mirror of
https://github.com/openssl/openssl.git
synced 2024-12-09 05:51:54 +08:00
982c42cb20
Generates a number coprime to 2, 3, 5, 7, 11. Speed: Trial div (add) : trial div (retry) : coprime 1 : 0.42 : 0.84
661 lines
19 KiB
C
661 lines
19 KiB
C
/* crypto/bn/bn_prime.c */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
#include "cryptlib.h"
|
|
#include "bn_lcl.h"
|
|
#include <openssl/rand.h>
|
|
|
|
/* NB: these functions have been "upgraded", the deprecated versions (which are
|
|
* compatibility wrappers using these functions) are in bn_depr.c.
|
|
* - Geoff
|
|
*/
|
|
|
|
/* The quick sieve algorithm approach to weeding out primes is
|
|
* Philip Zimmermann's, as implemented in PGP. I have had a read of
|
|
* his comments and implemented my own version.
|
|
*/
|
|
#include "bn_prime.h"
|
|
|
|
static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
|
|
const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
|
|
static int probable_prime(BIGNUM *rnd, int bits);
|
|
static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
|
|
const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
|
|
|
|
static int prime_offsets[480] = {
|
|
13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
|
|
97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
|
|
169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229, 233, 239,
|
|
241, 247, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293, 299, 307, 311,
|
|
313, 317, 323, 331, 337, 347, 349, 353, 359, 361, 367, 373, 377, 379, 383,
|
|
389, 391, 397, 401, 403, 409, 419, 421, 431, 433, 437, 439, 443, 449, 457,
|
|
461, 463, 467, 479, 481, 487, 491, 493, 499, 503, 509, 521, 523, 527, 529,
|
|
533, 541, 547, 551, 557, 559, 563, 569, 571, 577, 587, 589, 593, 599, 601,
|
|
607, 611, 613, 617, 619, 629, 631, 641, 643, 647, 653, 659, 661, 667, 673,
|
|
677, 683, 689, 691, 697, 701, 703, 709, 713, 719, 727, 731, 733, 739, 743,
|
|
751, 757, 761, 767, 769, 773, 779, 787, 793, 797, 799, 809, 811, 817, 821,
|
|
823, 827, 829, 839, 841, 851, 853, 857, 859, 863, 871, 877, 881, 883, 887,
|
|
893, 899, 901, 907, 911, 919, 923, 929, 937, 941, 943, 947, 949, 953, 961,
|
|
967, 971, 977, 983, 989, 991, 997, 1003, 1007, 1009, 1013, 1019, 1021, 1027,
|
|
1031, 1033, 1037, 1039, 1049, 1051, 1061, 1063, 1069, 1073, 1079, 1081,
|
|
1087, 1091, 1093, 1097, 1103, 1109, 1117, 1121, 1123, 1129, 1139, 1147,
|
|
1151, 1153, 1157, 1159, 1163, 1171, 1181, 1187, 1189, 1193, 1201, 1207,
|
|
1213, 1217, 1219, 1223, 1229, 1231, 1237, 1241, 1247, 1249, 1259, 1261,
|
|
1271, 1273, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1313,
|
|
1319, 1321, 1327, 1333, 1339, 1343, 1349, 1357, 1361, 1363, 1367, 1369,
|
|
1373, 1381, 1387, 1391, 1399, 1403, 1409, 1411, 1417, 1423, 1427, 1429,
|
|
1433, 1439, 1447, 1451, 1453, 1457, 1459, 1469, 1471, 1481, 1483, 1487,
|
|
1489, 1493, 1499, 1501, 1511, 1513, 1517, 1523, 1531, 1537, 1541, 1543,
|
|
1549, 1553, 1559, 1567, 1571, 1577, 1579, 1583, 1591, 1597, 1601, 1607,
|
|
1609, 1613, 1619, 1621, 1627, 1633, 1637, 1643, 1649, 1651, 1657, 1663,
|
|
1667, 1669, 1679, 1681, 1691, 1693, 1697, 1699, 1703, 1709, 1711, 1717,
|
|
1721, 1723, 1733, 1739, 1741, 1747, 1751, 1753, 1759, 1763, 1769, 1777,
|
|
1781, 1783, 1787, 1789, 1801, 1807, 1811, 1817, 1819, 1823, 1829, 1831,
|
|
1843, 1847, 1849, 1853, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1891,
|
|
1901, 1907, 1909, 1913, 1919, 1921, 1927, 1931, 1933, 1937, 1943, 1949,
|
|
1951, 1957, 1961, 1963, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011,
|
|
2017, 2021, 2027, 2029, 2033, 2039, 2041, 2047, 2053, 2059, 2063, 2069,
|
|
2071, 2077, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2117, 2119, 2129,
|
|
2131, 2137, 2141, 2143, 2147, 2153, 2159, 2161, 2171, 2173, 2179, 2183,
|
|
2197, 2201, 2203, 2207, 2209, 2213, 2221, 2227, 2231, 2237, 2239, 2243,
|
|
2249, 2251, 2257, 2263, 2267, 2269, 2273, 2279, 2281, 2287, 2291, 2293,
|
|
2297, 2309, 2311 };
|
|
static int prime_offset_count = 480;
|
|
static int prime_multiplier = 2310;
|
|
|
|
int BN_GENCB_call(BN_GENCB *cb, int a, int b)
|
|
{
|
|
/* No callback means continue */
|
|
if(!cb) return 1;
|
|
switch(cb->ver)
|
|
{
|
|
case 1:
|
|
/* Deprecated-style callbacks */
|
|
if(!cb->cb.cb_1)
|
|
return 1;
|
|
cb->cb.cb_1(a, b, cb->arg);
|
|
return 1;
|
|
case 2:
|
|
/* New-style callbacks */
|
|
return cb->cb.cb_2(a, b, cb);
|
|
default:
|
|
break;
|
|
}
|
|
/* Unrecognised callback type */
|
|
return 0;
|
|
}
|
|
|
|
int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
|
|
const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
|
|
{
|
|
BIGNUM *t;
|
|
int found=0;
|
|
int i,j,c1=0;
|
|
BN_CTX *ctx;
|
|
int checks = BN_prime_checks_for_size(bits);
|
|
|
|
if (bits < 2)
|
|
{
|
|
/* There are no prime numbers this small. */
|
|
BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
else if (bits == 2 && safe)
|
|
{
|
|
/* The smallest safe prime (7) is three bits. */
|
|
BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
|
|
ctx=BN_CTX_new();
|
|
if (ctx == NULL) goto err;
|
|
BN_CTX_start(ctx);
|
|
t = BN_CTX_get(ctx);
|
|
if(!t) goto err;
|
|
loop:
|
|
/* make a random number and set the top and bottom bits */
|
|
if (add == NULL)
|
|
{
|
|
if (!probable_prime(ret,bits)) goto err;
|
|
}
|
|
else
|
|
{
|
|
if (safe)
|
|
{
|
|
if (!probable_prime_dh_safe(ret,bits,add,rem,ctx))
|
|
goto err;
|
|
}
|
|
else
|
|
{
|
|
if (!bn_probable_prime_dh(ret,bits,add,rem,ctx))
|
|
goto err;
|
|
}
|
|
}
|
|
/* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */
|
|
if(!BN_GENCB_call(cb, 0, c1++))
|
|
/* aborted */
|
|
goto err;
|
|
|
|
if (!safe)
|
|
{
|
|
i=BN_is_prime_fasttest_ex(ret,checks,ctx,0,cb);
|
|
if (i == -1) goto err;
|
|
if (i == 0) goto loop;
|
|
}
|
|
else
|
|
{
|
|
/* for "safe prime" generation,
|
|
* check that (p-1)/2 is prime.
|
|
* Since a prime is odd, We just
|
|
* need to divide by 2 */
|
|
if (!BN_rshift1(t,ret)) goto err;
|
|
|
|
for (i=0; i<checks; i++)
|
|
{
|
|
j=BN_is_prime_fasttest_ex(ret,1,ctx,0,cb);
|
|
if (j == -1) goto err;
|
|
if (j == 0) goto loop;
|
|
|
|
j=BN_is_prime_fasttest_ex(t,1,ctx,0,cb);
|
|
if (j == -1) goto err;
|
|
if (j == 0) goto loop;
|
|
|
|
if(!BN_GENCB_call(cb, 2, c1-1))
|
|
goto err;
|
|
/* We have a safe prime test pass */
|
|
}
|
|
}
|
|
/* we have a prime :-) */
|
|
found = 1;
|
|
err:
|
|
if (ctx != NULL)
|
|
{
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx);
|
|
}
|
|
bn_check_top(ret);
|
|
return found;
|
|
}
|
|
|
|
int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, BN_GENCB *cb)
|
|
{
|
|
return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
|
|
}
|
|
|
|
int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
|
|
int do_trial_division, BN_GENCB *cb)
|
|
{
|
|
int i, j, ret = -1;
|
|
int k;
|
|
BN_CTX *ctx = NULL;
|
|
BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
|
|
BN_MONT_CTX *mont = NULL;
|
|
const BIGNUM *A = NULL;
|
|
|
|
if (BN_cmp(a, BN_value_one()) <= 0)
|
|
return 0;
|
|
|
|
if (checks == BN_prime_checks)
|
|
checks = BN_prime_checks_for_size(BN_num_bits(a));
|
|
|
|
/* first look for small factors */
|
|
if (!BN_is_odd(a))
|
|
/* a is even => a is prime if and only if a == 2 */
|
|
return BN_is_word(a, 2);
|
|
if (do_trial_division)
|
|
{
|
|
for (i = 1; i < NUMPRIMES; i++)
|
|
if (BN_mod_word(a, primes[i]) == 0)
|
|
return 0;
|
|
if(!BN_GENCB_call(cb, 1, -1))
|
|
goto err;
|
|
}
|
|
|
|
if (ctx_passed != NULL)
|
|
ctx = ctx_passed;
|
|
else
|
|
if ((ctx=BN_CTX_new()) == NULL)
|
|
goto err;
|
|
BN_CTX_start(ctx);
|
|
|
|
/* A := abs(a) */
|
|
if (a->neg)
|
|
{
|
|
BIGNUM *t;
|
|
if ((t = BN_CTX_get(ctx)) == NULL) goto err;
|
|
BN_copy(t, a);
|
|
t->neg = 0;
|
|
A = t;
|
|
}
|
|
else
|
|
A = a;
|
|
A1 = BN_CTX_get(ctx);
|
|
A1_odd = BN_CTX_get(ctx);
|
|
check = BN_CTX_get(ctx);
|
|
if (check == NULL) goto err;
|
|
|
|
/* compute A1 := A - 1 */
|
|
if (!BN_copy(A1, A))
|
|
goto err;
|
|
if (!BN_sub_word(A1, 1))
|
|
goto err;
|
|
if (BN_is_zero(A1))
|
|
{
|
|
ret = 0;
|
|
goto err;
|
|
}
|
|
|
|
/* write A1 as A1_odd * 2^k */
|
|
k = 1;
|
|
while (!BN_is_bit_set(A1, k))
|
|
k++;
|
|
if (!BN_rshift(A1_odd, A1, k))
|
|
goto err;
|
|
|
|
/* Montgomery setup for computations mod A */
|
|
mont = BN_MONT_CTX_new();
|
|
if (mont == NULL)
|
|
goto err;
|
|
if (!BN_MONT_CTX_set(mont, A, ctx))
|
|
goto err;
|
|
|
|
for (i = 0; i < checks; i++)
|
|
{
|
|
if (!BN_pseudo_rand_range(check, A1))
|
|
goto err;
|
|
if (!BN_add_word(check, 1))
|
|
goto err;
|
|
/* now 1 <= check < A */
|
|
|
|
j = witness(check, A, A1, A1_odd, k, ctx, mont);
|
|
if (j == -1) goto err;
|
|
if (j)
|
|
{
|
|
ret=0;
|
|
goto err;
|
|
}
|
|
if(!BN_GENCB_call(cb, 1, i))
|
|
goto err;
|
|
}
|
|
ret=1;
|
|
err:
|
|
if (ctx != NULL)
|
|
{
|
|
BN_CTX_end(ctx);
|
|
if (ctx_passed == NULL)
|
|
BN_CTX_free(ctx);
|
|
}
|
|
if (mont != NULL)
|
|
BN_MONT_CTX_free(mont);
|
|
|
|
return(ret);
|
|
}
|
|
|
|
int bn_probable_prime_dh_retry(BIGNUM *rnd, int bits, BN_CTX *ctx)
|
|
{
|
|
int i;
|
|
BIGNUM *t1;
|
|
int ret = 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((t1 = BN_CTX_get(ctx)) == NULL) goto err;
|
|
|
|
loop:
|
|
if (!BN_rand(rnd, bits, 0, 1)) goto err;
|
|
|
|
/* we now have a random number 'rand' to test. */
|
|
|
|
for (i = 1; i < NUMPRIMES; i++)
|
|
{
|
|
/* check that rnd is a prime */
|
|
if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1)
|
|
{
|
|
/*if (!BN_add(rnd, rnd, add)) goto err;*/
|
|
goto loop;
|
|
}
|
|
}
|
|
ret=1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
bn_check_top(rnd);
|
|
return(ret);
|
|
}
|
|
|
|
int bn_probable_prime_dh_coprime(BIGNUM *rnd, int bits, BN_CTX *ctx)
|
|
{
|
|
int i;
|
|
BIGNUM *t1;
|
|
BIGNUM *offset_index;
|
|
BIGNUM *offset_count;
|
|
int ret = 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((t1 = BN_CTX_get(ctx)) == NULL) goto err;
|
|
if ((offset_index = BN_CTX_get(ctx)) == NULL) goto err;
|
|
if ((offset_count = BN_CTX_get(ctx)) == NULL) goto err;
|
|
|
|
BN_add_word(offset_count, prime_offset_count);
|
|
|
|
loop:
|
|
if (!BN_rand(rnd, bits, 0, 1)) goto err;
|
|
if (!BN_rand_range(offset_index, offset_count)) goto err;
|
|
|
|
BN_mul_word(rnd, prime_multiplier);
|
|
BN_add_word(rnd, prime_offsets[BN_get_word(offset_index)]);
|
|
|
|
/* we now have a random number 'rand' to test. */
|
|
|
|
/* skip primes 2, 3, 5, 7, 11 */
|
|
for (i = 5; i < NUMPRIMES; i++)
|
|
{
|
|
/* check that rnd is a prime */
|
|
if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1)
|
|
{
|
|
goto loop;
|
|
}
|
|
}
|
|
ret=1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
bn_check_top(rnd);
|
|
return(ret);
|
|
}
|
|
|
|
static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
|
|
const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont)
|
|
{
|
|
if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
|
|
return -1;
|
|
if (BN_is_one(w))
|
|
return 0; /* probably prime */
|
|
if (BN_cmp(w, a1) == 0)
|
|
return 0; /* w == -1 (mod a), 'a' is probably prime */
|
|
while (--k)
|
|
{
|
|
if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
|
|
return -1;
|
|
if (BN_is_one(w))
|
|
return 1; /* 'a' is composite, otherwise a previous 'w' would
|
|
* have been == -1 (mod 'a') */
|
|
if (BN_cmp(w, a1) == 0)
|
|
return 0; /* w == -1 (mod a), 'a' is probably prime */
|
|
}
|
|
/* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
|
|
* and it is neither -1 nor +1 -- so 'a' cannot be prime */
|
|
bn_check_top(w);
|
|
return 1;
|
|
}
|
|
|
|
static int probable_prime(BIGNUM *rnd, int bits)
|
|
{
|
|
int i;
|
|
prime_t mods[NUMPRIMES];
|
|
BN_ULONG delta;
|
|
BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES-1];
|
|
char is_single_word = bits <= BN_BITS2;
|
|
|
|
again:
|
|
if (!BN_rand(rnd,bits,1,1)) return(0);
|
|
/* we now have a random number 'rnd' to test. */
|
|
for (i=1; i<NUMPRIMES; i++)
|
|
mods[i]=(prime_t)BN_mod_word(rnd,(BN_ULONG)primes[i]);
|
|
/* If bits is so small that it fits into a single word then we
|
|
* additionally don't want to exceed that many bits. */
|
|
if (is_single_word)
|
|
{
|
|
BN_ULONG size_limit = (((BN_ULONG) 1) << bits) - BN_get_word(rnd) - 1;
|
|
if (size_limit < maxdelta)
|
|
maxdelta = size_limit;
|
|
}
|
|
delta=0;
|
|
loop:
|
|
if (is_single_word)
|
|
{
|
|
BN_ULONG rnd_word = BN_get_word(rnd);
|
|
|
|
/* In the case that the candidate prime is a single word then
|
|
* we check that:
|
|
* 1) It's greater than primes[i] because we shouldn't reject
|
|
* 3 as being a prime number because it's a multiple of
|
|
* three.
|
|
* 2) That it's not a multiple of a known prime. We don't
|
|
* check that rnd-1 is also coprime to all the known
|
|
* primes because there aren't many small primes where
|
|
* that's true. */
|
|
for (i=1; i<NUMPRIMES && primes[i]<rnd_word; i++)
|
|
{
|
|
if ((mods[i]+delta)%primes[i] == 0)
|
|
{
|
|
delta+=2;
|
|
if (delta > maxdelta) goto again;
|
|
goto loop;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i=1; i<NUMPRIMES; i++)
|
|
{
|
|
/* check that rnd is not a prime and also
|
|
* that gcd(rnd-1,primes) == 1 (except for 2) */
|
|
if (((mods[i]+delta)%primes[i]) <= 1)
|
|
{
|
|
delta+=2;
|
|
if (delta > maxdelta) goto again;
|
|
goto loop;
|
|
}
|
|
}
|
|
}
|
|
if (!BN_add_word(rnd,delta)) return(0);
|
|
if (BN_num_bits(rnd) != bits)
|
|
goto again;
|
|
bn_check_top(rnd);
|
|
return(1);
|
|
}
|
|
|
|
int bn_probable_prime_dh(BIGNUM *rnd, int bits,
|
|
const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx)
|
|
{
|
|
int i,ret=0;
|
|
BIGNUM *t1;
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((t1 = BN_CTX_get(ctx)) == NULL) goto err;
|
|
|
|
if (!BN_rand(rnd,bits,0,1)) goto err;
|
|
|
|
/* we need ((rnd-rem) % add) == 0 */
|
|
|
|
if (!BN_mod(t1,rnd,add,ctx)) goto err;
|
|
if (!BN_sub(rnd,rnd,t1)) goto err;
|
|
if (rem == NULL)
|
|
{ if (!BN_add_word(rnd,1)) goto err; }
|
|
else
|
|
{ if (!BN_add(rnd,rnd,rem)) goto err; }
|
|
|
|
/* we now have a random number 'rand' to test. */
|
|
|
|
loop:
|
|
for (i=1; i<NUMPRIMES; i++)
|
|
{
|
|
/* check that rnd is a prime */
|
|
if (BN_mod_word(rnd,(BN_ULONG)primes[i]) <= 1)
|
|
{
|
|
if (!BN_add(rnd,rnd,add)) goto err;
|
|
goto loop;
|
|
}
|
|
}
|
|
ret=1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
bn_check_top(rnd);
|
|
return(ret);
|
|
}
|
|
|
|
static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
|
|
const BIGNUM *rem, BN_CTX *ctx)
|
|
{
|
|
int i,ret=0;
|
|
BIGNUM *t1,*qadd,*q;
|
|
|
|
bits--;
|
|
BN_CTX_start(ctx);
|
|
t1 = BN_CTX_get(ctx);
|
|
q = BN_CTX_get(ctx);
|
|
qadd = BN_CTX_get(ctx);
|
|
if (qadd == NULL) goto err;
|
|
|
|
if (!BN_rshift1(qadd,padd)) goto err;
|
|
|
|
if (!BN_rand(q,bits,0,1)) goto err;
|
|
|
|
/* we need ((rnd-rem) % add) == 0 */
|
|
if (!BN_mod(t1,q,qadd,ctx)) goto err;
|
|
if (!BN_sub(q,q,t1)) goto err;
|
|
if (rem == NULL)
|
|
{ if (!BN_add_word(q,1)) goto err; }
|
|
else
|
|
{
|
|
if (!BN_rshift1(t1,rem)) goto err;
|
|
if (!BN_add(q,q,t1)) goto err;
|
|
}
|
|
|
|
/* we now have a random number 'rand' to test. */
|
|
if (!BN_lshift1(p,q)) goto err;
|
|
if (!BN_add_word(p,1)) goto err;
|
|
|
|
loop:
|
|
for (i=1; i<NUMPRIMES; i++)
|
|
{
|
|
/* check that p and q are prime */
|
|
/* check that for p and q
|
|
* gcd(p-1,primes) == 1 (except for 2) */
|
|
if ((BN_mod_word(p,(BN_ULONG)primes[i]) == 0) ||
|
|
(BN_mod_word(q,(BN_ULONG)primes[i]) == 0))
|
|
{
|
|
if (!BN_add(p,p,padd)) goto err;
|
|
if (!BN_add(q,q,qadd)) goto err;
|
|
goto loop;
|
|
}
|
|
}
|
|
ret=1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
bn_check_top(p);
|
|
return(ret);
|
|
}
|