fns);
break;
case OSSL_FUNC_RLAYER_SECURITY:
rl->security = OSSL_FUNC_rlayer_security(fns);
break;
case OSSL_FUNC_RLAYER_PADDING:
rl->padding = OSSL_FUNC_rlayer_padding(fns);
default:
/* Just ignore anything we don't understand */
break;
}
}
}
if (!tls_set_options(rl, options)) {
ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_GET_PARAMETER);
goto err;
}
if ((rl->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) == 0
&& rl->version <= TLS1_VERSION
&& !EVP_CIPHER_is_a(ciph, "NULL")
&& !EVP_CIPHER_is_a(ciph, "RC4")) {
/*
* Enable vulnerability countermeasure for CBC ciphers with known-IV
* problem (http://www.openssl.org/~bodo/tls-cbc.txt)
*/
rl->need_empty_fragments = 1;
}
*retrl = rl;
return OSSL_RECORD_RETURN_SUCCESS;
err:
tls_int_free(rl);
return OSSL_RECORD_RETURN_FATAL;
}
static int
tls_new_record_layer(OSSL_LIB_CTX *libctx, const char *propq, int vers,
int role, int direction, int level, uint16_t epoch,
unsigned char *secret, size_t secretlen,
unsigned char *key, size_t keylen, unsigned char *iv,
size_t ivlen, unsigned char *mackey, size_t mackeylen,
const EVP_CIPHER *ciph, size_t taglen,
int mactype,
const EVP_MD *md, COMP_METHOD *comp,
const EVP_MD *kdfdigest, BIO *prev, BIO *transport,
BIO *next, BIO_ADDR *local, BIO_ADDR *peer,
const OSSL_PARAM *settings, const OSSL_PARAM *options,
const OSSL_DISPATCH *fns, void *cbarg, void *rlarg,
OSSL_RECORD_LAYER **retrl)
{
int ret;
ret = tls_int_new_record_layer(libctx, propq, vers, role, direction, level,
ciph, taglen, md, comp, prev,
transport, next, settings,
options, fns, cbarg, retrl);
if (ret != OSSL_RECORD_RETURN_SUCCESS)
return ret;
switch (vers) {
case TLS_ANY_VERSION:
(*retrl)->funcs = &tls_any_funcs;
break;
case TLS1_3_VERSION:
(*retrl)->funcs = &tls_1_3_funcs;
break;
case TLS1_2_VERSION:
case TLS1_1_VERSION:
case TLS1_VERSION:
(*retrl)->funcs = &tls_1_funcs;
break;
case SSL3_VERSION:
(*retrl)->funcs = &ssl_3_0_funcs;
break;
default:
/* Should not happen */
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
ret = OSSL_RECORD_RETURN_FATAL;
goto err;
}
ret = (*retrl)->funcs->set_crypto_state(*retrl, level, key, keylen, iv,
ivlen, mackey, mackeylen, ciph,
taglen, mactype, md, comp);
err:
if (ret != OSSL_RECORD_RETURN_SUCCESS) {
tls_int_free(*retrl);
*retrl = NULL;
}
return ret;
}
static void tls_int_free(OSSL_RECORD_LAYER *rl)
{
BIO_free(rl->prev);
BIO_free(rl->bio);
BIO_free(rl->next);
ossl_tls_buffer_release(&rl->rbuf);
tls_release_write_buffer(rl);
EVP_CIPHER_CTX_free(rl->enc_ctx);
EVP_MD_CTX_free(rl->md_ctx);
#ifndef OPENSSL_NO_COMP
COMP_CTX_free(rl->compctx);
#endif
if (rl->version == SSL3_VERSION)
OPENSSL_cleanse(rl->mac_secret, sizeof(rl->mac_secret));
TLS_RL_RECORD_release(rl->rrec, SSL_MAX_PIPELINES);
OPENSSL_free(rl);
}
int tls_free(OSSL_RECORD_LAYER *rl)
{
TLS_BUFFER *rbuf;
size_t left, written;
int ret = 1;
if (rl == NULL)
return 1;
rbuf = &rl->rbuf;
left = TLS_BUFFER_get_left(rbuf);
if (left > 0) {
/*
* This record layer is closing but we still have data left in our
* buffer. It must be destined for the next epoch - so push it there.
*/
ret = BIO_write_ex(rl->next, rbuf->buf + rbuf->offset, left, &written);
}
tls_int_free(rl);
return ret;
}
int tls_unprocessed_read_pending(OSSL_RECORD_LAYER *rl)
{
return TLS_BUFFER_get_left(&rl->rbuf) != 0;
}
int tls_processed_read_pending(OSSL_RECORD_LAYER *rl)
{
return rl->curr_rec < rl->num_recs;
}
size_t tls_app_data_pending(OSSL_RECORD_LAYER *rl)
{
size_t i;
size_t num = 0;
for (i = rl->curr_rec; i < rl->num_recs; i++) {
if (rl->rrec[i].type != SSL3_RT_APPLICATION_DATA)
return num;
num += rl->rrec[i].length;
}
return num;
}
size_t tls_get_max_records_default(OSSL_RECORD_LAYER *rl, uint8_t type,
size_t len,
size_t maxfrag, size_t *preffrag)
{
/*
* If we have a pipeline capable cipher, and we have been configured to use
* it, then return the preferred number of pipelines.
*/
if (rl->max_pipelines > 0
&& rl->enc_ctx != NULL
&& (EVP_CIPHER_get_flags(EVP_CIPHER_CTX_get0_cipher(rl->enc_ctx))
& EVP_CIPH_FLAG_PIPELINE) != 0
&& RLAYER_USE_EXPLICIT_IV(rl)) {
size_t pipes;
if (len == 0)
return 1;
pipes = ((len - 1) / *preffrag) + 1;
return (pipes < rl->max_pipelines) ? pipes : rl->max_pipelines;
}
return 1;
}
size_t tls_get_max_records(OSSL_RECORD_LAYER *rl, uint8_t type, size_t len,
size_t maxfrag, size_t *preffrag)
{
return rl->funcs->get_max_records(rl, type, len, maxfrag, preffrag);
}
int tls_allocate_write_buffers_default(OSSL_RECORD_LAYER *rl,
OSSL_RECORD_TEMPLATE *templates,
size_t numtempl,
size_t *prefix)
{
if (!tls_setup_write_buffer(rl, numtempl, 0, 0)) {
/* RLAYERfatal() already called */
return 0;
}
return 1;
}
int tls_initialise_write_packets_default(OSSL_RECORD_LAYER *rl,
OSSL_RECORD_TEMPLATE *templates,
size_t numtempl,
OSSL_RECORD_TEMPLATE *prefixtempl,
WPACKET *pkt,
TLS_BUFFER *bufs,
size_t *wpinited)
{
WPACKET *thispkt;
size_t j, align;
TLS_BUFFER *wb;
for (j = 0; j < numtempl; j++) {
thispkt = &pkt[j];
wb = &bufs[j];
wb->type = templates[j].type;
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD != 0
align = (size_t)TLS_BUFFER_get_buf(wb);
align += rl->isdtls ? DTLS1_RT_HEADER_LENGTH : SSL3_RT_HEADER_LENGTH;
align = SSL3_ALIGN_PAYLOAD - 1
- ((align - 1) % SSL3_ALIGN_PAYLOAD);
#endif
TLS_BUFFER_set_offset(wb, align);
if (!WPACKET_init_static_len(thispkt, TLS_BUFFER_get_buf(wb),
TLS_BUFFER_get_len(wb), 0)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
(*wpinited)++;
if (!WPACKET_allocate_bytes(thispkt, align, NULL)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
}
return 1;
}
int tls_prepare_record_header_default(OSSL_RECORD_LAYER *rl,
WPACKET *thispkt,
OSSL_RECORD_TEMPLATE *templ,
uint8_t rectype,
unsigned char **recdata)
{
size_t maxcomplen;
*recdata = NULL;
maxcomplen = templ->buflen;
if (rl->compctx != NULL)
maxcomplen += SSL3_RT_MAX_COMPRESSED_OVERHEAD;
if (!WPACKET_put_bytes_u8(thispkt, rectype)
|| !WPACKET_put_bytes_u16(thispkt, templ->version)
|| !WPACKET_start_sub_packet_u16(thispkt)
|| (rl->eivlen > 0
&& !WPACKET_allocate_bytes(thispkt, rl->eivlen, NULL))
|| (maxcomplen > 0
&& !WPACKET_reserve_bytes(thispkt, maxcomplen,
recdata))) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
int tls_prepare_for_encryption_default(OSSL_RECORD_LAYER *rl,
size_t mac_size,
WPACKET *thispkt,
TLS_RL_RECORD *thiswr)
{
size_t len;
unsigned char *recordstart;
/*
* we should still have the output to thiswr->data and the input from
* wr->input. Length should be thiswr->length. thiswr->data still points
* in the wb->buf
*/
if (!rl->use_etm && mac_size != 0) {
unsigned char *mac;
if (!WPACKET_allocate_bytes(thispkt, mac_size, &mac)
|| !rl->funcs->mac(rl, thiswr, mac, 1)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
}
/*
* Reserve some bytes for any growth that may occur during encryption. If
* we are adding the MAC independently of the cipher algorithm, then the
* max encrypted overhead does not need to include an allocation for that
* MAC
*/
if (!WPACKET_reserve_bytes(thispkt, SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD
- mac_size, NULL)
/*
* We also need next the amount of bytes written to this
* sub-packet
*/
|| !WPACKET_get_length(thispkt, &len)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
/* Get a pointer to the start of this record excluding header */
recordstart = WPACKET_get_curr(thispkt) - len;
TLS_RL_RECORD_set_data(thiswr, recordstart);
TLS_RL_RECORD_reset_input(thiswr);
TLS_RL_RECORD_set_length(thiswr, len);
return 1;
}
int tls_post_encryption_processing_default(OSSL_RECORD_LAYER *rl,
size_t mac_size,
OSSL_RECORD_TEMPLATE *thistempl,
WPACKET *thispkt,
TLS_RL_RECORD *thiswr)
{
size_t origlen, len;
size_t headerlen = rl->isdtls ? DTLS1_RT_HEADER_LENGTH
: SSL3_RT_HEADER_LENGTH;
/* Allocate bytes for the encryption overhead */
if (!WPACKET_get_length(thispkt, &origlen)
/* Check we allowed enough room for the encryption growth */
|| !ossl_assert(origlen + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD
- mac_size >= thiswr->length)
/* Encryption should never shrink the data! */
|| origlen > thiswr->length
|| (thiswr->length > origlen
&& !WPACKET_allocate_bytes(thispkt,
thiswr->length - origlen,
NULL))) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
if (rl->use_etm && mac_size != 0) {
unsigned char *mac;
if (!WPACKET_allocate_bytes(thispkt, mac_size, &mac)
|| !rl->funcs->mac(rl, thiswr, mac, 1)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
TLS_RL_RECORD_add_length(thiswr, mac_size);
}
if (!WPACKET_get_length(thispkt, &len)
|| !WPACKET_close(thispkt)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
if (rl->msg_callback != NULL) {
unsigned char *recordstart;
recordstart = WPACKET_get_curr(thispkt) - len - headerlen;
rl->msg_callback(1, thiswr->rec_version, SSL3_RT_HEADER, recordstart,
headerlen, rl->cbarg);
if (rl->version == TLS1_3_VERSION && rl->enc_ctx != NULL) {
unsigned char ctype = thistempl->type;
rl->msg_callback(1, thiswr->rec_version, SSL3_RT_INNER_CONTENT_TYPE,
&ctype, 1, rl->cbarg);
}
}
if (!WPACKET_finish(thispkt)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
TLS_RL_RECORD_add_length(thiswr, headerlen);
return 1;
}
int tls_write_records_default(OSSL_RECORD_LAYER *rl,
OSSL_RECORD_TEMPLATE *templates,
size_t numtempl)
{
WPACKET pkt[SSL_MAX_PIPELINES + 1];
TLS_RL_RECORD wr[SSL_MAX_PIPELINES + 1];
WPACKET *thispkt;
TLS_RL_RECORD *thiswr;
int mac_size = 0, ret = 0;
size_t wpinited = 0;
size_t j, prefix = 0;
OSSL_RECORD_TEMPLATE prefixtempl;
OSSL_RECORD_TEMPLATE *thistempl;
if (rl->md_ctx != NULL && EVP_MD_CTX_get0_md(rl->md_ctx) != NULL) {
mac_size = EVP_MD_CTX_get_size(rl->md_ctx);
if (mac_size < 0) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
}
if (!rl->funcs->allocate_write_buffers(rl, templates, numtempl, &prefix)) {
/* RLAYERfatal() already called */
goto err;
}
if (!rl->funcs->initialise_write_packets(rl, templates, numtempl,
&prefixtempl, pkt, rl->wbuf,
&wpinited)) {
/* RLAYERfatal() already called */
goto err;
}
/* Clear our TLS_RL_RECORD structures */
memset(wr, 0, sizeof(wr));
for (j = 0; j < numtempl + prefix; j++) {
unsigned char *compressdata = NULL;
uint8_t rectype;
thispkt = &pkt[j];
thiswr = &wr[j];
thistempl = (j < prefix) ? &prefixtempl : &templates[j - prefix];
/*
* Default to the record type as specified in the template unless the
* protocol implementation says differently.
*/
if (rl->funcs->get_record_type != NULL)
rectype = rl->funcs->get_record_type(rl, thistempl);
else
rectype = thistempl->type;
TLS_RL_RECORD_set_type(thiswr, rectype);
TLS_RL_RECORD_set_rec_version(thiswr, thistempl->version);
if (!rl->funcs->prepare_record_header(rl, thispkt, thistempl, rectype,
&compressdata)) {
/* RLAYERfatal() already called */
goto err;
}
/* lets setup the record stuff. */
TLS_RL_RECORD_set_data(thiswr, compressdata);
TLS_RL_RECORD_set_length(thiswr, thistempl->buflen);
TLS_RL_RECORD_set_input(thiswr, (unsigned char *)thistempl->buf);
/*
* we now 'read' from thiswr->input, thiswr->length bytes into
* thiswr->data
*/
/* first we compress */
if (rl->compctx != NULL) {
if (!tls_do_compress(rl, thiswr)
|| !WPACKET_allocate_bytes(thispkt, thiswr->length, NULL)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_COMPRESSION_FAILURE);
goto err;
}
} else if (compressdata != NULL) {
if (!WPACKET_memcpy(thispkt, thiswr->input, thiswr->length)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
TLS_RL_RECORD_reset_input(&wr[j]);
}
if (rl->funcs->add_record_padding != NULL
&& !rl->funcs->add_record_padding(rl, thistempl, thispkt,
thiswr)) {
/* RLAYERfatal() already called */
goto err;
}
if (!rl->funcs->prepare_for_encryption(rl, mac_size, thispkt, thiswr)) {
/* RLAYERfatal() already called */
goto err;
}
}
if (prefix) {
if (rl->funcs->cipher(rl, wr, 1, 1, NULL, mac_size) < 1) {
if (rl->alert == SSL_AD_NO_ALERT) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
}
goto err;
}
}
if (rl->funcs->cipher(rl, wr + prefix, numtempl, 1, NULL, mac_size) < 1) {
if (rl->alert == SSL_AD_NO_ALERT) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
}
goto err;
}
for (j = 0; j < numtempl + prefix; j++) {
thispkt = &pkt[j];
thiswr = &wr[j];
thistempl = (j < prefix) ? &prefixtempl : &templates[j - prefix];
if (!rl->funcs->post_encryption_processing(rl, mac_size, thistempl,
thispkt, thiswr)) {
/* RLAYERfatal() already called */
goto err;
}
/* now let's set up wb */
TLS_BUFFER_set_left(&rl->wbuf[j], TLS_RL_RECORD_get_length(thiswr));
}
ret = 1;
err:
for (j = 0; j < wpinited; j++)
WPACKET_cleanup(&pkt[j]);
return ret;
}
int tls_write_records(OSSL_RECORD_LAYER *rl, OSSL_RECORD_TEMPLATE *templates,
size_t numtempl)
{
/* Check we don't have pending data waiting to write */
if (!ossl_assert(rl->nextwbuf >= rl->numwpipes
|| TLS_BUFFER_get_left(&rl->wbuf[rl->nextwbuf]) == 0)) {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return OSSL_RECORD_RETURN_FATAL;
}
if (!rl->funcs->write_records(rl, templates, numtempl)) {
/* RLAYERfatal already called */
return OSSL_RECORD_RETURN_FATAL;
}
rl->nextwbuf = 0;
/* we now just need to write the buffers */
return tls_retry_write_records(rl);
}
int tls_retry_write_records(OSSL_RECORD_LAYER *rl)
{
int i, ret;
TLS_BUFFER *thiswb;
size_t tmpwrit = 0;
if (rl->nextwbuf >= rl->numwpipes)
return OSSL_RECORD_RETURN_SUCCESS;
for (;;) {
thiswb = &rl->wbuf[rl->nextwbuf];
clear_sys_error();
if (rl->bio != NULL) {
if (rl->funcs->prepare_write_bio != NULL) {
ret = rl->funcs->prepare_write_bio(rl, thiswb->type);
if (ret != OSSL_RECORD_RETURN_SUCCESS)
return ret;
}
i = BIO_write(rl->bio, (char *)
&(TLS_BUFFER_get_buf(thiswb)
[TLS_BUFFER_get_offset(thiswb)]),
(unsigned int)TLS_BUFFER_get_left(thiswb));
if (i >= 0) {
tmpwrit = i;
if (i == 0 && BIO_should_retry(rl->bio))
ret = OSSL_RECORD_RETURN_RETRY;
else
ret = OSSL_RECORD_RETURN_SUCCESS;
} else {
if (BIO_should_retry(rl->bio))
ret = OSSL_RECORD_RETURN_RETRY;
else
ret = OSSL_RECORD_RETURN_FATAL;
}
} else {
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_BIO_NOT_SET);
ret = OSSL_RECORD_RETURN_FATAL;
i = -1;
}
/*
* When an empty fragment is sent on a connection using KTLS,
* it is sent as a write of zero bytes. If this zero byte
* write succeeds, i will be 0 rather than a non-zero value.
* Treat i == 0 as success rather than an error for zero byte
* writes to permit this case.
*/
if (i >= 0 && tmpwrit == TLS_BUFFER_get_left(thiswb)) {
TLS_BUFFER_set_left(thiswb, 0);
TLS_BUFFER_add_offset(thiswb, tmpwrit);
if (++(rl->nextwbuf) < rl->numwpipes)
continue;
if (rl->nextwbuf == rl->numwpipes
&& (rl->mode & SSL_MODE_RELEASE_BUFFERS) != 0)
tls_release_write_buffer(rl);
return OSSL_RECORD_RETURN_SUCCESS;
} else if (i <= 0) {
if (rl->isdtls) {
/*
* For DTLS, just drop it. That's kind of the whole point in
* using a datagram service
*/
TLS_BUFFER_set_left(thiswb, 0);
if (++(rl->nextwbuf) == rl->numwpipes
&& (rl->mode & SSL_MODE_RELEASE_BUFFERS) != 0)
tls_release_write_buffer(rl);
}
return ret;
}
TLS_BUFFER_add_offset(thiswb, tmpwrit);
TLS_BUFFER_sub_left(thiswb, tmpwrit);
}
}
int tls_get_alert_code(OSSL_RECORD_LAYER *rl)
{
return rl->alert;
}
int tls_set1_bio(OSSL_RECORD_LAYER *rl, BIO *bio)
{
if (bio != NULL && !BIO_up_ref(bio))
return 0;
BIO_free(rl->bio);
rl->bio = bio;
return 1;
}
/* Shared by most methods except tlsany_meth */
int tls_default_set_protocol_version(OSSL_RECORD_LAYER *rl, int version)
{
if (rl->version != version)
return 0;
return 1;
}
int tls_set_protocol_version(OSSL_RECORD_LAYER *rl, int version)
{
return rl->funcs->set_protocol_version(rl, version);
}
void tls_set_plain_alerts(OSSL_RECORD_LAYER *rl, int allow)
{
rl->allow_plain_alerts = allow;
}
void tls_set_first_handshake(OSSL_RECORD_LAYER *rl, int first)
{
rl->is_first_handshake = first;
}
void tls_set_max_pipelines(OSSL_RECORD_LAYER *rl, size_t max_pipelines)
{
rl->max_pipelines = max_pipelines;
if (max_pipelines > 1)
rl->read_ahead = 1;
}
void tls_get_state(OSSL_RECORD_LAYER *rl, const char **shortstr,
const char **longstr)
{
const char *shrt, *lng;
switch (rl->rstate) {
case SSL_ST_READ_HEADER:
shrt = "RH";
lng = "read header";
break;
case SSL_ST_READ_BODY:
shrt = "RB";
lng = "read body";
break;
default:
shrt = lng = "unknown";
break;
}
if (shortstr != NULL)
*shortstr = shrt;
if (longstr != NULL)
*longstr = lng;
}
const COMP_METHOD *tls_get_compression(OSSL_RECORD_LAYER *rl)
{
#ifndef OPENSSL_NO_COMP
return (rl->compctx == NULL) ? NULL : COMP_CTX_get_method(rl->compctx);
#else
return NULL;
#endif
}
void tls_set_max_frag_len(OSSL_RECORD_LAYER *rl, size_t max_frag_len)
{
rl->max_frag_len = max_frag_len;
/*
* We don't need to adjust buffer sizes. Write buffer sizes are
* automatically checked anyway. We should only be changing the read buffer
* size during the handshake, so we will create a new buffer when we create
* the new record layer. We can't change the existing buffer because it may
* already have data in it.
*/
}
int tls_increment_sequence_ctr(OSSL_RECORD_LAYER *rl)
{
int i;
/* Increment the sequence counter */
for (i = SEQ_NUM_SIZE; i > 0; i--) {
++(rl->sequence[i - 1]);
if (rl->sequence[i - 1] != 0)
break;
}
if (i == 0) {
/* Sequence has wrapped */
RLAYERfatal(rl, SSL_AD_INTERNAL_ERROR, SSL_R_SEQUENCE_CTR_WRAPPED);
return 0;
}
return 1;
}
int tls_alloc_buffers(OSSL_RECORD_LAYER *rl)
{
if (rl->direction == OSSL_RECORD_DIRECTION_WRITE) {
/* If we have a pending write then buffers are already allocated */
if (rl->nextwbuf < rl->numwpipes)
return 1;
/*
* We assume 1 pipe with default sized buffer. If what we need ends up
* being a different size to that then it will be reallocated on demand.
* If we need more than 1 pipe then that will also be allocated on
* demand
*/
if (!tls_setup_write_buffer(rl, 1, 0, 0))
return 0;
/*
* Normally when we allocate write buffers we immediately write
* something into it. In this case we're not doing that so mark the
* buffer as empty.
*/
TLS_BUFFER_set_left(&rl->wbuf[0], 0);
return 1;
}
/* Read direction */
/* If we have pending data to be read then buffers are already allocated */
if (rl->curr_rec < rl->num_recs || TLS_BUFFER_get_left(&rl->rbuf) != 0)
return 1;
return tls_setup_read_buffer(rl);
}
int tls_free_buffers(OSSL_RECORD_LAYER *rl)
{
if (rl->direction == OSSL_RECORD_DIRECTION_WRITE) {
if (rl->nextwbuf < rl->numwpipes) {
/*
* We may have pending data. If we've just got one empty buffer
* allocated then it has probably just been alloc'd via
* tls_alloc_buffers, and it is fine to free it. Otherwise this
* looks like real pending data and it is an error.
*/
if (rl->nextwbuf != 0
|| rl->numwpipes != 1
|| TLS_BUFFER_get_left(&rl->wbuf[0]) != 0)
return 0;
}
tls_release_write_buffer(rl);
return 1;
}
/* Read direction */
/* If we have pending data to be read then fail */
if (rl->curr_rec < rl->num_recs || TLS_BUFFER_get_left(&rl->rbuf) != 0)
return 0;
return tls_release_read_buffer(rl);
}
const OSSL_RECORD_METHOD ossl_tls_record_method = {
tls_new_record_layer,
tls_free,
tls_unprocessed_read_pending,
tls_processed_read_pending,
tls_app_data_pending,
tls_get_max_records,
tls_write_records,
tls_retry_write_records,
tls_read_record,
tls_release_record,
tls_get_alert_code,
tls_set1_bio,
tls_set_protocol_version,
tls_set_plain_alerts,
tls_set_first_handshake,
tls_set_max_pipelines,
NULL,
tls_get_state,
tls_set_options,
tls_get_compression,
tls_set_max_frag_len,
NULL,
tls_increment_sequence_ctr,
tls_alloc_buffers,
tls_free_buffers
};