openssl/crypto/threads_pthread.c
Dr. Matthias St. Pierre 849529257c drbg: ensure fork-safety without using a pthread_atfork handler
When the new OpenSSL CSPRNG was introduced in version 1.1.1,
it was announced in the release notes that it would be fork-safe,
which the old CSPRNG hadn't been.

The fork-safety was implemented using a fork count, which was
incremented by a pthread_atfork handler. Initially, this handler
was enabled by default. Unfortunately, the default behaviour
had to be changed for other reasons in commit b5319bdbd0, so
the new OpenSSL CSPRNG failed to keep its promise.

This commit restores the fork-safety using a different approach.
It replaces the fork count by a fork id, which coincides with
the process id on UNIX-like operating systems and is zero on other
operating systems. It is used to detect when an automatic reseed
after a fork is necessary.

To prevent a future regression, it also adds a test to verify that
the child reseeds after fork.

CVE-2019-1549

Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9832)
2019-09-11 11:22:18 +02:00

221 lines
4.5 KiB
C

/*
* Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/crypto.h>
#include "internal/cryptlib.h"
#if defined(__sun)
# include <atomic.h>
#endif
#if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
# if defined(OPENSSL_SYS_UNIX)
# include <sys/types.h>
# include <unistd.h>
#endif
# ifdef PTHREAD_RWLOCK_INITIALIZER
# define USE_RWLOCK
# endif
CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
{
# ifdef USE_RWLOCK
CRYPTO_RWLOCK *lock;
if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL) {
/* Don't set error, to avoid recursion blowup. */
return NULL;
}
if (pthread_rwlock_init(lock, NULL) != 0) {
OPENSSL_free(lock);
return NULL;
}
# else
pthread_mutexattr_t attr;
CRYPTO_RWLOCK *lock;
if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL) {
/* Don't set error, to avoid recursion blowup. */
return NULL;
}
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
if (pthread_mutex_init(lock, &attr) != 0) {
pthread_mutexattr_destroy(&attr);
OPENSSL_free(lock);
return NULL;
}
pthread_mutexattr_destroy(&attr);
# endif
return lock;
}
int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
if (pthread_rwlock_rdlock(lock) != 0)
return 0;
# else
if (pthread_mutex_lock(lock) != 0)
return 0;
# endif
return 1;
}
int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
if (pthread_rwlock_wrlock(lock) != 0)
return 0;
# else
if (pthread_mutex_lock(lock) != 0)
return 0;
# endif
return 1;
}
int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
if (pthread_rwlock_unlock(lock) != 0)
return 0;
# else
if (pthread_mutex_unlock(lock) != 0)
return 0;
# endif
return 1;
}
void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
{
if (lock == NULL)
return;
# ifdef USE_RWLOCK
pthread_rwlock_destroy(lock);
# else
pthread_mutex_destroy(lock);
# endif
OPENSSL_free(lock);
return;
}
int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
{
if (pthread_once(once, init) != 0)
return 0;
return 1;
}
int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
{
if (pthread_key_create(key, cleanup) != 0)
return 0;
return 1;
}
void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
{
return pthread_getspecific(*key);
}
int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
{
if (pthread_setspecific(*key, val) != 0)
return 0;
return 1;
}
int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
{
if (pthread_key_delete(*key) != 0)
return 0;
return 1;
}
CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
{
return pthread_self();
}
int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
{
return pthread_equal(a, b);
}
int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
{
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL)
if (__atomic_is_lock_free(sizeof(*val), val)) {
*ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
return 1;
}
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
/* This will work for all future Solaris versions. */
if (ret != NULL) {
*ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
return 1;
}
# endif
if (!CRYPTO_THREAD_write_lock(lock))
return 0;
*val += amount;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
}
# ifndef FIPS_MODE
/* TODO(3.0): No fork protection in FIPS module yet! */
# ifdef OPENSSL_SYS_UNIX
static pthread_once_t fork_once_control = PTHREAD_ONCE_INIT;
static void fork_once_func(void)
{
pthread_atfork(OPENSSL_fork_prepare,
OPENSSL_fork_parent, OPENSSL_fork_child);
}
# endif
int openssl_init_fork_handlers(void)
{
# ifdef OPENSSL_SYS_UNIX
if (pthread_once(&fork_once_control, fork_once_func) == 0)
return 1;
# endif
return 0;
}
# endif /* FIPS_MODE */
int openssl_get_fork_id(void)
{
return getpid();
}
#endif