openssl/crypto/rand/drbg_lib.c
Benjamin Kaduk 2139145b72 Add missing RAND_DRBG locking
The drbg's lock must be held across calls to RAND_DRBG_generate()
to prevent simultaneous modification of internal state.

This was observed in practice with simultaneous SSL_new() calls attempting
to seed the (separate) per-SSL RAND_DRBG instances from the global
rand_drbg instance; this eventually led to simultaneous calls to
ctr_BCC_update() attempting to increment drbg->bltmp_pos for their
respective partial final block, violating the invariant that bltmp_pos < 16.
The AES operations performed in ctr_BCC_blocks() makes the race window
quite easy to trigger.  A value of bltmp_pos greater than 16 induces
catastrophic failure in ctr_BCC_final(), with subtraction overflowing
and leading to an attempt to memset() to zero a very large range,
which eventually reaches an unmapped page and segfaults.

Provide the needed locking in get_entropy_from_parent(), as well as
fixing a similar issue in RAND_priv_bytes().  There is also an
unlocked call to RAND_DRBG_generate() in ssl_randbytes(), but the
requisite serialization is already guaranteed by the requirements on
the application's usage of SSL objects, and no further locking is
needed for correct behavior.  In that case, leave a comment noting
the apparent discrepancy and the reason for its safety (at present).

Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4328)
2017-10-18 08:39:20 -05:00

687 lines
20 KiB
C

/*
* Copyright 2011-2017 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include "rand_lcl.h"
#include "internal/thread_once.h"
#include "internal/rand_int.h"
static RAND_DRBG rand_drbg; /* The default global DRBG. */
static RAND_DRBG priv_drbg; /* The global private-key DRBG. */
/* NIST SP 800-90A DRBG recommends the use of a personalization string. */
static const char ossl_pers_string[] = "OpenSSL NIST SP 800-90A DRBG";
/*
* Support framework for NIST SP 800-90A DRBG, AES-CTR mode.
* The RAND_DRBG is OpenSSL's pointer to an instance of the DRBG.
*
* The OpenSSL model is to have new and free functions, and that new
* does all initialization. That is not the NIST model, which has
* instantiation and un-instantiate, and re-use within a new/free
* lifecycle. (No doubt this comes from the desire to support hardware
* DRBG, where allocation of resources on something like an HSM is
* a much bigger deal than just re-setting an allocated resource.)
*/
static CRYPTO_ONCE rand_drbg_init = CRYPTO_ONCE_STATIC_INIT;
static int drbg_setup(RAND_DRBG *drbg, const char *name);
/*
* Set/initialize |drbg| to be of type |nid|, with optional |flags|.
* Return -2 if the type is not supported, 1 on success and -1 on
* failure.
*/
int RAND_DRBG_set(RAND_DRBG *drbg, int nid, unsigned int flags)
{
int ret = 1;
drbg->state = DRBG_UNINITIALISED;
drbg->flags = flags;
drbg->nid = nid;
switch (nid) {
default:
RANDerr(RAND_F_RAND_DRBG_SET, RAND_R_UNSUPPORTED_DRBG_TYPE);
return -2;
case 0:
/* Uninitialized; that's okay. */
return 1;
case NID_aes_128_ctr:
case NID_aes_192_ctr:
case NID_aes_256_ctr:
ret = ctr_init(drbg);
break;
}
if (ret < 0)
RANDerr(RAND_F_RAND_DRBG_SET, RAND_R_ERROR_INITIALISING_DRBG);
return ret;
}
/*
* Allocate memory and initialize a new DRBG. The |parent|, if not
* NULL, will be used to auto-seed this RAND_DRBG as needed.
*/
RAND_DRBG *RAND_DRBG_new(int type, unsigned int flags, RAND_DRBG *parent)
{
RAND_DRBG *drbg = OPENSSL_zalloc(sizeof(*drbg));
if (drbg == NULL) {
RANDerr(RAND_F_RAND_DRBG_NEW, ERR_R_MALLOC_FAILURE);
goto err;
}
drbg->fork_count = rand_fork_count;
drbg->parent = parent;
if (RAND_DRBG_set(drbg, type, flags) < 0)
goto err;
if (parent != NULL) {
if (!RAND_DRBG_set_callbacks(drbg, rand_drbg_get_entropy,
rand_drbg_cleanup_entropy,
NULL, NULL))
goto err;
}
return drbg;
err:
OPENSSL_free(drbg);
return NULL;
}
/*
* Uninstantiate |drbg| and free all memory.
*/
void RAND_DRBG_free(RAND_DRBG *drbg)
{
if (drbg == NULL)
return;
ctr_uninstantiate(drbg);
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_DRBG, drbg, &drbg->ex_data);
OPENSSL_clear_free(drbg, sizeof(*drbg));
}
/*
* Instantiate |drbg|, after it has been initialized. Use |pers| and
* |perslen| as prediction-resistance input.
*
* Requires that drbg->lock is already locked for write, if non-null.
*/
int RAND_DRBG_instantiate(RAND_DRBG *drbg,
const unsigned char *pers, size_t perslen)
{
unsigned char *nonce = NULL, *entropy = NULL;
size_t noncelen = 0, entropylen = 0;
if (perslen > drbg->max_perslen) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE,
RAND_R_PERSONALISATION_STRING_TOO_LONG);
goto end;
}
if (drbg->state != DRBG_UNINITIALISED) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE,
drbg->state == DRBG_ERROR ? RAND_R_IN_ERROR_STATE
: RAND_R_ALREADY_INSTANTIATED);
goto end;
}
drbg->state = DRBG_ERROR;
if (drbg->get_entropy != NULL)
entropylen = drbg->get_entropy(drbg, &entropy, drbg->strength,
drbg->min_entropylen, drbg->max_entropylen);
if (entropylen < drbg->min_entropylen
|| entropylen > drbg->max_entropylen) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_RETRIEVING_ENTROPY);
goto end;
}
if (drbg->max_noncelen > 0 && drbg->get_nonce != NULL) {
noncelen = drbg->get_nonce(drbg, &nonce, drbg->strength / 2,
drbg->min_noncelen, drbg->max_noncelen);
if (noncelen < drbg->min_noncelen || noncelen > drbg->max_noncelen) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE,
RAND_R_ERROR_RETRIEVING_NONCE);
goto end;
}
}
if (!ctr_instantiate(drbg, entropy, entropylen,
nonce, noncelen, pers, perslen)) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_INSTANTIATING_DRBG);
goto end;
}
drbg->state = DRBG_READY;
drbg->reseed_counter = 1;
end:
if (entropy != NULL && drbg->cleanup_entropy != NULL)
drbg->cleanup_entropy(drbg, entropy, entropylen);
if (nonce != NULL && drbg->cleanup_nonce!= NULL )
drbg->cleanup_nonce(drbg, nonce, noncelen);
if (drbg->pool != NULL) {
if (drbg->state == DRBG_READY) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE,
RAND_R_ERROR_ENTROPY_POOL_WAS_IGNORED);
drbg->state = DRBG_ERROR;
}
RAND_POOL_free(drbg->pool);
drbg->pool = NULL;
}
if (drbg->state == DRBG_READY)
return 1;
return 0;
}
/*
* Uninstantiate |drbg|. Must be instantiated before it can be used.
*
* Requires that drbg->lock is already locked for write, if non-null.
*/
int RAND_DRBG_uninstantiate(RAND_DRBG *drbg)
{
int ret = ctr_uninstantiate(drbg);
OPENSSL_cleanse(&drbg->ctr, sizeof(drbg->ctr));
drbg->state = DRBG_UNINITIALISED;
return ret;
}
/*
* Reseed |drbg|, mixing in the specified data
*
* Requires that drbg->lock is already locked for write, if non-null.
*/
int RAND_DRBG_reseed(RAND_DRBG *drbg,
const unsigned char *adin, size_t adinlen)
{
unsigned char *entropy = NULL;
size_t entropylen = 0;
if (drbg->state == DRBG_ERROR) {
RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_IN_ERROR_STATE);
return 0;
}
if (drbg->state == DRBG_UNINITIALISED) {
RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_NOT_INSTANTIATED);
return 0;
}
if (adin == NULL)
adinlen = 0;
else if (adinlen > drbg->max_adinlen) {
RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_ADDITIONAL_INPUT_TOO_LONG);
return 0;
}
drbg->state = DRBG_ERROR;
if (drbg->get_entropy != NULL)
entropylen = drbg->get_entropy(drbg, &entropy, drbg->strength,
drbg->min_entropylen, drbg->max_entropylen);
if (entropylen < drbg->min_entropylen
|| entropylen > drbg->max_entropylen) {
RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_ERROR_RETRIEVING_ENTROPY);
goto end;
}
if (!ctr_reseed(drbg, entropy, entropylen, adin, adinlen))
goto end;
drbg->state = DRBG_READY;
drbg->reseed_counter = 1;
end:
if (entropy != NULL && drbg->cleanup_entropy != NULL)
drbg->cleanup_entropy(drbg, entropy, entropylen);
if (drbg->state == DRBG_READY)
return 1;
return 0;
}
/*
* Restart |drbg|, using the specified entropy or additional input
*
* Tries its best to get the drbg instantiated by all means,
* regardless of its current state.
*
* Optionally, a |buffer| of |len| random bytes can be passed,
* which is assumed to contain at least |entropy| bits of entropy.
*
* If |entropy| > 0, the buffer content is used as entropy input.
*
* If |entropy| == 0, the buffer content is used as additional input
*
* Returns 1 on success, 0 on failure.
*
* This function is used internally only.
*/
int rand_drbg_restart(RAND_DRBG *drbg,
const unsigned char *buffer, size_t len, size_t entropy)
{
int reseeded = 0;
const unsigned char *adin = NULL;
size_t adinlen = 0;
if (drbg->pool != NULL) {
RANDerr(RAND_F_RAND_DRBG_RESTART, ERR_R_INTERNAL_ERROR);
RAND_POOL_free(drbg->pool);
drbg->pool = NULL;
}
if (buffer != NULL) {
if (entropy > 0) {
if (drbg->max_entropylen < len) {
RANDerr(RAND_F_RAND_DRBG_RESTART,
RAND_R_ENTROPY_INPUT_TOO_LONG);
return 0;
}
if (entropy > 8 * len) {
RANDerr(RAND_F_RAND_DRBG_RESTART, RAND_R_ENTROPY_OUT_OF_RANGE);
return 0;
}
/* will be picked up by the rand_drbg_get_entropy() callback */
drbg->pool = RAND_POOL_new(entropy, len, len);
if (drbg->pool == NULL)
return 0;
RAND_POOL_add(drbg->pool, buffer, len, entropy);
} else {
if (drbg->max_adinlen < len) {
RANDerr(RAND_F_RAND_DRBG_RESTART,
RAND_R_ADDITIONAL_INPUT_TOO_LONG);
return 0;
}
adin = buffer;
adinlen = len;
}
}
/* repair error state */
if (drbg->state == DRBG_ERROR)
RAND_DRBG_uninstantiate(drbg);
/* repair uninitialized state */
if (drbg->state == DRBG_UNINITIALISED) {
drbg_setup(drbg, NULL);
/* already reseeded. prevent second reseeding below */
reseeded = (drbg->state == DRBG_READY);
}
/* refresh current state if entropy or additional input has been provided */
if (drbg->state == DRBG_READY) {
if (adin != NULL) {
/*
* mix in additional input without reseeding
*
* Similar to RAND_DRBG_reseed(), but the provided additional
* data |adin| is mixed into the current state without pulling
* entropy from the trusted entropy source using get_entropy().
* This is not a reseeding in the strict sense of NIST SP 800-90A.
*/
ctr_reseed(drbg, adin, adinlen, NULL, 0);
} else if (reseeded == 0) {
/* do a full reseeding if it has not been done yet above */
RAND_DRBG_reseed(drbg, NULL, 0);
}
}
/* check whether a given entropy pool was cleared properly during reseed */
if (drbg->pool != NULL) {
drbg->state = DRBG_ERROR;
RANDerr(RAND_F_RAND_DRBG_RESTART, ERR_R_INTERNAL_ERROR);
RAND_POOL_free(drbg->pool);
drbg->pool = NULL;
return 0;
}
return drbg->state == DRBG_READY;
}
/*
* Generate |outlen| bytes into the buffer at |out|. Reseed if we need
* to or if |prediction_resistance| is set. Additional input can be
* sent in |adin| and |adinlen|.
*
* Requires that drbg->lock is already locked for write, if non-null.
*
* Returns 1 on success, 0 on failure.
*
*/
int RAND_DRBG_generate(RAND_DRBG *drbg, unsigned char *out, size_t outlen,
int prediction_resistance,
const unsigned char *adin, size_t adinlen)
{
int reseed_required = 0;
if (drbg->state != DRBG_READY) {
/* try to recover from previous errors */
rand_drbg_restart(drbg, NULL, 0, 0);
if (drbg->state == DRBG_ERROR) {
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_IN_ERROR_STATE);
return 0;
}
if (drbg->state == DRBG_UNINITIALISED) {
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_NOT_INSTANTIATED);
return 0;
}
}
if (outlen > drbg->max_request) {
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_REQUEST_TOO_LARGE_FOR_DRBG);
return 0;
}
if (adinlen > drbg->max_adinlen) {
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_ADDITIONAL_INPUT_TOO_LONG);
return 0;
}
if (drbg->fork_count != rand_fork_count) {
drbg->fork_count = rand_fork_count;
reseed_required = 1;
}
if (drbg->reseed_counter >= drbg->reseed_interval)
reseed_required = 1;
if (reseed_required || prediction_resistance) {
if (!RAND_DRBG_reseed(drbg, adin, adinlen)) {
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_RESEED_ERROR);
return 0;
}
adin = NULL;
adinlen = 0;
}
if (!ctr_generate(drbg, out, outlen, adin, adinlen)) {
drbg->state = DRBG_ERROR;
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_GENERATE_ERROR);
return 0;
}
drbg->reseed_counter++;
return 1;
}
/*
* Set the RAND_DRBG callbacks for obtaining entropy and nonce.
*
* In the following, the signature and the semantics of the
* get_entropy() and cleanup_entropy() callbacks are explained.
*
* GET_ENTROPY
*
* size_t get_entropy(RAND_DRBG *ctx,
* unsigned char **pout,
* int entropy,
* size_t min_len, size_t max_len);
*
* This is a request to allocate and fill a buffer of size
* |min_len| <= size <= |max_len| (in bytes) which contains
* at least |entropy| bits of randomness. The buffer's address is
* to be returned in |*pout| and the number of collected
* randomness bytes (which may be less than the allocated size
* of the buffer) as return value.
*
* If the callback fails to acquire at least |entropy| bits of
* randomness, it shall return a buffer length of 0.
*
* CLEANUP_ENTROPY
*
* void cleanup_entropy(RAND_DRBG *ctx,
* unsigned char *out, size_t outlen);
*
* A request to clear and free the buffer allocated by get_entropy().
* The values |out| and |outlen| are expected to be the random buffer's
* address and length, as returned by the get_entropy() callback.
*
* GET_NONCE, CLEANUP_NONCE
*
* Signature and semantics of the get_nonce() and cleanup_nonce()
* callbacks are analogous to get_entropy() and cleanup_entropy().
* Currently, the nonce is used only for the known answer tests.
*/
int RAND_DRBG_set_callbacks(RAND_DRBG *drbg,
RAND_DRBG_get_entropy_fn get_entropy,
RAND_DRBG_cleanup_entropy_fn cleanup_entropy,
RAND_DRBG_get_nonce_fn get_nonce,
RAND_DRBG_cleanup_nonce_fn cleanup_nonce)
{
if (drbg->state != DRBG_UNINITIALISED)
return 0;
drbg->get_entropy = get_entropy;
drbg->cleanup_entropy = cleanup_entropy;
drbg->get_nonce = get_nonce;
drbg->cleanup_nonce = cleanup_nonce;
return 1;
}
/*
* Set the reseed interval.
*/
int RAND_DRBG_set_reseed_interval(RAND_DRBG *drbg, int interval)
{
if (interval < 0 || interval > MAX_RESEED)
return 0;
drbg->reseed_interval = interval;
return 1;
}
/*
* Get and set the EXDATA
*/
int RAND_DRBG_set_ex_data(RAND_DRBG *drbg, int idx, void *arg)
{
return CRYPTO_set_ex_data(&drbg->ex_data, idx, arg);
}
void *RAND_DRBG_get_ex_data(const RAND_DRBG *drbg, int idx)
{
return CRYPTO_get_ex_data(&drbg->ex_data, idx);
}
/*
* The following functions provide a RAND_METHOD that works on the
* global DRBG. They lock.
*/
/*
* Initializes the DRBG with default settings.
* For global DRBGs a global lock is created with the given name
* Returns 1 on success, 0 on failure
*/
static int drbg_setup(RAND_DRBG *drbg, const char *name)
{
int ret = 1;
if (name != NULL) {
if (drbg->lock != NULL) {
RANDerr(RAND_F_DRBG_SETUP, ERR_R_INTERNAL_ERROR);
return 0;
}
drbg->lock = CRYPTO_THREAD_glock_new(name);
if (drbg->lock == NULL) {
RANDerr(RAND_F_DRBG_SETUP, RAND_R_FAILED_TO_CREATE_LOCK);
return 0;
}
}
ret &= RAND_DRBG_set(drbg,
RAND_DRBG_NID, RAND_DRBG_FLAG_CTR_USE_DF) == 1;
ret &= RAND_DRBG_set_callbacks(drbg, rand_drbg_get_entropy,
rand_drbg_cleanup_entropy, NULL, NULL) == 1;
/*
* Ignore instantiation error so support just-in-time instantiation.
*
* The state of the drbg will be checked in RAND_DRBG_generate() and
* an automatic recovery is attempted.
*/
RAND_DRBG_instantiate(drbg,
(const unsigned char *) ossl_pers_string,
sizeof(ossl_pers_string) - 1);
return ret;
}
/*
* Initialize the global DRBGs on first use.
* Returns 1 on success, 0 on failure.
*/
DEFINE_RUN_ONCE_STATIC(do_rand_drbg_init)
{
int ret = 1;
ret &= drbg_setup(&rand_drbg, "rand_drbg");
ret &= drbg_setup(&priv_drbg, "priv_drbg");
return ret;
}
/* Cleans up the given global DRBG */
static void drbg_cleanup(RAND_DRBG *drbg)
{
CRYPTO_THREAD_lock_free(drbg->lock);
RAND_DRBG_uninstantiate(drbg);
}
/* Clean up the global DRBGs before exit */
void rand_drbg_cleanup_int(void)
{
drbg_cleanup(&rand_drbg);
drbg_cleanup(&priv_drbg);
}
/* Implements the default OpenSSL RAND_bytes() method */
static int drbg_bytes(unsigned char *out, int count)
{
int ret = 0;
size_t chunk;
RAND_DRBG *drbg = RAND_DRBG_get0_global();
if (drbg == NULL)
return 0;
CRYPTO_THREAD_write_lock(drbg->lock);
if (drbg->state == DRBG_UNINITIALISED)
goto err;
for ( ; count > 0; count -= chunk, out += chunk) {
chunk = count;
if (chunk > drbg->max_request)
chunk = drbg->max_request;
ret = RAND_DRBG_generate(drbg, out, chunk, 0, NULL, 0);
if (!ret)
goto err;
}
ret = 1;
err:
CRYPTO_THREAD_unlock(drbg->lock);
return ret;
}
/* Implements the default OpenSSL RAND_add() method */
static int drbg_add(const void *buf, int num, double randomness)
{
int ret = 0;
RAND_DRBG *drbg = RAND_DRBG_get0_global();
if (drbg == NULL)
return 0;
if (num < 0 || randomness < 0.0)
return 0;
if (randomness > (double)drbg->max_entropylen) {
/*
* The purpose of this check is to bound |randomness| by a
* relatively small value in order to prevent an integer
* overflow when multiplying by 8 in the rand_drbg_restart()
* call below.
*/
return 0;
}
CRYPTO_THREAD_write_lock(drbg->lock);
ret = rand_drbg_restart(drbg, buf,
(size_t)(unsigned int)num,
(size_t)(8*randomness));
CRYPTO_THREAD_unlock(drbg->lock);
return ret;
}
/* Implements the default OpenSSL RAND_seed() method */
static int drbg_seed(const void *buf, int num)
{
return drbg_add(buf, num, num);
}
/* Implements the default OpenSSL RAND_status() method */
static int drbg_status(void)
{
int ret;
RAND_DRBG *drbg = RAND_DRBG_get0_global();
if (drbg == NULL)
return 0;
CRYPTO_THREAD_write_lock(drbg->lock);
ret = drbg->state == DRBG_READY ? 1 : 0;
CRYPTO_THREAD_unlock(drbg->lock);
return ret;
}
/*
* Get the global public DRBG.
* Returns pointer to the DRBG on success, NULL on failure.
*/
RAND_DRBG *RAND_DRBG_get0_global(void)
{
if (!RUN_ONCE(&rand_drbg_init, do_rand_drbg_init))
return NULL;
return &rand_drbg;
}
/*
* Get the global private DRBG.
* Returns pointer to the DRBG on success, NULL on failure.
*/
RAND_DRBG *RAND_DRBG_get0_priv_global(void)
{
if (!RUN_ONCE(&rand_drbg_init, do_rand_drbg_init))
return NULL;
return &priv_drbg;
}
RAND_METHOD rand_meth = {
drbg_seed,
drbg_bytes,
NULL,
drbg_add,
drbg_bytes,
drbg_status
};
RAND_METHOD *RAND_OpenSSL(void)
{
return &rand_meth;
}