openssl/crypto/ec/ecp_nist.c
Nicola Tuveri 3712436071 EC point multiplication: add ladder scaffold
for specialized Montgomery ladder implementations

PR #6009 and #6070 replaced the default EC point multiplication path for
prime and binary curves with a unified Montgomery ladder implementation
with various timing attack defenses (for the common paths when a secret
scalar is feed to the point multiplication).
The newly introduced default implementation directly used
EC_POINT_add/dbl in the main loop.

The scaffolding introduced by this commit allows EC_METHODs to define a
specialized `ladder_step` function to improve performances by taking
advantage of efficient formulas for differential addition-and-doubling
and different coordinate systems.

- `ladder_pre` is executed before the main loop of the ladder: by
  default it copies the input point P into S, and doubles it into R.
  Specialized implementations could, e.g., use this hook to transition
  to different coordinate systems before copying and doubling;
- `ladder_step` is the core of the Montgomery ladder loop: by default it
  computes `S := R+S; R := 2R;`, but specific implementations could,
  e.g., implement a more efficient formula for differential
  addition-and-doubling;
- `ladder_post` is executed after the Montgomery ladder loop: by default
  it's a noop, but specialized implementations could, e.g., use this
  hook to transition back from the coordinate system used for optimizing
  the differential addition-and-doubling or recover the y coordinate of
  the result point.

This commit also renames `ec_mul_consttime` to `ec_scalar_mul_ladder`,
as it better corresponds to what this function does: nothing can be
truly said about the constant-timeness of the overall execution of this
function, given that the underlying operations are not necessarily
constant-time themselves.
What this implementation ensures is that the same fixed sequence of
operations is executed for each scalar multiplication (for a given
EC_GROUP), with no dependency on the value of the input scalar.

Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>

Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
2018-07-16 10:17:40 +01:00

168 lines
4.7 KiB
C

/*
* Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <limits.h>
#include <openssl/err.h>
#include <openssl/obj_mac.h>
#include "ec_lcl.h"
const EC_METHOD *EC_GFp_nist_method(void)
{
static const EC_METHOD ret = {
EC_FLAGS_DEFAULT_OCT,
NID_X9_62_prime_field,
ec_GFp_simple_group_init,
ec_GFp_simple_group_finish,
ec_GFp_simple_group_clear_finish,
ec_GFp_nist_group_copy,
ec_GFp_nist_group_set_curve,
ec_GFp_simple_group_get_curve,
ec_GFp_simple_group_get_degree,
ec_group_simple_order_bits,
ec_GFp_simple_group_check_discriminant,
ec_GFp_simple_point_init,
ec_GFp_simple_point_finish,
ec_GFp_simple_point_clear_finish,
ec_GFp_simple_point_copy,
ec_GFp_simple_point_set_to_infinity,
ec_GFp_simple_set_Jprojective_coordinates_GFp,
ec_GFp_simple_get_Jprojective_coordinates_GFp,
ec_GFp_simple_point_set_affine_coordinates,
ec_GFp_simple_point_get_affine_coordinates,
0, 0, 0,
ec_GFp_simple_add,
ec_GFp_simple_dbl,
ec_GFp_simple_invert,
ec_GFp_simple_is_at_infinity,
ec_GFp_simple_is_on_curve,
ec_GFp_simple_cmp,
ec_GFp_simple_make_affine,
ec_GFp_simple_points_make_affine,
0 /* mul */ ,
0 /* precompute_mult */ ,
0 /* have_precompute_mult */ ,
ec_GFp_nist_field_mul,
ec_GFp_nist_field_sqr,
0 /* field_div */ ,
0 /* field_encode */ ,
0 /* field_decode */ ,
0, /* field_set_to_one */
ec_key_simple_priv2oct,
ec_key_simple_oct2priv,
0, /* set private */
ec_key_simple_generate_key,
ec_key_simple_check_key,
ec_key_simple_generate_public_key,
0, /* keycopy */
0, /* keyfinish */
ecdh_simple_compute_key,
0, /* field_inverse_mod_ord */
ec_GFp_simple_blind_coordinates,
0, /* ladder_pre */
0, /* ladder_step */
0 /* ladder_post */
};
return &ret;
}
int ec_GFp_nist_group_copy(EC_GROUP *dest, const EC_GROUP *src)
{
dest->field_mod_func = src->field_mod_func;
return ec_GFp_simple_group_copy(dest, src);
}
int ec_GFp_nist_group_set_curve(EC_GROUP *group, const BIGNUM *p,
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
int ret = 0;
BN_CTX *new_ctx = NULL;
if (ctx == NULL)
if ((ctx = new_ctx = BN_CTX_new()) == NULL)
return 0;
BN_CTX_start(ctx);
if (BN_ucmp(BN_get0_nist_prime_192(), p) == 0)
group->field_mod_func = BN_nist_mod_192;
else if (BN_ucmp(BN_get0_nist_prime_224(), p) == 0)
group->field_mod_func = BN_nist_mod_224;
else if (BN_ucmp(BN_get0_nist_prime_256(), p) == 0)
group->field_mod_func = BN_nist_mod_256;
else if (BN_ucmp(BN_get0_nist_prime_384(), p) == 0)
group->field_mod_func = BN_nist_mod_384;
else if (BN_ucmp(BN_get0_nist_prime_521(), p) == 0)
group->field_mod_func = BN_nist_mod_521;
else {
ECerr(EC_F_EC_GFP_NIST_GROUP_SET_CURVE, EC_R_NOT_A_NIST_PRIME);
goto err;
}
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_nist_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx)
{
int ret = 0;
BN_CTX *ctx_new = NULL;
if (!group || !r || !a || !b) {
ECerr(EC_F_EC_GFP_NIST_FIELD_MUL, ERR_R_PASSED_NULL_PARAMETER);
goto err;
}
if (!ctx)
if ((ctx_new = ctx = BN_CTX_new()) == NULL)
goto err;
if (!BN_mul(r, a, b, ctx))
goto err;
if (!group->field_mod_func(r, r, group->field, ctx))
goto err;
ret = 1;
err:
BN_CTX_free(ctx_new);
return ret;
}
int ec_GFp_nist_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
BN_CTX *ctx)
{
int ret = 0;
BN_CTX *ctx_new = NULL;
if (!group || !r || !a) {
ECerr(EC_F_EC_GFP_NIST_FIELD_SQR, EC_R_PASSED_NULL_PARAMETER);
goto err;
}
if (!ctx)
if ((ctx_new = ctx = BN_CTX_new()) == NULL)
goto err;
if (!BN_sqr(r, a, ctx))
goto err;
if (!group->field_mod_func(r, r, group->field, ctx))
goto err;
ret = 1;
err:
BN_CTX_free(ctx_new);
return ret;
}