openssl/crypto/x509/x_pubkey.c
2020-08-21 09:23:58 +02:00

535 lines
14 KiB
C

/*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DSA low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/asn1t.h>
#include <openssl/x509.h>
#include "crypto/asn1.h"
#include "crypto/evp.h"
#include "crypto/x509.h"
#include <openssl/rsa.h>
#include <openssl/dsa.h>
#include <openssl/encoder.h>
struct X509_pubkey_st {
X509_ALGOR *algor;
ASN1_BIT_STRING *public_key;
EVP_PKEY *pkey;
/* extra data for the callback, used by d2i_PUBKEY_ex */
OPENSSL_CTX *libctx;
const char *propq;
};
static int x509_pubkey_decode(EVP_PKEY **pk, const X509_PUBKEY *key);
/* Minor tweak to operation: free up EVP_PKEY */
static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg)
{
if (operation == ASN1_OP_FREE_POST) {
X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval;
EVP_PKEY_free(pubkey->pkey);
} else if (operation == ASN1_OP_D2I_POST) {
/* Attempt to decode public key and cache in pubkey structure. */
X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval;
EVP_PKEY_free(pubkey->pkey);
pubkey->pkey = NULL;
/*
* Opportunistically decode the key but remove any non fatal errors
* from the queue. Subsequent explicit attempts to decode/use the key
* will return an appropriate error.
*/
ERR_set_mark();
if (x509_pubkey_decode(&pubkey->pkey, pubkey) == -1)
return 0;
ERR_pop_to_mark();
}
return 1;
}
ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = {
ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR),
ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY)
IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY)
IMPLEMENT_ASN1_DUP_FUNCTION(X509_PUBKEY)
/* TODO should better be called X509_PUBKEY_set1 */
int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey)
{
X509_PUBKEY *pk = NULL;
if (x == NULL)
return 0;
if (pkey == NULL)
goto unsupported;
if (pkey->ameth != NULL) {
if ((pk = X509_PUBKEY_new()) == NULL) {
X509err(X509_F_X509_PUBKEY_SET, ERR_R_MALLOC_FAILURE);
goto error;
}
if (pkey->ameth->pub_encode != NULL) {
if (!pkey->ameth->pub_encode(pk, pkey)) {
X509err(X509_F_X509_PUBKEY_SET,
X509_R_PUBLIC_KEY_ENCODE_ERROR);
goto error;
}
} else {
X509err(X509_F_X509_PUBKEY_SET, X509_R_METHOD_NOT_SUPPORTED);
goto error;
}
} else if (pkey->keymgmt != NULL) {
BIO *bmem = BIO_new(BIO_s_mem());
const char *encprop = OSSL_ENCODER_PUBKEY_TO_DER_PQ;
OSSL_ENCODER_CTX *ectx =
OSSL_ENCODER_CTX_new_by_EVP_PKEY(pkey, encprop);
if (OSSL_ENCODER_to_bio(ectx, bmem)) {
const unsigned char *der = NULL;
long derlen = BIO_get_mem_data(bmem, (char **)&der);
pk = d2i_X509_PUBKEY(NULL, &der, derlen);
}
OSSL_ENCODER_CTX_free(ectx);
BIO_free(bmem);
}
if (pk == NULL)
goto unsupported;
X509_PUBKEY_free(*x);
if (!EVP_PKEY_up_ref(pkey)) {
X509err(X509_F_X509_PUBKEY_SET, ERR_R_INTERNAL_ERROR);
goto error;
}
*x = pk;
/*
* pk->pkey is NULL when using the legacy routine, but is non-NULL when
* going through the encoder, and for all intents and purposes, it's
* a perfect copy of |pkey|, just not the same instance. In that case,
* we could simply return early, right here.
* However, in the interest of being cautious leaning on paranoia, some
* application might very well depend on the passed |pkey| being used
* and none other, so we spend a few more cycles throwing away the newly
* created |pk->pkey| and replace it with |pkey|.
* TODO(3.0) Investigate if it's safe to change to simply return here
* if |pk->pkey != NULL|.
*/
if (pk->pkey != NULL)
EVP_PKEY_free(pk->pkey);
pk->pkey = pkey;
return 1;
unsupported:
X509err(X509_F_X509_PUBKEY_SET, X509_R_UNSUPPORTED_ALGORITHM);
error:
X509_PUBKEY_free(pk);
return 0;
}
/*
* Attempt to decode a public key.
* Returns 1 on success, 0 for a decode failure and -1 for a fatal
* error e.g. malloc failure.
*/
static int x509_pubkey_decode(EVP_PKEY **ppkey, const X509_PUBKEY *key)
{
EVP_PKEY *pkey = EVP_PKEY_new();
if (pkey == NULL) {
X509err(X509_F_X509_PUBKEY_DECODE, ERR_R_MALLOC_FAILURE);
return -1;
}
if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(key->algor->algorithm))) {
X509err(X509_F_X509_PUBKEY_DECODE, X509_R_UNSUPPORTED_ALGORITHM);
goto error;
}
if (pkey->ameth->pub_decode) {
/*
* Treat any failure of pub_decode as a decode error. In
* future we could have different return codes for decode
* errors and fatal errors such as malloc failure.
*/
if (!pkey->ameth->pub_decode(pkey, key)) {
X509err(X509_F_X509_PUBKEY_DECODE, X509_R_PUBLIC_KEY_DECODE_ERROR);
goto error;
}
} else {
X509err(X509_F_X509_PUBKEY_DECODE, X509_R_METHOD_NOT_SUPPORTED);
goto error;
}
*ppkey = pkey;
return 1;
error:
EVP_PKEY_free(pkey);
return 0;
}
EVP_PKEY *X509_PUBKEY_get0(const X509_PUBKEY *key)
{
EVP_PKEY *ret = NULL;
if (key == NULL || key->public_key == NULL)
return NULL;
if (key->pkey != NULL)
return key->pkey;
/*
* When the key ASN.1 is initially parsed an attempt is made to
* decode the public key and cache the EVP_PKEY structure. If this
* operation fails the cached value will be NULL. Parsing continues
* to allow parsing of unknown key types or unsupported forms.
* We repeat the decode operation so the appropriate errors are left
* in the queue.
*/
x509_pubkey_decode(&ret, key);
/* If decode doesn't fail something bad happened */
if (ret != NULL) {
X509err(X509_F_X509_PUBKEY_GET0, ERR_R_INTERNAL_ERROR);
EVP_PKEY_free(ret);
}
return NULL;
}
EVP_PKEY *X509_PUBKEY_get(const X509_PUBKEY *key)
{
EVP_PKEY *ret = X509_PUBKEY_get0(key);
if (ret != NULL && !EVP_PKEY_up_ref(ret)) {
X509err(X509_F_X509_PUBKEY_GET, ERR_R_INTERNAL_ERROR);
ret = NULL;
}
return ret;
}
/*
* Now three pseudo ASN1 routines that take an EVP_PKEY structure and encode
* or decode as X509_PUBKEY
*/
EVP_PKEY *d2i_PUBKEY_ex(EVP_PKEY **a, const unsigned char **pp, long length,
OPENSSL_CTX *libctx, const char *propq)
{
X509_PUBKEY *xpk, *xpk2 = NULL, **pxpk = NULL;
EVP_PKEY *pktmp = NULL;
const unsigned char *q;
q = *pp;
/*
* If libctx or propq are non-NULL, we take advantage of the reuse
* feature. It's not generally recommended, but is safe enough for
* newly created structures.
*/
if (libctx != NULL || propq != NULL) {
xpk2 = OPENSSL_zalloc(sizeof(*xpk2));
if (xpk2 == NULL) {
ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
return NULL;
}
xpk2->libctx = libctx;
xpk2->propq = propq;
pxpk = &xpk2;
}
xpk = d2i_X509_PUBKEY(pxpk, &q, length);
if (xpk == NULL)
goto end;
pktmp = X509_PUBKEY_get(xpk);
X509_PUBKEY_free(xpk);
xpk2 = NULL; /* We know that xpk == xpk2 */
if (pktmp == NULL)
goto end;
*pp = q;
if (a != NULL) {
EVP_PKEY_free(*a);
*a = pktmp;
}
end:
X509_PUBKEY_free(xpk2);
return pktmp;
}
EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length)
{
return d2i_PUBKEY_ex(a, pp, length, NULL, NULL);
}
int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp)
{
int ret = -1;
if (a == NULL)
return 0;
if (a->ameth != NULL) {
X509_PUBKEY *xpk = NULL;
if ((xpk = X509_PUBKEY_new()) == NULL)
return -1;
/* pub_encode() only encode parameters, not the key itself */
if (a->ameth->pub_encode != NULL && a->ameth->pub_encode(xpk, a)) {
xpk->pkey = (EVP_PKEY *)a;
ret = i2d_X509_PUBKEY(xpk, pp);
xpk->pkey = NULL;
}
X509_PUBKEY_free(xpk);
} else if (a->keymgmt != NULL) {
const char *encprop = OSSL_ENCODER_PUBKEY_TO_DER_PQ;
OSSL_ENCODER_CTX *ctx =
OSSL_ENCODER_CTX_new_by_EVP_PKEY(a, encprop);
BIO *out = BIO_new(BIO_s_mem());
BUF_MEM *buf = NULL;
if (ctx != NULL
&& out != NULL
&& OSSL_ENCODER_CTX_get_encoder(ctx) != NULL
&& OSSL_ENCODER_to_bio(ctx, out)
&& BIO_get_mem_ptr(out, &buf) > 0) {
ret = buf->length;
if (pp != NULL) {
if (*pp == NULL) {
*pp = (unsigned char *)buf->data;
buf->length = 0;
buf->data = NULL;
} else {
memcpy(*pp, buf->data, ret);
*pp += ret;
}
}
}
BIO_free(out);
OSSL_ENCODER_CTX_free(ctx);
}
return ret;
}
/*
* The following are equivalents but which return RSA and DSA keys
*/
#ifndef OPENSSL_NO_RSA
RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
RSA *key;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY(NULL, &q, length);
if (pkey == NULL)
return NULL;
key = EVP_PKEY_get1_RSA(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
RSA_free(*a);
*a = key;
}
return key;
}
int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return 0;
pktmp = EVP_PKEY_new();
if (pktmp == NULL) {
ASN1err(ASN1_F_I2D_RSA_PUBKEY, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign_RSA(pktmp, (RSA *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
#endif
#ifndef OPENSSL_NO_DSA
DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
DSA *key;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY(NULL, &q, length);
if (pkey == NULL)
return NULL;
key = EVP_PKEY_get1_DSA(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
DSA_free(*a);
*a = key;
}
return key;
}
int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return 0;
pktmp = EVP_PKEY_new();
if (pktmp == NULL) {
ASN1err(ASN1_F_I2D_DSA_PUBKEY, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign_DSA(pktmp, (DSA *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
#endif
#ifndef OPENSSL_NO_EC
EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
EC_KEY *key;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY(NULL, &q, length);
if (pkey == NULL)
return NULL;
key = EVP_PKEY_get1_EC_KEY(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
EC_KEY_free(*a);
*a = key;
}
return key;
}
int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (a == NULL)
return 0;
if ((pktmp = EVP_PKEY_new()) == NULL) {
ASN1err(ASN1_F_I2D_EC_PUBKEY, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign_EC_KEY(pktmp, (EC_KEY *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
#endif
int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj,
int ptype, void *pval,
unsigned char *penc, int penclen)
{
if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval))
return 0;
if (penc) {
OPENSSL_free(pub->public_key->data);
pub->public_key->data = penc;
pub->public_key->length = penclen;
/* Set number of unused bits to zero */
pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07);
pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT;
}
return 1;
}
int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg,
const unsigned char **pk, int *ppklen,
X509_ALGOR **pa, const X509_PUBKEY *pub)
{
if (ppkalg)
*ppkalg = pub->algor->algorithm;
if (pk) {
*pk = pub->public_key->data;
*ppklen = pub->public_key->length;
}
if (pa)
*pa = pub->algor;
return 1;
}
ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x)
{
if (x == NULL)
return NULL;
return x->cert_info.key->public_key;
}
/* Returns 1 for equal, 0, for non-equal, < 0 on error */
int X509_PUBKEY_eq(const X509_PUBKEY *a, const X509_PUBKEY *b)
{
X509_ALGOR *algA, *algB;
EVP_PKEY *pA, *pB;
if (a == b)
return 1;
if (a == NULL || b == NULL)
return 0;
if (!X509_PUBKEY_get0_param(NULL, NULL, NULL, &algA, a) || algA == NULL
|| !X509_PUBKEY_get0_param(NULL, NULL, NULL, &algB, b) || algB == NULL)
return -2;
if (X509_ALGOR_cmp(algA, algB) != 0)
return 0;
if ((pA = X509_PUBKEY_get0(a)) == NULL
|| (pB = X509_PUBKEY_get0(b)) == NULL)
return -2;
return EVP_PKEY_eq(pA, pB);
}
int X509_PUBKEY_get0_libctx(OPENSSL_CTX **plibctx, const char **ppropq,
const X509_PUBKEY *key)
{
if (plibctx)
*plibctx = key->libctx;
if (ppropq)
*ppropq = key->propq;
return 1;
}