mirror of
https://github.com/openssl/openssl.git
synced 2024-11-27 05:21:51 +08:00
0871754499
Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/3926)
659 lines
24 KiB
C
659 lines
24 KiB
C
/*
|
|
* Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include "ssl_locl.h"
|
|
#include "internal/cryptlib.h"
|
|
#include <openssl/evp.h>
|
|
#include <openssl/kdf.h>
|
|
|
|
#define TLS13_MAX_LABEL_LEN 246
|
|
|
|
/* Always filled with zeros */
|
|
static const unsigned char default_zeros[EVP_MAX_MD_SIZE];
|
|
|
|
/*
|
|
* Given a |secret|; a |label| of length |labellen|; and |data| of length
|
|
* |datalen| (e.g. typically a hash of the handshake messages), derive a new
|
|
* secret |outlen| bytes long and store it in the location pointed to be |out|.
|
|
* The |data| value may be zero length. Returns 1 on success 0 on failure.
|
|
*/
|
|
int tls13_hkdf_expand(SSL *s, const EVP_MD *md, const unsigned char *secret,
|
|
const unsigned char *label, size_t labellen,
|
|
const unsigned char *data, size_t datalen,
|
|
unsigned char *out, size_t outlen)
|
|
{
|
|
const unsigned char label_prefix[] = "tls13 ";
|
|
EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
|
|
int ret;
|
|
size_t hkdflabellen;
|
|
size_t hashlen;
|
|
/*
|
|
* 2 bytes for length of whole HkdfLabel + 1 byte for length of combined
|
|
* prefix and label + bytes for the label itself + bytes for the hash
|
|
*/
|
|
unsigned char hkdflabel[sizeof(uint16_t) + sizeof(uint8_t) +
|
|
+ sizeof(label_prefix) + TLS13_MAX_LABEL_LEN
|
|
+ EVP_MAX_MD_SIZE];
|
|
WPACKET pkt;
|
|
|
|
if (pctx == NULL)
|
|
return 0;
|
|
|
|
hashlen = EVP_MD_size(md);
|
|
|
|
if (!WPACKET_init_static_len(&pkt, hkdflabel, sizeof(hkdflabel), 0)
|
|
|| !WPACKET_put_bytes_u16(&pkt, outlen)
|
|
|| !WPACKET_start_sub_packet_u8(&pkt)
|
|
|| !WPACKET_memcpy(&pkt, label_prefix, sizeof(label_prefix) - 1)
|
|
|| !WPACKET_memcpy(&pkt, label, labellen)
|
|
|| !WPACKET_close(&pkt)
|
|
|| !WPACKET_sub_memcpy_u8(&pkt, data, (data == NULL) ? 0 : datalen)
|
|
|| !WPACKET_get_total_written(&pkt, &hkdflabellen)
|
|
|| !WPACKET_finish(&pkt)) {
|
|
EVP_PKEY_CTX_free(pctx);
|
|
WPACKET_cleanup(&pkt);
|
|
return 0;
|
|
}
|
|
|
|
ret = EVP_PKEY_derive_init(pctx) <= 0
|
|
|| EVP_PKEY_CTX_hkdf_mode(pctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY)
|
|
<= 0
|
|
|| EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0
|
|
|| EVP_PKEY_CTX_set1_hkdf_key(pctx, secret, hashlen) <= 0
|
|
|| EVP_PKEY_CTX_add1_hkdf_info(pctx, hkdflabel, hkdflabellen) <= 0
|
|
|| EVP_PKEY_derive(pctx, out, &outlen) <= 0;
|
|
|
|
EVP_PKEY_CTX_free(pctx);
|
|
|
|
return ret == 0;
|
|
}
|
|
|
|
/*
|
|
* Given a |secret| generate a |key| of length |keylen| bytes. Returns 1 on
|
|
* success 0 on failure.
|
|
*/
|
|
int tls13_derive_key(SSL *s, const EVP_MD *md, const unsigned char *secret,
|
|
unsigned char *key, size_t keylen)
|
|
{
|
|
static const unsigned char keylabel[] = "key";
|
|
|
|
return tls13_hkdf_expand(s, md, secret, keylabel, sizeof(keylabel) - 1,
|
|
NULL, 0, key, keylen);
|
|
}
|
|
|
|
/*
|
|
* Given a |secret| generate an |iv| of length |ivlen| bytes. Returns 1 on
|
|
* success 0 on failure.
|
|
*/
|
|
int tls13_derive_iv(SSL *s, const EVP_MD *md, const unsigned char *secret,
|
|
unsigned char *iv, size_t ivlen)
|
|
{
|
|
static const unsigned char ivlabel[] = "iv";
|
|
|
|
return tls13_hkdf_expand(s, md, secret, ivlabel, sizeof(ivlabel) - 1,
|
|
NULL, 0, iv, ivlen);
|
|
}
|
|
|
|
int tls13_derive_finishedkey(SSL *s, const EVP_MD *md,
|
|
const unsigned char *secret,
|
|
unsigned char *fin, size_t finlen)
|
|
{
|
|
static const unsigned char finishedlabel[] = "finished";
|
|
|
|
return tls13_hkdf_expand(s, md, secret, finishedlabel,
|
|
sizeof(finishedlabel) - 1, NULL, 0, fin, finlen);
|
|
}
|
|
|
|
/*
|
|
* Given the previous secret |prevsecret| and a new input secret |insecret| of
|
|
* length |insecretlen|, generate a new secret and store it in the location
|
|
* pointed to by |outsecret|. Returns 1 on success 0 on failure.
|
|
*/
|
|
int tls13_generate_secret(SSL *s, const EVP_MD *md,
|
|
const unsigned char *prevsecret,
|
|
const unsigned char *insecret,
|
|
size_t insecretlen,
|
|
unsigned char *outsecret)
|
|
{
|
|
size_t mdlen, prevsecretlen;
|
|
int ret;
|
|
EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
|
|
static const char derived_secret_label[] = "derived";
|
|
unsigned char preextractsec[EVP_MAX_MD_SIZE];
|
|
|
|
if (pctx == NULL)
|
|
return 0;
|
|
|
|
mdlen = EVP_MD_size(md);
|
|
|
|
if (insecret == NULL) {
|
|
insecret = default_zeros;
|
|
insecretlen = mdlen;
|
|
}
|
|
if (prevsecret == NULL) {
|
|
prevsecret = default_zeros;
|
|
prevsecretlen = 0;
|
|
} else {
|
|
EVP_MD_CTX *mctx = EVP_MD_CTX_new();
|
|
unsigned char hash[EVP_MAX_MD_SIZE];
|
|
|
|
/* The pre-extract derive step uses a hash of no messages */
|
|
if (mctx == NULL
|
|
|| EVP_DigestInit_ex(mctx, md, NULL) <= 0
|
|
|| EVP_DigestFinal_ex(mctx, hash, NULL) <= 0) {
|
|
EVP_MD_CTX_free(mctx);
|
|
EVP_PKEY_CTX_free(pctx);
|
|
return 0;
|
|
}
|
|
EVP_MD_CTX_free(mctx);
|
|
|
|
/* Generate the pre-extract secret */
|
|
if (!tls13_hkdf_expand(s, md, prevsecret,
|
|
(unsigned char *)derived_secret_label,
|
|
sizeof(derived_secret_label) - 1, hash, mdlen,
|
|
preextractsec, mdlen)) {
|
|
EVP_PKEY_CTX_free(pctx);
|
|
return 0;
|
|
}
|
|
|
|
prevsecret = preextractsec;
|
|
prevsecretlen = mdlen;
|
|
}
|
|
|
|
ret = EVP_PKEY_derive_init(pctx) <= 0
|
|
|| EVP_PKEY_CTX_hkdf_mode(pctx, EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY)
|
|
<= 0
|
|
|| EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0
|
|
|| EVP_PKEY_CTX_set1_hkdf_key(pctx, insecret, insecretlen) <= 0
|
|
|| EVP_PKEY_CTX_set1_hkdf_salt(pctx, prevsecret, prevsecretlen)
|
|
<= 0
|
|
|| EVP_PKEY_derive(pctx, outsecret, &mdlen)
|
|
<= 0;
|
|
|
|
EVP_PKEY_CTX_free(pctx);
|
|
if (prevsecret == preextractsec)
|
|
OPENSSL_cleanse(preextractsec, mdlen);
|
|
return ret == 0;
|
|
}
|
|
|
|
/*
|
|
* Given an input secret |insecret| of length |insecretlen| generate the
|
|
* handshake secret. This requires the early secret to already have been
|
|
* generated. Returns 1 on success 0 on failure.
|
|
*/
|
|
int tls13_generate_handshake_secret(SSL *s, const unsigned char *insecret,
|
|
size_t insecretlen)
|
|
{
|
|
return tls13_generate_secret(s, ssl_handshake_md(s), s->early_secret,
|
|
insecret, insecretlen,
|
|
(unsigned char *)&s->handshake_secret);
|
|
}
|
|
|
|
/*
|
|
* Given the handshake secret |prev| of length |prevlen| generate the master
|
|
* secret and store its length in |*secret_size|. Returns 1 on success 0 on
|
|
* failure.
|
|
*/
|
|
int tls13_generate_master_secret(SSL *s, unsigned char *out,
|
|
unsigned char *prev, size_t prevlen,
|
|
size_t *secret_size)
|
|
{
|
|
const EVP_MD *md = ssl_handshake_md(s);
|
|
|
|
*secret_size = EVP_MD_size(md);
|
|
return tls13_generate_secret(s, md, prev, NULL, 0, out);
|
|
}
|
|
|
|
/*
|
|
* Generates the mac for the Finished message. Returns the length of the MAC or
|
|
* 0 on error.
|
|
*/
|
|
size_t tls13_final_finish_mac(SSL *s, const char *str, size_t slen,
|
|
unsigned char *out)
|
|
{
|
|
const EVP_MD *md = ssl_handshake_md(s);
|
|
unsigned char hash[EVP_MAX_MD_SIZE];
|
|
size_t hashlen, ret = 0;
|
|
EVP_PKEY *key = NULL;
|
|
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
|
|
|
|
if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen))
|
|
goto err;
|
|
|
|
if (str == s->method->ssl3_enc->server_finished_label)
|
|
key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL,
|
|
s->server_finished_secret, hashlen);
|
|
else
|
|
key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL,
|
|
s->client_finished_secret, hashlen);
|
|
|
|
if (key == NULL
|
|
|| ctx == NULL
|
|
|| EVP_DigestSignInit(ctx, NULL, md, NULL, key) <= 0
|
|
|| EVP_DigestSignUpdate(ctx, hash, hashlen) <= 0
|
|
|| EVP_DigestSignFinal(ctx, out, &hashlen) <= 0)
|
|
goto err;
|
|
|
|
ret = hashlen;
|
|
err:
|
|
EVP_PKEY_free(key);
|
|
EVP_MD_CTX_free(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* There isn't really a key block in TLSv1.3, but we still need this function
|
|
* for initialising the cipher and hash. Returns 1 on success or 0 on failure.
|
|
*/
|
|
int tls13_setup_key_block(SSL *s)
|
|
{
|
|
const EVP_CIPHER *c;
|
|
const EVP_MD *hash;
|
|
int mac_type = NID_undef;
|
|
|
|
s->session->cipher = s->s3->tmp.new_cipher;
|
|
if (!ssl_cipher_get_evp
|
|
(s->session, &c, &hash, &mac_type, NULL, NULL, 0)) {
|
|
SSLerr(SSL_F_TLS13_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
|
|
return 0;
|
|
}
|
|
|
|
s->s3->tmp.new_sym_enc = c;
|
|
s->s3->tmp.new_hash = hash;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int derive_secret_key_and_iv(SSL *s, int sending, const EVP_MD *md,
|
|
const EVP_CIPHER *ciph,
|
|
const unsigned char *insecret,
|
|
const unsigned char *hash,
|
|
const unsigned char *label,
|
|
size_t labellen, unsigned char *secret,
|
|
unsigned char *iv, EVP_CIPHER_CTX *ciph_ctx)
|
|
{
|
|
unsigned char key[EVP_MAX_KEY_LENGTH];
|
|
size_t ivlen, keylen, taglen;
|
|
size_t hashlen = EVP_MD_size(md);
|
|
|
|
if (!tls13_hkdf_expand(s, md, insecret, label, labellen, hash, hashlen,
|
|
secret, hashlen)) {
|
|
SSLerr(SSL_F_DERIVE_SECRET_KEY_AND_IV, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
/* TODO(size_t): convert me */
|
|
keylen = EVP_CIPHER_key_length(ciph);
|
|
if (EVP_CIPHER_mode(ciph) == EVP_CIPH_CCM_MODE) {
|
|
uint32_t algenc;
|
|
|
|
ivlen = EVP_CCM_TLS_IV_LEN;
|
|
if (s->s3->tmp.new_cipher == NULL) {
|
|
/* We've not selected a cipher yet - we must be doing early data */
|
|
algenc = s->session->cipher->algorithm_enc;
|
|
} else {
|
|
algenc = s->s3->tmp.new_cipher->algorithm_enc;
|
|
}
|
|
if (algenc & (SSL_AES128CCM8 | SSL_AES256CCM8))
|
|
taglen = EVP_CCM8_TLS_TAG_LEN;
|
|
else
|
|
taglen = EVP_CCM_TLS_TAG_LEN;
|
|
} else {
|
|
ivlen = EVP_CIPHER_iv_length(ciph);
|
|
taglen = 0;
|
|
}
|
|
|
|
if (!tls13_derive_key(s, md, secret, key, keylen)
|
|
|| !tls13_derive_iv(s, md, secret, iv, ivlen)) {
|
|
SSLerr(SSL_F_DERIVE_SECRET_KEY_AND_IV, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
if (EVP_CipherInit_ex(ciph_ctx, ciph, NULL, NULL, NULL, sending) <= 0
|
|
|| !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL)
|
|
|| (taglen != 0 && !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_AEAD_SET_TAG,
|
|
taglen, NULL))
|
|
|| EVP_CipherInit_ex(ciph_ctx, NULL, NULL, key, NULL, -1) <= 0) {
|
|
SSLerr(SSL_F_DERIVE_SECRET_KEY_AND_IV, ERR_R_EVP_LIB);
|
|
goto err;
|
|
}
|
|
|
|
return 1;
|
|
err:
|
|
OPENSSL_cleanse(key, sizeof(key));
|
|
return 0;
|
|
}
|
|
|
|
int tls13_change_cipher_state(SSL *s, int which)
|
|
{
|
|
static const unsigned char client_early_traffic[] = "c e traffic";
|
|
static const unsigned char client_handshake_traffic[] = "c hs traffic";
|
|
static const unsigned char client_application_traffic[] = "c ap traffic";
|
|
static const unsigned char server_handshake_traffic[] = "s hs traffic";
|
|
static const unsigned char server_application_traffic[] = "s ap traffic";
|
|
static const unsigned char exporter_master_secret[] = "exp master";
|
|
static const unsigned char resumption_master_secret[] = "res master";
|
|
unsigned char *iv;
|
|
unsigned char secret[EVP_MAX_MD_SIZE];
|
|
unsigned char hashval[EVP_MAX_MD_SIZE];
|
|
unsigned char *hash = hashval;
|
|
unsigned char *insecret;
|
|
unsigned char *finsecret = NULL;
|
|
const char *log_label = NULL;
|
|
EVP_CIPHER_CTX *ciph_ctx;
|
|
size_t finsecretlen = 0;
|
|
const unsigned char *label;
|
|
size_t labellen, hashlen = 0;
|
|
int ret = 0;
|
|
const EVP_MD *md = NULL;
|
|
const EVP_CIPHER *cipher = NULL;
|
|
|
|
if (which & SSL3_CC_READ) {
|
|
if (s->enc_read_ctx != NULL) {
|
|
EVP_CIPHER_CTX_reset(s->enc_read_ctx);
|
|
} else {
|
|
s->enc_read_ctx = EVP_CIPHER_CTX_new();
|
|
if (s->enc_read_ctx == NULL) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
}
|
|
ciph_ctx = s->enc_read_ctx;
|
|
iv = s->read_iv;
|
|
|
|
RECORD_LAYER_reset_read_sequence(&s->rlayer);
|
|
} else {
|
|
if (s->enc_write_ctx != NULL) {
|
|
EVP_CIPHER_CTX_reset(s->enc_write_ctx);
|
|
} else {
|
|
s->enc_write_ctx = EVP_CIPHER_CTX_new();
|
|
if (s->enc_write_ctx == NULL) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
}
|
|
ciph_ctx = s->enc_write_ctx;
|
|
iv = s->write_iv;
|
|
|
|
RECORD_LAYER_reset_write_sequence(&s->rlayer);
|
|
}
|
|
|
|
if (((which & SSL3_CC_CLIENT) && (which & SSL3_CC_WRITE))
|
|
|| ((which & SSL3_CC_SERVER) && (which & SSL3_CC_READ))) {
|
|
if (which & SSL3_CC_EARLY) {
|
|
EVP_MD_CTX *mdctx = NULL;
|
|
long handlen;
|
|
void *hdata;
|
|
unsigned int hashlenui;
|
|
const SSL_CIPHER *sslcipher = SSL_SESSION_get0_cipher(s->session);
|
|
|
|
insecret = s->early_secret;
|
|
label = client_early_traffic;
|
|
labellen = sizeof(client_early_traffic) - 1;
|
|
log_label = CLIENT_EARLY_LABEL;
|
|
|
|
handlen = BIO_get_mem_data(s->s3->handshake_buffer, &hdata);
|
|
if (handlen <= 0) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE,
|
|
SSL_R_BAD_HANDSHAKE_LENGTH);
|
|
goto err;
|
|
}
|
|
|
|
if (s->early_data_state == SSL_EARLY_DATA_CONNECTING
|
|
&& s->max_early_data > 0
|
|
&& s->session->ext.max_early_data == 0) {
|
|
/*
|
|
* If we are attempting to send early data, and we've decided to
|
|
* actually do it but max_early_data in s->session is 0 then we
|
|
* must be using an external PSK.
|
|
*/
|
|
if (!ossl_assert(s->psksession != NULL
|
|
&& s->max_early_data ==
|
|
s->psksession->ext.max_early_data)) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE,
|
|
ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
sslcipher = SSL_SESSION_get0_cipher(s->psksession);
|
|
}
|
|
if (sslcipher == NULL) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, SSL_R_BAD_PSK);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* We need to calculate the handshake digest using the digest from
|
|
* the session. We haven't yet selected our ciphersuite so we can't
|
|
* use ssl_handshake_md().
|
|
*/
|
|
mdctx = EVP_MD_CTX_new();
|
|
if (mdctx == NULL) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
cipher = EVP_get_cipherbynid(SSL_CIPHER_get_cipher_nid(sslcipher));
|
|
md = ssl_md(sslcipher->algorithm2);
|
|
if (md == NULL || !EVP_DigestInit_ex(mdctx, md, NULL)
|
|
|| !EVP_DigestUpdate(mdctx, hdata, handlen)
|
|
|| !EVP_DigestFinal_ex(mdctx, hashval, &hashlenui)) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
EVP_MD_CTX_free(mdctx);
|
|
goto err;
|
|
}
|
|
hashlen = hashlenui;
|
|
EVP_MD_CTX_free(mdctx);
|
|
} else if (which & SSL3_CC_HANDSHAKE) {
|
|
insecret = s->handshake_secret;
|
|
finsecret = s->client_finished_secret;
|
|
finsecretlen = EVP_MD_size(ssl_handshake_md(s));
|
|
label = client_handshake_traffic;
|
|
labellen = sizeof(client_handshake_traffic) - 1;
|
|
log_label = CLIENT_HANDSHAKE_LABEL;
|
|
/*
|
|
* The handshake hash used for the server read/client write handshake
|
|
* traffic secret is the same as the hash for the server
|
|
* write/client read handshake traffic secret. However, if we
|
|
* processed early data then we delay changing the server
|
|
* read/client write cipher state until later, and the handshake
|
|
* hashes have moved on. Therefore we use the value saved earlier
|
|
* when we did the server write/client read change cipher state.
|
|
*/
|
|
hash = s->handshake_traffic_hash;
|
|
} else {
|
|
insecret = s->master_secret;
|
|
label = client_application_traffic;
|
|
labellen = sizeof(client_application_traffic) - 1;
|
|
log_label = CLIENT_APPLICATION_LABEL;
|
|
/*
|
|
* For this we only use the handshake hashes up until the server
|
|
* Finished hash. We do not include the client's Finished, which is
|
|
* what ssl_handshake_hash() would give us. Instead we use the
|
|
* previously saved value.
|
|
*/
|
|
hash = s->server_finished_hash;
|
|
}
|
|
} else {
|
|
/* Early data never applies to client-read/server-write */
|
|
if (which & SSL3_CC_HANDSHAKE) {
|
|
insecret = s->handshake_secret;
|
|
finsecret = s->server_finished_secret;
|
|
finsecretlen = EVP_MD_size(ssl_handshake_md(s));
|
|
label = server_handshake_traffic;
|
|
labellen = sizeof(server_handshake_traffic) - 1;
|
|
log_label = SERVER_HANDSHAKE_LABEL;
|
|
} else {
|
|
insecret = s->master_secret;
|
|
label = server_application_traffic;
|
|
labellen = sizeof(server_application_traffic) - 1;
|
|
log_label = SERVER_APPLICATION_LABEL;
|
|
}
|
|
}
|
|
|
|
if (!(which & SSL3_CC_EARLY)) {
|
|
md = ssl_handshake_md(s);
|
|
cipher = s->s3->tmp.new_sym_enc;
|
|
if (!ssl3_digest_cached_records(s, 1)
|
|
|| !ssl_handshake_hash(s, hashval, sizeof(hashval), &hashlen)) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Save the hash of handshakes up to now for use when we calculate the
|
|
* client application traffic secret
|
|
*/
|
|
if (label == server_application_traffic)
|
|
memcpy(s->server_finished_hash, hashval, hashlen);
|
|
|
|
if (label == server_handshake_traffic)
|
|
memcpy(s->handshake_traffic_hash, hashval, hashlen);
|
|
|
|
if (label == client_application_traffic) {
|
|
/*
|
|
* We also create the resumption master secret, but this time use the
|
|
* hash for the whole handshake including the Client Finished
|
|
*/
|
|
if (!tls13_hkdf_expand(s, ssl_handshake_md(s), insecret,
|
|
resumption_master_secret,
|
|
sizeof(resumption_master_secret) - 1,
|
|
hashval, hashlen, s->session->master_key,
|
|
hashlen)) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
s->session->master_key_length = hashlen;
|
|
|
|
/* Now we create the exporter master secret */
|
|
if (!tls13_hkdf_expand(s, ssl_handshake_md(s), insecret,
|
|
exporter_master_secret,
|
|
sizeof(exporter_master_secret) - 1,
|
|
hash, hashlen, s->exporter_master_secret,
|
|
hashlen)) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (!derive_secret_key_and_iv(s, which & SSL3_CC_WRITE, md, cipher,
|
|
insecret, hash, label, labellen, secret, iv,
|
|
ciph_ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
if (label == server_application_traffic)
|
|
memcpy(s->server_app_traffic_secret, secret, hashlen);
|
|
else if (label == client_application_traffic)
|
|
memcpy(s->client_app_traffic_secret, secret, hashlen);
|
|
|
|
if (!ssl_log_secret(s, log_label, secret, hashlen)) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
if (finsecret != NULL
|
|
&& !tls13_derive_finishedkey(s, ssl_handshake_md(s), secret,
|
|
finsecret, finsecretlen)) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
ret = 1;
|
|
err:
|
|
OPENSSL_cleanse(secret, sizeof(secret));
|
|
return ret;
|
|
}
|
|
|
|
int tls13_update_key(SSL *s, int sending)
|
|
{
|
|
static const unsigned char application_traffic[] = "traffic upd";
|
|
const EVP_MD *md = ssl_handshake_md(s);
|
|
size_t hashlen = EVP_MD_size(md);
|
|
unsigned char *insecret, *iv;
|
|
unsigned char secret[EVP_MAX_MD_SIZE];
|
|
EVP_CIPHER_CTX *ciph_ctx;
|
|
int ret = 0;
|
|
|
|
if (s->server == sending)
|
|
insecret = s->server_app_traffic_secret;
|
|
else
|
|
insecret = s->client_app_traffic_secret;
|
|
|
|
if (sending) {
|
|
iv = s->write_iv;
|
|
ciph_ctx = s->enc_write_ctx;
|
|
RECORD_LAYER_reset_write_sequence(&s->rlayer);
|
|
} else {
|
|
iv = s->read_iv;
|
|
ciph_ctx = s->enc_read_ctx;
|
|
RECORD_LAYER_reset_read_sequence(&s->rlayer);
|
|
}
|
|
|
|
if (!derive_secret_key_and_iv(s, sending, ssl_handshake_md(s),
|
|
s->s3->tmp.new_sym_enc, insecret, NULL,
|
|
application_traffic,
|
|
sizeof(application_traffic) - 1, secret, iv,
|
|
ciph_ctx))
|
|
goto err;
|
|
|
|
memcpy(insecret, secret, hashlen);
|
|
|
|
ret = 1;
|
|
err:
|
|
OPENSSL_cleanse(secret, sizeof(secret));
|
|
return ret;
|
|
}
|
|
|
|
int tls13_alert_code(int code)
|
|
{
|
|
if (code == SSL_AD_MISSING_EXTENSION)
|
|
return code;
|
|
|
|
return tls1_alert_code(code);
|
|
}
|
|
|
|
int tls13_export_keying_material(SSL *s, unsigned char *out, size_t olen,
|
|
const char *label, size_t llen,
|
|
const unsigned char *context,
|
|
size_t contextlen, int use_context)
|
|
{
|
|
unsigned char exportsecret[EVP_MAX_MD_SIZE];
|
|
static const unsigned char exporterlabel[] = "exporter";
|
|
unsigned char hash[EVP_MAX_MD_SIZE], data[EVP_MAX_MD_SIZE];
|
|
const EVP_MD *md = ssl_handshake_md(s);
|
|
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
|
|
unsigned int hashsize, datalen;
|
|
int ret = 0;
|
|
|
|
if (ctx == NULL || !SSL_is_init_finished(s))
|
|
goto err;
|
|
|
|
if (!use_context)
|
|
contextlen = 0;
|
|
|
|
if (EVP_DigestInit_ex(ctx, md, NULL) <= 0
|
|
|| EVP_DigestUpdate(ctx, context, contextlen) <= 0
|
|
|| EVP_DigestFinal_ex(ctx, hash, &hashsize) <= 0
|
|
|| EVP_DigestInit_ex(ctx, md, NULL) <= 0
|
|
|| EVP_DigestFinal_ex(ctx, data, &datalen) <= 0
|
|
|| !tls13_hkdf_expand(s, md, s->exporter_master_secret,
|
|
(const unsigned char *)label, llen,
|
|
data, datalen, exportsecret, hashsize)
|
|
|| !tls13_hkdf_expand(s, md, exportsecret, exporterlabel,
|
|
sizeof(exporterlabel) - 1, hash, hashsize,
|
|
out, olen))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
EVP_MD_CTX_free(ctx);
|
|
return ret;
|
|
}
|