mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
f5a50c2a07
The primary DRBG may be shared across multiple threads and therefore we must use locking to access it. Previously we were enabling that locking lazily when we attempted to obtain one of the child DRBGs. Part of the process of enabling the lock, is to create the lock. But if we create the lock lazily then it is too late - we may race with other threads where each thread is independently attempting to enable the locking. This results in multiple locks being created - only one of which "sticks" and the rest are leaked. Instead we enable locking on the primary when we first create it. This is already locked and therefore we cannot race. Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org> (Merged from https://github.com/openssl/openssl/pull/13660)
642 lines
19 KiB
C
642 lines
19 KiB
C
/*
|
|
* Copyright 2020 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <openssl/evp.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/x509v3.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/core.h>
|
|
#include <openssl/core_names.h>
|
|
#include <openssl/crypto.h>
|
|
#include "crypto/asn1.h"
|
|
#include "crypto/evp.h"
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/numbers.h"
|
|
#include "internal/provider.h"
|
|
#include "evp_local.h"
|
|
|
|
struct evp_rand_st {
|
|
OSSL_PROVIDER *prov;
|
|
int name_id;
|
|
CRYPTO_REF_COUNT refcnt;
|
|
CRYPTO_RWLOCK *refcnt_lock;
|
|
|
|
const OSSL_DISPATCH *dispatch;
|
|
OSSL_FUNC_rand_newctx_fn *newctx;
|
|
OSSL_FUNC_rand_freectx_fn *freectx;
|
|
OSSL_FUNC_rand_instantiate_fn *instantiate;
|
|
OSSL_FUNC_rand_uninstantiate_fn *uninstantiate;
|
|
OSSL_FUNC_rand_generate_fn *generate;
|
|
OSSL_FUNC_rand_reseed_fn *reseed;
|
|
OSSL_FUNC_rand_nonce_fn *nonce;
|
|
OSSL_FUNC_rand_enable_locking_fn *enable_locking;
|
|
OSSL_FUNC_rand_lock_fn *lock;
|
|
OSSL_FUNC_rand_unlock_fn *unlock;
|
|
OSSL_FUNC_rand_gettable_params_fn *gettable_params;
|
|
OSSL_FUNC_rand_gettable_ctx_params_fn *gettable_ctx_params;
|
|
OSSL_FUNC_rand_settable_ctx_params_fn *settable_ctx_params;
|
|
OSSL_FUNC_rand_get_params_fn *get_params;
|
|
OSSL_FUNC_rand_get_ctx_params_fn *get_ctx_params;
|
|
OSSL_FUNC_rand_set_ctx_params_fn *set_ctx_params;
|
|
OSSL_FUNC_rand_verify_zeroization_fn *verify_zeroization;
|
|
} /* EVP_RAND */ ;
|
|
|
|
static int evp_rand_up_ref(void *vrand)
|
|
{
|
|
EVP_RAND *rand = (EVP_RAND *)vrand;
|
|
int ref = 0;
|
|
|
|
if (rand != NULL)
|
|
return CRYPTO_UP_REF(&rand->refcnt, &ref, rand->refcnt_lock);
|
|
return 1;
|
|
}
|
|
|
|
static void evp_rand_free(void *vrand){
|
|
EVP_RAND *rand = (EVP_RAND *)vrand;
|
|
int ref = 0;
|
|
|
|
if (rand != NULL) {
|
|
CRYPTO_DOWN_REF(&rand->refcnt, &ref, rand->refcnt_lock);
|
|
if (ref <= 0) {
|
|
ossl_provider_free(rand->prov);
|
|
CRYPTO_THREAD_lock_free(rand->refcnt_lock);
|
|
OPENSSL_free(rand);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void *evp_rand_new(void)
|
|
{
|
|
EVP_RAND *rand = OPENSSL_zalloc(sizeof(*rand));
|
|
|
|
if (rand == NULL
|
|
|| (rand->refcnt_lock = CRYPTO_THREAD_lock_new()) == NULL) {
|
|
OPENSSL_free(rand);
|
|
return NULL;
|
|
}
|
|
rand->refcnt = 1;
|
|
return rand;
|
|
}
|
|
|
|
/* Enable locking of the underlying DRBG/RAND if available */
|
|
int EVP_RAND_enable_locking(EVP_RAND_CTX *rand)
|
|
{
|
|
if (rand->meth->enable_locking != NULL)
|
|
return rand->meth->enable_locking(rand->data);
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_LOCKING_NOT_SUPPORTED);
|
|
return 0;
|
|
}
|
|
|
|
/* Lock the underlying DRBG/RAND if available */
|
|
static int evp_rand_lock(EVP_RAND_CTX *rand)
|
|
{
|
|
if (rand->meth->lock != NULL)
|
|
return rand->meth->lock(rand->data);
|
|
return 1;
|
|
}
|
|
|
|
/* Unlock the underlying DRBG/RAND if available */
|
|
static void evp_rand_unlock(EVP_RAND_CTX *rand)
|
|
{
|
|
if (rand->meth->unlock != NULL)
|
|
rand->meth->unlock(rand->data);
|
|
}
|
|
|
|
static void *evp_rand_from_dispatch(int name_id,
|
|
const OSSL_DISPATCH *fns,
|
|
OSSL_PROVIDER *prov)
|
|
{
|
|
EVP_RAND *rand = NULL;
|
|
int fnrandcnt = 0, fnctxcnt = 0, fnlockcnt = 0;
|
|
#ifdef FIPS_MODULE
|
|
int fnzeroizecnt = 0;
|
|
#endif
|
|
|
|
if ((rand = evp_rand_new()) == NULL) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
rand->name_id = name_id;
|
|
rand->dispatch = fns;
|
|
for (; fns->function_id != 0; fns++) {
|
|
switch (fns->function_id) {
|
|
case OSSL_FUNC_RAND_NEWCTX:
|
|
if (rand->newctx != NULL)
|
|
break;
|
|
rand->newctx = OSSL_FUNC_rand_newctx(fns);
|
|
fnctxcnt++;
|
|
break;
|
|
case OSSL_FUNC_RAND_FREECTX:
|
|
if (rand->freectx != NULL)
|
|
break;
|
|
rand->freectx = OSSL_FUNC_rand_freectx(fns);
|
|
fnctxcnt++;
|
|
break;
|
|
case OSSL_FUNC_RAND_INSTANTIATE:
|
|
if (rand->instantiate != NULL)
|
|
break;
|
|
rand->instantiate = OSSL_FUNC_rand_instantiate(fns);
|
|
fnrandcnt++;
|
|
break;
|
|
case OSSL_FUNC_RAND_UNINSTANTIATE:
|
|
if (rand->uninstantiate != NULL)
|
|
break;
|
|
rand->uninstantiate = OSSL_FUNC_rand_uninstantiate(fns);
|
|
fnrandcnt++;
|
|
break;
|
|
case OSSL_FUNC_RAND_GENERATE:
|
|
if (rand->generate != NULL)
|
|
break;
|
|
rand->generate = OSSL_FUNC_rand_generate(fns);
|
|
fnrandcnt++;
|
|
break;
|
|
case OSSL_FUNC_RAND_RESEED:
|
|
if (rand->reseed != NULL)
|
|
break;
|
|
rand->reseed = OSSL_FUNC_rand_reseed(fns);
|
|
break;
|
|
case OSSL_FUNC_RAND_NONCE:
|
|
if (rand->nonce != NULL)
|
|
break;
|
|
rand->nonce = OSSL_FUNC_rand_nonce(fns);
|
|
break;
|
|
case OSSL_FUNC_RAND_ENABLE_LOCKING:
|
|
if (rand->enable_locking != NULL)
|
|
break;
|
|
rand->enable_locking = OSSL_FUNC_rand_enable_locking(fns);
|
|
fnlockcnt++;
|
|
break;
|
|
case OSSL_FUNC_RAND_LOCK:
|
|
if (rand->lock != NULL)
|
|
break;
|
|
rand->lock = OSSL_FUNC_rand_lock(fns);
|
|
fnlockcnt++;
|
|
break;
|
|
case OSSL_FUNC_RAND_UNLOCK:
|
|
if (rand->unlock != NULL)
|
|
break;
|
|
rand->unlock = OSSL_FUNC_rand_unlock(fns);
|
|
fnlockcnt++;
|
|
break;
|
|
case OSSL_FUNC_RAND_GETTABLE_PARAMS:
|
|
if (rand->gettable_params != NULL)
|
|
break;
|
|
rand->gettable_params =
|
|
OSSL_FUNC_rand_gettable_params(fns);
|
|
break;
|
|
case OSSL_FUNC_RAND_GETTABLE_CTX_PARAMS:
|
|
if (rand->gettable_ctx_params != NULL)
|
|
break;
|
|
rand->gettable_ctx_params =
|
|
OSSL_FUNC_rand_gettable_ctx_params(fns);
|
|
break;
|
|
case OSSL_FUNC_RAND_SETTABLE_CTX_PARAMS:
|
|
if (rand->settable_ctx_params != NULL)
|
|
break;
|
|
rand->settable_ctx_params =
|
|
OSSL_FUNC_rand_settable_ctx_params(fns);
|
|
break;
|
|
case OSSL_FUNC_RAND_GET_PARAMS:
|
|
if (rand->get_params != NULL)
|
|
break;
|
|
rand->get_params = OSSL_FUNC_rand_get_params(fns);
|
|
break;
|
|
case OSSL_FUNC_RAND_GET_CTX_PARAMS:
|
|
if (rand->get_ctx_params != NULL)
|
|
break;
|
|
rand->get_ctx_params = OSSL_FUNC_rand_get_ctx_params(fns);
|
|
fnctxcnt++;
|
|
break;
|
|
case OSSL_FUNC_RAND_SET_CTX_PARAMS:
|
|
if (rand->set_ctx_params != NULL)
|
|
break;
|
|
rand->set_ctx_params = OSSL_FUNC_rand_set_ctx_params(fns);
|
|
break;
|
|
case OSSL_FUNC_RAND_VERIFY_ZEROIZATION:
|
|
if (rand->verify_zeroization != NULL)
|
|
break;
|
|
rand->verify_zeroization = OSSL_FUNC_rand_verify_zeroization(fns);
|
|
#ifdef FIPS_MODULE
|
|
fnzeroizecnt++;
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* In order to be a consistent set of functions we must have at least
|
|
* a complete set of "rand" functions and a complete set of context
|
|
* management functions. In FIPS mode, we also require the zeroization
|
|
* verification function.
|
|
*
|
|
* In addition, if locking can be enabled, we need a complete set of
|
|
* locking functions.
|
|
*/
|
|
if (fnrandcnt != 3
|
|
|| fnctxcnt != 3
|
|
|| (fnlockcnt != 0 && fnlockcnt != 3)
|
|
#ifdef FIPS_MODULE
|
|
|| fnzeroizecnt != 1
|
|
#endif
|
|
) {
|
|
evp_rand_free(rand);
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_PROVIDER_FUNCTIONS);
|
|
return NULL;
|
|
}
|
|
|
|
if (prov != NULL && !ossl_provider_up_ref(prov)) {
|
|
evp_rand_free(rand);
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
rand->prov = prov;
|
|
|
|
return rand;
|
|
}
|
|
|
|
EVP_RAND *EVP_RAND_fetch(OSSL_LIB_CTX *libctx, const char *algorithm,
|
|
const char *properties)
|
|
{
|
|
return evp_generic_fetch(libctx, OSSL_OP_RAND, algorithm, properties,
|
|
evp_rand_from_dispatch, evp_rand_up_ref,
|
|
evp_rand_free);
|
|
}
|
|
|
|
int EVP_RAND_up_ref(EVP_RAND *rand)
|
|
{
|
|
return evp_rand_up_ref(rand);
|
|
}
|
|
|
|
void EVP_RAND_free(EVP_RAND *rand)
|
|
{
|
|
evp_rand_free(rand);
|
|
}
|
|
|
|
int EVP_RAND_number(const EVP_RAND *rand)
|
|
{
|
|
return rand->name_id;
|
|
}
|
|
|
|
const char *EVP_RAND_name(const EVP_RAND *rand)
|
|
{
|
|
return evp_first_name(rand->prov, rand->name_id);
|
|
}
|
|
|
|
int EVP_RAND_is_a(const EVP_RAND *rand, const char *name)
|
|
{
|
|
return evp_is_a(rand->prov, rand->name_id, NULL, name);
|
|
}
|
|
|
|
const OSSL_PROVIDER *EVP_RAND_provider(const EVP_RAND *rand)
|
|
{
|
|
return rand->prov;
|
|
}
|
|
|
|
int EVP_RAND_get_params(EVP_RAND *rand, OSSL_PARAM params[])
|
|
{
|
|
if (rand->get_params != NULL)
|
|
return rand->get_params(params);
|
|
return 1;
|
|
}
|
|
|
|
static int evp_rand_ctx_up_ref(EVP_RAND_CTX *ctx)
|
|
{
|
|
int ref = 0;
|
|
|
|
return CRYPTO_UP_REF(&ctx->refcnt, &ref, ctx->refcnt_lock);
|
|
}
|
|
|
|
EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, EVP_RAND_CTX *parent)
|
|
{
|
|
EVP_RAND_CTX *ctx;
|
|
void *parent_ctx = NULL;
|
|
const OSSL_DISPATCH *parent_dispatch = NULL;
|
|
|
|
if (rand == NULL) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_NULL_ALGORITHM);
|
|
return NULL;
|
|
}
|
|
|
|
ctx = OPENSSL_zalloc(sizeof(*ctx));
|
|
if (ctx == NULL || (ctx->refcnt_lock = CRYPTO_THREAD_lock_new()) == NULL) {
|
|
OPENSSL_free(ctx);
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
if (parent != NULL) {
|
|
if (!evp_rand_ctx_up_ref(parent)) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR);
|
|
CRYPTO_THREAD_lock_free(ctx->refcnt_lock);
|
|
OPENSSL_free(ctx);
|
|
return NULL;
|
|
}
|
|
parent_ctx = parent->data;
|
|
parent_dispatch = parent->meth->dispatch;
|
|
}
|
|
if ((ctx->data = rand->newctx(ossl_provider_ctx(rand->prov), parent_ctx,
|
|
parent_dispatch)) == NULL
|
|
|| !EVP_RAND_up_ref(rand)) {
|
|
ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
|
|
rand->freectx(ctx->data);
|
|
CRYPTO_THREAD_lock_free(ctx->refcnt_lock);
|
|
OPENSSL_free(ctx);
|
|
EVP_RAND_CTX_free(parent);
|
|
return NULL;
|
|
}
|
|
ctx->meth = rand;
|
|
ctx->parent = parent;
|
|
ctx->refcnt = 1;
|
|
return ctx;
|
|
}
|
|
|
|
void EVP_RAND_CTX_free(EVP_RAND_CTX *ctx)
|
|
{
|
|
if (ctx != NULL) {
|
|
int ref = 0;
|
|
|
|
CRYPTO_DOWN_REF(&ctx->refcnt, &ref, ctx->refcnt_lock);
|
|
if (ref <= 0) {
|
|
EVP_RAND_CTX *parent = ctx->parent;
|
|
|
|
ctx->meth->freectx(ctx->data);
|
|
ctx->data = NULL;
|
|
EVP_RAND_free(ctx->meth);
|
|
CRYPTO_THREAD_lock_free(ctx->refcnt_lock);
|
|
OPENSSL_free(ctx);
|
|
EVP_RAND_CTX_free(parent);
|
|
}
|
|
}
|
|
}
|
|
|
|
EVP_RAND *EVP_RAND_CTX_rand(EVP_RAND_CTX *ctx)
|
|
{
|
|
return ctx->meth;
|
|
}
|
|
|
|
static int evp_rand_get_ctx_params_locked(EVP_RAND_CTX *ctx,
|
|
OSSL_PARAM params[])
|
|
{
|
|
return ctx->meth->get_ctx_params(ctx->data, params);
|
|
}
|
|
|
|
int EVP_RAND_get_ctx_params(EVP_RAND_CTX *ctx, OSSL_PARAM params[])
|
|
{
|
|
int res;
|
|
|
|
if (!evp_rand_lock(ctx))
|
|
return 0;
|
|
res = evp_rand_get_ctx_params_locked(ctx, params);
|
|
evp_rand_unlock(ctx);
|
|
return res;
|
|
}
|
|
|
|
static int evp_rand_set_ctx_params_locked(EVP_RAND_CTX *ctx,
|
|
const OSSL_PARAM params[])
|
|
{
|
|
if (ctx->meth->set_ctx_params != NULL)
|
|
return ctx->meth->set_ctx_params(ctx->data, params);
|
|
return 1;
|
|
}
|
|
|
|
int EVP_RAND_set_ctx_params(EVP_RAND_CTX *ctx, const OSSL_PARAM params[])
|
|
{
|
|
int res;
|
|
|
|
if (!evp_rand_lock(ctx))
|
|
return 0;
|
|
res = evp_rand_set_ctx_params_locked(ctx, params);
|
|
evp_rand_unlock(ctx);
|
|
return res;
|
|
}
|
|
|
|
const OSSL_PARAM *EVP_RAND_gettable_params(const EVP_RAND *rand)
|
|
{
|
|
if (rand->gettable_params == NULL)
|
|
return NULL;
|
|
return rand->gettable_params(ossl_provider_ctx(EVP_RAND_provider(rand)));
|
|
}
|
|
|
|
const OSSL_PARAM *EVP_RAND_gettable_ctx_params(const EVP_RAND *rand)
|
|
{
|
|
if (rand->gettable_ctx_params == NULL)
|
|
return NULL;
|
|
return rand->gettable_ctx_params(
|
|
ossl_provider_ctx(EVP_RAND_provider(rand)));
|
|
}
|
|
|
|
const OSSL_PARAM *EVP_RAND_settable_ctx_params(const EVP_RAND *rand)
|
|
{
|
|
if (rand->settable_ctx_params == NULL)
|
|
return NULL;
|
|
return rand->settable_ctx_params(
|
|
ossl_provider_ctx(EVP_RAND_provider(rand)));
|
|
}
|
|
|
|
void EVP_RAND_do_all_provided(OSSL_LIB_CTX *libctx,
|
|
void (*fn)(EVP_RAND *rand, void *arg),
|
|
void *arg)
|
|
{
|
|
evp_generic_do_all(libctx, OSSL_OP_RAND,
|
|
(void (*)(void *, void *))fn, arg,
|
|
evp_rand_from_dispatch, evp_rand_free);
|
|
}
|
|
|
|
void EVP_RAND_names_do_all(const EVP_RAND *rand,
|
|
void (*fn)(const char *name, void *data),
|
|
void *data)
|
|
{
|
|
if (rand->prov != NULL)
|
|
evp_names_do_all(rand->prov, rand->name_id, fn, data);
|
|
}
|
|
|
|
static int evp_rand_instantiate_locked
|
|
(EVP_RAND_CTX *ctx, unsigned int strength, int prediction_resistance,
|
|
const unsigned char *pstr, size_t pstr_len)
|
|
{
|
|
return ctx->meth->instantiate(ctx->data, strength, prediction_resistance,
|
|
pstr, pstr_len);
|
|
}
|
|
|
|
int EVP_RAND_instantiate(EVP_RAND_CTX *ctx, unsigned int strength,
|
|
int prediction_resistance,
|
|
const unsigned char *pstr, size_t pstr_len)
|
|
{
|
|
int res;
|
|
|
|
if (!evp_rand_lock(ctx))
|
|
return 0;
|
|
res = evp_rand_instantiate_locked(ctx, strength, prediction_resistance,
|
|
pstr, pstr_len);
|
|
evp_rand_unlock(ctx);
|
|
return res;
|
|
}
|
|
|
|
static int evp_rand_uninstantiate_locked(EVP_RAND_CTX *ctx)
|
|
{
|
|
return ctx->meth->uninstantiate(ctx->data);
|
|
}
|
|
|
|
int EVP_RAND_uninstantiate(EVP_RAND_CTX *ctx)
|
|
{
|
|
int res;
|
|
|
|
if (!evp_rand_lock(ctx))
|
|
return 0;
|
|
res = evp_rand_uninstantiate_locked(ctx);
|
|
evp_rand_unlock(ctx);
|
|
return res;
|
|
}
|
|
|
|
static int evp_rand_generate_locked(EVP_RAND_CTX *ctx, unsigned char *out,
|
|
size_t outlen, unsigned int strength,
|
|
int prediction_resistance,
|
|
const unsigned char *addin,
|
|
size_t addin_len)
|
|
{
|
|
size_t chunk, max_request = 0;
|
|
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
|
|
|
|
params[0] = OSSL_PARAM_construct_size_t(OSSL_RAND_PARAM_MAX_REQUEST,
|
|
&max_request);
|
|
if (!evp_rand_get_ctx_params_locked(ctx, params)
|
|
|| max_request == 0) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_UNABLE_TO_GET_MAXIMUM_REQUEST_SIZE);
|
|
return 0;
|
|
}
|
|
for (; outlen > 0; outlen -= chunk, out += chunk) {
|
|
chunk = outlen > max_request ? max_request : outlen;
|
|
if (!ctx->meth->generate(ctx->data, out, chunk, strength,
|
|
prediction_resistance, addin, addin_len)) {
|
|
ERR_raise(ERR_LIB_EVP, EVP_R_GENERATE_ERROR);
|
|
return 0;
|
|
}
|
|
/*
|
|
* Prediction resistance is only relevant the first time around,
|
|
* subsequently, the DRBG has already been properly reseeded.
|
|
*/
|
|
prediction_resistance = 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int EVP_RAND_generate(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen,
|
|
unsigned int strength, int prediction_resistance,
|
|
const unsigned char *addin, size_t addin_len)
|
|
{
|
|
int res;
|
|
|
|
if (!evp_rand_lock(ctx))
|
|
return 0;
|
|
res = evp_rand_generate_locked(ctx, out, outlen, strength,
|
|
prediction_resistance, addin, addin_len);
|
|
evp_rand_unlock(ctx);
|
|
return res;
|
|
}
|
|
|
|
static int evp_rand_reseed_locked(EVP_RAND_CTX *ctx, int prediction_resistance,
|
|
const unsigned char *ent, size_t ent_len,
|
|
const unsigned char *addin, size_t addin_len)
|
|
{
|
|
if (ctx->meth->reseed != NULL)
|
|
return ctx->meth->reseed(ctx->data, prediction_resistance,
|
|
ent, ent_len, addin, addin_len);
|
|
return 1;
|
|
}
|
|
|
|
int EVP_RAND_reseed(EVP_RAND_CTX *ctx, int prediction_resistance,
|
|
const unsigned char *ent, size_t ent_len,
|
|
const unsigned char *addin, size_t addin_len)
|
|
{
|
|
int res;
|
|
|
|
if (!evp_rand_lock(ctx))
|
|
return 0;
|
|
res = evp_rand_reseed_locked(ctx, prediction_resistance,
|
|
ent, ent_len, addin, addin_len);
|
|
evp_rand_unlock(ctx);
|
|
return res;
|
|
}
|
|
|
|
static unsigned int evp_rand_strength_locked(EVP_RAND_CTX *ctx)
|
|
{
|
|
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
|
|
unsigned int strength = 0;
|
|
|
|
params[0] = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH, &strength);
|
|
if (!evp_rand_get_ctx_params_locked(ctx, params))
|
|
return 0;
|
|
return strength;
|
|
}
|
|
|
|
unsigned int EVP_RAND_strength(EVP_RAND_CTX *ctx)
|
|
{
|
|
unsigned int res;
|
|
|
|
if (!evp_rand_lock(ctx))
|
|
return 0;
|
|
res = evp_rand_strength_locked(ctx);
|
|
evp_rand_unlock(ctx);
|
|
return res;
|
|
}
|
|
|
|
static int evp_rand_nonce_locked(EVP_RAND_CTX *ctx, unsigned char *out,
|
|
size_t outlen)
|
|
{
|
|
unsigned int str = evp_rand_strength_locked(ctx);
|
|
|
|
if (ctx->meth->nonce == NULL)
|
|
return 0;
|
|
if (ctx->meth->nonce(ctx->data, out, str, outlen, outlen))
|
|
return 1;
|
|
return evp_rand_generate_locked(ctx, out, outlen, str, 0, NULL, 0);
|
|
}
|
|
|
|
int EVP_RAND_nonce(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen)
|
|
{
|
|
int res;
|
|
|
|
if (!evp_rand_lock(ctx))
|
|
return 0;
|
|
res = evp_rand_nonce_locked(ctx, out, outlen);
|
|
evp_rand_unlock(ctx);
|
|
return res;
|
|
}
|
|
|
|
int EVP_RAND_state(EVP_RAND_CTX *ctx)
|
|
{
|
|
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
|
|
int state;
|
|
|
|
params[0] = OSSL_PARAM_construct_int(OSSL_RAND_PARAM_STATE, &state);
|
|
if (!EVP_RAND_get_ctx_params(ctx, params))
|
|
state = EVP_RAND_STATE_ERROR;
|
|
return state;
|
|
}
|
|
|
|
static int evp_rand_verify_zeroization_locked(EVP_RAND_CTX *ctx)
|
|
{
|
|
if (ctx->meth->verify_zeroization != NULL)
|
|
return ctx->meth->verify_zeroization(ctx->data);
|
|
return 0;
|
|
}
|
|
|
|
int EVP_RAND_verify_zeroization(EVP_RAND_CTX *ctx)
|
|
{
|
|
int res;
|
|
|
|
if (!evp_rand_lock(ctx))
|
|
return 0;
|
|
res = evp_rand_verify_zeroization_locked(ctx);
|
|
evp_rand_unlock(ctx);
|
|
return res;
|
|
}
|