openssl/crypto/mem_sec.c
Rich Salz bbd86bf542 mem functions cleanup
Only two macros CRYPTO_MDEBUG and CRYPTO_MDEBUG_ABORT to control this.
If CRYPTO_MDEBUG is not set, #ifdef out the whole debug machinery.
        (Thanks to Jakob Bohm for the suggestion!)
Make the "change wrapper functions" be the only paradigm.
Wrote documentation!
Format the 'set func' functions so their paramlists are legible.
Format some multi-line comments.
Remove ability to get/set the "memory debug" functions at runtme.
Remove MemCheck_* and CRYPTO_malloc_debug_init macros.
Add CRYPTO_mem_debug(int flag) function.
Add test/memleaktest.
Rename CRYPTO_malloc_init to OPENSSL_malloc_init; remove needless calls.

Reviewed-by: Richard Levitte <levitte@openssl.org>
2016-01-07 15:14:18 -05:00

548 lines
14 KiB
C

/*
* Copyright 2004-2014, Akamai Technologies. All Rights Reserved.
* This file is distributed under the terms of the OpenSSL license.
*/
/*
* This file is in two halves. The first half implements the public API
* to be used by external consumers, and to be used by OpenSSL to store
* data in a "secure arena." The second half implements the secure arena.
* For details on that implementation, see below (look for uppercase
* "SECURE HEAP IMPLEMENTATION").
*/
#include <openssl/crypto.h>
#include <e_os.h>
#if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX)
# define IMPLEMENTED
# include <stdlib.h>
# include <string.h>
# include <assert.h>
# include <unistd.h>
# include <sys/types.h>
# include <sys/mman.h>
# include <sys/param.h>
# include <sys/stat.h>
# include <fcntl.h>
#endif
#define LOCK() CRYPTO_w_lock(CRYPTO_LOCK_MALLOC)
#define UNLOCK() CRYPTO_w_unlock(CRYPTO_LOCK_MALLOC)
#define CLEAR(p, s) OPENSSL_cleanse(p, s)
#ifndef PAGE_SIZE
# define PAGE_SIZE 4096
#endif
#ifdef IMPLEMENTED
static size_t secure_mem_used;
static int secure_mem_initialized;
static int too_late;
/*
* These are the functions that must be implemented by a secure heap (sh).
*/
static int sh_init(size_t size, int minsize);
static char *sh_malloc(size_t size);
static void sh_free(char *ptr);
static void sh_done(void);
static int sh_actual_size(char *ptr);
static int sh_allocated(const char *ptr);
#endif
int CRYPTO_secure_malloc_init(size_t size, int minsize)
{
#ifdef IMPLEMENTED
int ret = 0;
if (too_late)
return ret;
LOCK();
OPENSSL_assert(!secure_mem_initialized);
if (!secure_mem_initialized) {
ret = sh_init(size, minsize);
secure_mem_initialized = 1;
}
UNLOCK();
return ret;
#else
return 0;
#endif /* IMPLEMENTED */
}
void CRYPTO_secure_malloc_done()
{
#ifdef IMPLEMENTED
LOCK();
sh_done();
secure_mem_initialized = 0;
UNLOCK();
#endif /* IMPLEMENTED */
}
int CRYPTO_secure_malloc_initialized()
{
#ifdef IMPLEMENTED
return secure_mem_initialized;
#else
return 0;
#endif /* IMPLEMENTED */
}
void *CRYPTO_secure_malloc(size_t num, const char *file, int line)
{
#ifdef IMPLEMENTED
void *ret;
size_t actual_size;
if (!secure_mem_initialized) {
too_late = 1;
return CRYPTO_malloc(num, file, line);
}
LOCK();
ret = sh_malloc(num);
actual_size = ret ? sh_actual_size(ret) : 0;
secure_mem_used += actual_size;
UNLOCK();
return ret;
#else
return CRYPTO_malloc(num, file, line);
#endif /* IMPLEMENTED */
}
void CRYPTO_secure_free(void *ptr)
{
#ifdef IMPLEMENTED
size_t actual_size;
if (ptr == NULL)
return;
if (!secure_mem_initialized) {
CRYPTO_free(ptr);
return;
}
LOCK();
actual_size = sh_actual_size(ptr);
CLEAR(ptr, actual_size);
secure_mem_used -= actual_size;
sh_free(ptr);
UNLOCK();
#else
CRYPTO_free(ptr);
#endif /* IMPLEMENTED */
}
int CRYPTO_secure_allocated(const void *ptr)
{
#ifdef IMPLEMENTED
int ret;
if (!secure_mem_initialized)
return 0;
LOCK();
ret = sh_allocated(ptr);
UNLOCK();
return ret;
#else
return 0;
#endif /* IMPLEMENTED */
}
size_t CRYPTO_secure_used()
{
#ifdef IMPLEMENTED
return secure_mem_used;
#else
return 0;
#endif /* IMPLEMENTED */
}
/* END OF PAGE ...
... START OF PAGE */
/*
* SECURE HEAP IMPLEMENTATION
*/
#ifdef IMPLEMENTED
/*
* The implementation provided here uses a fixed-sized mmap() heap,
* which is locked into memory, not written to core files, and protected
* on either side by an unmapped page, which will catch pointer overruns
* (or underruns) and an attempt to read data out of the secure heap.
* Free'd memory is zero'd or otherwise cleansed.
*
* This is a pretty standard buddy allocator. We keep areas in a multiple
* of "sh.minsize" units. The freelist and bitmaps are kept separately,
* so all (and only) data is kept in the mmap'd heap.
*
* This code assumes eight-bit bytes. The numbers 3 and 7 are all over the
* place.
*/
# define TESTBIT(t, b) (t[(b) >> 3] & (1 << ((b) & 7)))
# define SETBIT(t, b) (t[(b) >> 3] |= (1 << ((b) & 7)))
# define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(1 << ((b) & 7))))
#define WITHIN_ARENA(p) \
((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size])
#define WITHIN_FREELIST(p) \
((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size])
typedef struct sh_list_st
{
struct sh_list_st *next;
struct sh_list_st **p_next;
} SH_LIST;
typedef struct sh_st
{
char* map_result;
size_t map_size;
char *arena;
int arena_size;
char **freelist;
int freelist_size;
int minsize;
unsigned char *bittable;
unsigned char *bitmalloc;
int bittable_size; /* size in bits */
} SH;
static SH sh;
static int sh_getlist(char *ptr)
{
int list = sh.freelist_size - 1;
int bit = (sh.arena_size + ptr - sh.arena) / sh.minsize;
for (; bit; bit >>= 1, list--) {
if (TESTBIT(sh.bittable, bit))
break;
OPENSSL_assert((bit & 1) == 0);
}
return list;
}
static int sh_testbit(char *ptr, int list, unsigned char *table)
{
int bit;
OPENSSL_assert(list >= 0 && list < sh.freelist_size);
OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
return TESTBIT(table, bit);
}
static void sh_clearbit(char *ptr, int list, unsigned char *table)
{
int bit;
OPENSSL_assert(list >= 0 && list < sh.freelist_size);
OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
OPENSSL_assert(TESTBIT(table, bit));
CLEARBIT(table, bit);
}
static void sh_setbit(char *ptr, int list, unsigned char *table)
{
int bit;
OPENSSL_assert(list >= 0 && list < sh.freelist_size);
OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
OPENSSL_assert(!TESTBIT(table, bit));
SETBIT(table, bit);
}
static void sh_add_to_list(char **list, char *ptr)
{
SH_LIST *temp;
OPENSSL_assert(WITHIN_FREELIST(list));
OPENSSL_assert(WITHIN_ARENA(ptr));
temp = (SH_LIST *)ptr;
temp->next = *(SH_LIST **)list;
OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next));
temp->p_next = (SH_LIST **)list;
if (temp->next != NULL) {
OPENSSL_assert((char **)temp->next->p_next == list);
temp->next->p_next = &(temp->next);
}
*list = ptr;
}
static void sh_remove_from_list(char *ptr, char *list)
{
SH_LIST *temp, *temp2;
temp = (SH_LIST *)ptr;
if (temp->next != NULL)
temp->next->p_next = temp->p_next;
*temp->p_next = temp->next;
if (temp->next == NULL)
return;
temp2 = temp->next;
OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next));
}
static int sh_init(size_t size, int minsize)
{
int i, ret;
size_t pgsize;
size_t aligned;
memset(&sh, 0, sizeof sh);
/* make sure size and minsize are powers of 2 */
OPENSSL_assert(size > 0);
OPENSSL_assert((size & (size - 1)) == 0);
OPENSSL_assert(minsize > 0);
OPENSSL_assert((minsize & (minsize - 1)) == 0);
if (size <= 0 || (size & (size - 1)) != 0)
goto err;
if (minsize <= 0 || (minsize & (minsize - 1)) != 0)
goto err;
sh.arena_size = size;
sh.minsize = minsize;
sh.bittable_size = (sh.arena_size / sh.minsize) * 2;
sh.freelist_size = -1;
for (i = sh.bittable_size; i; i >>= 1)
sh.freelist_size++;
sh.freelist = OPENSSL_zalloc(sh.freelist_size * sizeof (char *));
OPENSSL_assert(sh.freelist != NULL);
if (sh.freelist == NULL)
goto err;
sh.bittable = OPENSSL_zalloc(sh.bittable_size >> 3);
OPENSSL_assert(sh.bittable != NULL);
if (sh.bittable == NULL)
goto err;
sh.bitmalloc = OPENSSL_zalloc(sh.bittable_size >> 3);
OPENSSL_assert(sh.bitmalloc != NULL);
if (sh.bitmalloc == NULL)
goto err;
/* Allocate space for heap, and two extra pages as guards */
#if defined(_SC_PAGE_SIZE) || defined (_SC_PAGESIZE)
{
# if defined(_SC_PAGE_SIZE)
long tmppgsize = sysconf(_SC_PAGE_SIZE);
# else
long tmppgsize = sysconf(_SC_PAGESIZE);
# endif
if (tmppgsize < 1)
pgsize = PAGE_SIZE;
else
pgsize = (size_t)tmppgsize;
}
#else
pgsize = PAGE_SIZE;
#endif
sh.map_size = pgsize + sh.arena_size + pgsize;
if (1) {
#ifdef MAP_ANON
sh.map_result = mmap(NULL, sh.map_size,
PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
} else {
#endif
int fd;
sh.map_result = MAP_FAILED;
if ((fd = open("/dev/zero", O_RDWR)) >= 0) {
sh.map_result = mmap(NULL, sh.map_size,
PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
close(fd);
}
}
OPENSSL_assert(sh.map_result != MAP_FAILED);
if (sh.map_result == MAP_FAILED)
goto err;
sh.arena = (char *)(sh.map_result + pgsize);
sh_setbit(sh.arena, 0, sh.bittable);
sh_add_to_list(&sh.freelist[0], sh.arena);
/* Now try to add guard pages and lock into memory. */
ret = 1;
/* Starting guard is already aligned from mmap. */
if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0)
ret = 2;
/* Ending guard page - need to round up to page boundary */
aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1);
if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0)
ret = 2;
if (mlock(sh.arena, sh.arena_size) < 0)
ret = 2;
#ifdef MADV_DONTDUMP
if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0)
ret = 2;
#endif
return ret;
err:
sh_done();
return 0;
}
static void sh_done()
{
OPENSSL_free(sh.freelist);
OPENSSL_free(sh.bittable);
OPENSSL_free(sh.bitmalloc);
if (sh.map_result != NULL && sh.map_size)
munmap(sh.map_result, sh.map_size);
memset(&sh, 0, sizeof sh);
}
static int sh_allocated(const char *ptr)
{
return WITHIN_ARENA(ptr) ? 1 : 0;
}
static char *sh_find_my_buddy(char *ptr, int list)
{
int bit;
char *chunk = NULL;
bit = (1 << list) + (ptr - sh.arena) / (sh.arena_size >> list);
bit ^= 1;
if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit))
chunk = sh.arena + ((bit & ((1 << list) - 1)) * (sh.arena_size >> list));
return chunk;
}
static char *sh_malloc(size_t size)
{
int list, slist;
size_t i;
char *chunk;
list = sh.freelist_size - 1;
for (i = sh.minsize; i < size; i <<= 1)
list--;
if (list < 0)
return NULL;
/* try to find a larger entry to split */
for (slist = list; slist >= 0; slist--)
if (sh.freelist[slist] != NULL)
break;
if (slist < 0)
return NULL;
/* split larger entry */
while (slist != list) {
char *temp = sh.freelist[slist];
/* remove from bigger list */
OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
sh_clearbit(temp, slist, sh.bittable);
sh_remove_from_list(temp, sh.freelist[slist]);
OPENSSL_assert(temp != sh.freelist[slist]);
/* done with bigger list */
slist++;
/* add to smaller list */
OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
sh_setbit(temp, slist, sh.bittable);
sh_add_to_list(&sh.freelist[slist], temp);
OPENSSL_assert(sh.freelist[slist] == temp);
/* split in 2 */
temp += sh.arena_size >> slist;
OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
sh_setbit(temp, slist, sh.bittable);
sh_add_to_list(&sh.freelist[slist], temp);
OPENSSL_assert(sh.freelist[slist] == temp);
OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist));
}
/* peel off memory to hand back */
chunk = sh.freelist[list];
OPENSSL_assert(sh_testbit(chunk, list, sh.bittable));
sh_setbit(chunk, list, sh.bitmalloc);
sh_remove_from_list(chunk, sh.freelist[list]);
OPENSSL_assert(WITHIN_ARENA(chunk));
return chunk;
}
static void sh_free(char *ptr)
{
int list;
char *buddy;
if (ptr == NULL)
return;
OPENSSL_assert(WITHIN_ARENA(ptr));
if (!WITHIN_ARENA(ptr))
return;
list = sh_getlist(ptr);
OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
sh_clearbit(ptr, list, sh.bitmalloc);
sh_add_to_list(&sh.freelist[list], ptr);
/* Try to coalesce two adjacent free areas. */
while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) {
OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list));
OPENSSL_assert(ptr != NULL);
OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
sh_clearbit(ptr, list, sh.bittable);
sh_remove_from_list(ptr, sh.freelist[list]);
OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
sh_clearbit(buddy, list, sh.bittable);
sh_remove_from_list(buddy, sh.freelist[list]);
list--;
if (ptr > buddy)
ptr = buddy;
OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
sh_setbit(ptr, list, sh.bittable);
sh_add_to_list(&sh.freelist[list], ptr);
OPENSSL_assert(sh.freelist[list] == ptr);
}
}
static int sh_actual_size(char *ptr)
{
int list;
OPENSSL_assert(WITHIN_ARENA(ptr));
if (!WITHIN_ARENA(ptr))
return 0;
list = sh_getlist(ptr);
OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
return sh.arena_size / (1 << list);
}
#endif /* IMPLEMENTED */