mirror of
https://github.com/openssl/openssl.git
synced 2024-12-27 06:21:43 +08:00
aa6bb1352b
Reviewed-by: Richard Levitte <levitte@openssl.org>
282 lines
9.3 KiB
C
282 lines
9.3 KiB
C
/*
|
|
* Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include "internal/cryptlib.h"
|
|
|
|
#include <openssl/aes.h>
|
|
#include "aes_locl.h"
|
|
|
|
#define N_WORDS (AES_BLOCK_SIZE / sizeof(unsigned long))
|
|
typedef struct {
|
|
unsigned long data[N_WORDS];
|
|
} aes_block_t;
|
|
|
|
/* XXX: probably some better way to do this */
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
# define UNALIGNED_MEMOPS_ARE_FAST 1
|
|
#else
|
|
# define UNALIGNED_MEMOPS_ARE_FAST 0
|
|
#endif
|
|
|
|
#if UNALIGNED_MEMOPS_ARE_FAST
|
|
# define load_block(d, s) (d) = *(const aes_block_t *)(s)
|
|
# define store_block(d, s) *(aes_block_t *)(d) = (s)
|
|
#else
|
|
# define load_block(d, s) memcpy((d).data, (s), AES_BLOCK_SIZE)
|
|
# define store_block(d, s) memcpy((d), (s).data, AES_BLOCK_SIZE)
|
|
#endif
|
|
|
|
/* N.B. The IV for this mode is _twice_ the block size */
|
|
|
|
void AES_ige_encrypt(const unsigned char *in, unsigned char *out,
|
|
size_t length, const AES_KEY *key,
|
|
unsigned char *ivec, const int enc)
|
|
{
|
|
size_t n;
|
|
size_t len = length;
|
|
|
|
OPENSSL_assert(in && out && key && ivec);
|
|
OPENSSL_assert((AES_ENCRYPT == enc) || (AES_DECRYPT == enc));
|
|
OPENSSL_assert((length % AES_BLOCK_SIZE) == 0);
|
|
|
|
len = length / AES_BLOCK_SIZE;
|
|
|
|
if (AES_ENCRYPT == enc) {
|
|
if (in != out &&
|
|
(UNALIGNED_MEMOPS_ARE_FAST
|
|
|| ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(long) ==
|
|
0)) {
|
|
aes_block_t *ivp = (aes_block_t *) ivec;
|
|
aes_block_t *iv2p = (aes_block_t *) (ivec + AES_BLOCK_SIZE);
|
|
|
|
while (len) {
|
|
aes_block_t *inp = (aes_block_t *) in;
|
|
aes_block_t *outp = (aes_block_t *) out;
|
|
|
|
for (n = 0; n < N_WORDS; ++n)
|
|
outp->data[n] = inp->data[n] ^ ivp->data[n];
|
|
AES_encrypt((unsigned char *)outp->data,
|
|
(unsigned char *)outp->data, key);
|
|
for (n = 0; n < N_WORDS; ++n)
|
|
outp->data[n] ^= iv2p->data[n];
|
|
ivp = outp;
|
|
iv2p = inp;
|
|
--len;
|
|
in += AES_BLOCK_SIZE;
|
|
out += AES_BLOCK_SIZE;
|
|
}
|
|
memcpy(ivec, ivp->data, AES_BLOCK_SIZE);
|
|
memcpy(ivec + AES_BLOCK_SIZE, iv2p->data, AES_BLOCK_SIZE);
|
|
} else {
|
|
aes_block_t tmp, tmp2;
|
|
aes_block_t iv;
|
|
aes_block_t iv2;
|
|
|
|
load_block(iv, ivec);
|
|
load_block(iv2, ivec + AES_BLOCK_SIZE);
|
|
|
|
while (len) {
|
|
load_block(tmp, in);
|
|
for (n = 0; n < N_WORDS; ++n)
|
|
tmp2.data[n] = tmp.data[n] ^ iv.data[n];
|
|
AES_encrypt((unsigned char *)tmp2.data,
|
|
(unsigned char *)tmp2.data, key);
|
|
for (n = 0; n < N_WORDS; ++n)
|
|
tmp2.data[n] ^= iv2.data[n];
|
|
store_block(out, tmp2);
|
|
iv = tmp2;
|
|
iv2 = tmp;
|
|
--len;
|
|
in += AES_BLOCK_SIZE;
|
|
out += AES_BLOCK_SIZE;
|
|
}
|
|
memcpy(ivec, iv.data, AES_BLOCK_SIZE);
|
|
memcpy(ivec + AES_BLOCK_SIZE, iv2.data, AES_BLOCK_SIZE);
|
|
}
|
|
} else {
|
|
if (in != out &&
|
|
(UNALIGNED_MEMOPS_ARE_FAST
|
|
|| ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(long) ==
|
|
0)) {
|
|
aes_block_t *ivp = (aes_block_t *) ivec;
|
|
aes_block_t *iv2p = (aes_block_t *) (ivec + AES_BLOCK_SIZE);
|
|
|
|
while (len) {
|
|
aes_block_t tmp;
|
|
aes_block_t *inp = (aes_block_t *) in;
|
|
aes_block_t *outp = (aes_block_t *) out;
|
|
|
|
for (n = 0; n < N_WORDS; ++n)
|
|
tmp.data[n] = inp->data[n] ^ iv2p->data[n];
|
|
AES_decrypt((unsigned char *)tmp.data,
|
|
(unsigned char *)outp->data, key);
|
|
for (n = 0; n < N_WORDS; ++n)
|
|
outp->data[n] ^= ivp->data[n];
|
|
ivp = inp;
|
|
iv2p = outp;
|
|
--len;
|
|
in += AES_BLOCK_SIZE;
|
|
out += AES_BLOCK_SIZE;
|
|
}
|
|
memcpy(ivec, ivp->data, AES_BLOCK_SIZE);
|
|
memcpy(ivec + AES_BLOCK_SIZE, iv2p->data, AES_BLOCK_SIZE);
|
|
} else {
|
|
aes_block_t tmp, tmp2;
|
|
aes_block_t iv;
|
|
aes_block_t iv2;
|
|
|
|
load_block(iv, ivec);
|
|
load_block(iv2, ivec + AES_BLOCK_SIZE);
|
|
|
|
while (len) {
|
|
load_block(tmp, in);
|
|
tmp2 = tmp;
|
|
for (n = 0; n < N_WORDS; ++n)
|
|
tmp.data[n] ^= iv2.data[n];
|
|
AES_decrypt((unsigned char *)tmp.data,
|
|
(unsigned char *)tmp.data, key);
|
|
for (n = 0; n < N_WORDS; ++n)
|
|
tmp.data[n] ^= iv.data[n];
|
|
store_block(out, tmp);
|
|
iv = tmp2;
|
|
iv2 = tmp;
|
|
--len;
|
|
in += AES_BLOCK_SIZE;
|
|
out += AES_BLOCK_SIZE;
|
|
}
|
|
memcpy(ivec, iv.data, AES_BLOCK_SIZE);
|
|
memcpy(ivec + AES_BLOCK_SIZE, iv2.data, AES_BLOCK_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note that its effectively impossible to do biIGE in anything other
|
|
* than a single pass, so no provision is made for chaining.
|
|
*/
|
|
|
|
/* N.B. The IV for this mode is _four times_ the block size */
|
|
|
|
void AES_bi_ige_encrypt(const unsigned char *in, unsigned char *out,
|
|
size_t length, const AES_KEY *key,
|
|
const AES_KEY *key2, const unsigned char *ivec,
|
|
const int enc)
|
|
{
|
|
size_t n;
|
|
size_t len = length;
|
|
unsigned char tmp[AES_BLOCK_SIZE];
|
|
unsigned char tmp2[AES_BLOCK_SIZE];
|
|
unsigned char tmp3[AES_BLOCK_SIZE];
|
|
unsigned char prev[AES_BLOCK_SIZE];
|
|
const unsigned char *iv;
|
|
const unsigned char *iv2;
|
|
|
|
OPENSSL_assert(in && out && key && ivec);
|
|
OPENSSL_assert((AES_ENCRYPT == enc) || (AES_DECRYPT == enc));
|
|
OPENSSL_assert((length % AES_BLOCK_SIZE) == 0);
|
|
|
|
if (AES_ENCRYPT == enc) {
|
|
/*
|
|
* XXX: Do a separate case for when in != out (strictly should check
|
|
* for overlap, too)
|
|
*/
|
|
|
|
/* First the forward pass */
|
|
iv = ivec;
|
|
iv2 = ivec + AES_BLOCK_SIZE;
|
|
while (len >= AES_BLOCK_SIZE) {
|
|
for (n = 0; n < AES_BLOCK_SIZE; ++n)
|
|
out[n] = in[n] ^ iv[n];
|
|
AES_encrypt(out, out, key);
|
|
for (n = 0; n < AES_BLOCK_SIZE; ++n)
|
|
out[n] ^= iv2[n];
|
|
iv = out;
|
|
memcpy(prev, in, AES_BLOCK_SIZE);
|
|
iv2 = prev;
|
|
len -= AES_BLOCK_SIZE;
|
|
in += AES_BLOCK_SIZE;
|
|
out += AES_BLOCK_SIZE;
|
|
}
|
|
|
|
/* And now backwards */
|
|
iv = ivec + AES_BLOCK_SIZE * 2;
|
|
iv2 = ivec + AES_BLOCK_SIZE * 3;
|
|
len = length;
|
|
while (len >= AES_BLOCK_SIZE) {
|
|
out -= AES_BLOCK_SIZE;
|
|
/*
|
|
* XXX: reduce copies by alternating between buffers
|
|
*/
|
|
memcpy(tmp, out, AES_BLOCK_SIZE);
|
|
for (n = 0; n < AES_BLOCK_SIZE; ++n)
|
|
out[n] ^= iv[n];
|
|
/*
|
|
* hexdump(stdout, "out ^ iv", out, AES_BLOCK_SIZE);
|
|
*/
|
|
AES_encrypt(out, out, key);
|
|
/*
|
|
* hexdump(stdout,"enc", out, AES_BLOCK_SIZE);
|
|
*/
|
|
/*
|
|
* hexdump(stdout,"iv2", iv2, AES_BLOCK_SIZE);
|
|
*/
|
|
for (n = 0; n < AES_BLOCK_SIZE; ++n)
|
|
out[n] ^= iv2[n];
|
|
/*
|
|
* hexdump(stdout,"out", out, AES_BLOCK_SIZE);
|
|
*/
|
|
iv = out;
|
|
memcpy(prev, tmp, AES_BLOCK_SIZE);
|
|
iv2 = prev;
|
|
len -= AES_BLOCK_SIZE;
|
|
}
|
|
} else {
|
|
/* First backwards */
|
|
iv = ivec + AES_BLOCK_SIZE * 2;
|
|
iv2 = ivec + AES_BLOCK_SIZE * 3;
|
|
in += length;
|
|
out += length;
|
|
while (len >= AES_BLOCK_SIZE) {
|
|
in -= AES_BLOCK_SIZE;
|
|
out -= AES_BLOCK_SIZE;
|
|
memcpy(tmp, in, AES_BLOCK_SIZE);
|
|
memcpy(tmp2, in, AES_BLOCK_SIZE);
|
|
for (n = 0; n < AES_BLOCK_SIZE; ++n)
|
|
tmp[n] ^= iv2[n];
|
|
AES_decrypt(tmp, out, key);
|
|
for (n = 0; n < AES_BLOCK_SIZE; ++n)
|
|
out[n] ^= iv[n];
|
|
memcpy(tmp3, tmp2, AES_BLOCK_SIZE);
|
|
iv = tmp3;
|
|
iv2 = out;
|
|
len -= AES_BLOCK_SIZE;
|
|
}
|
|
|
|
/* And now forwards */
|
|
iv = ivec;
|
|
iv2 = ivec + AES_BLOCK_SIZE;
|
|
len = length;
|
|
while (len >= AES_BLOCK_SIZE) {
|
|
memcpy(tmp, out, AES_BLOCK_SIZE);
|
|
memcpy(tmp2, out, AES_BLOCK_SIZE);
|
|
for (n = 0; n < AES_BLOCK_SIZE; ++n)
|
|
tmp[n] ^= iv2[n];
|
|
AES_decrypt(tmp, out, key);
|
|
for (n = 0; n < AES_BLOCK_SIZE; ++n)
|
|
out[n] ^= iv[n];
|
|
memcpy(tmp3, tmp2, AES_BLOCK_SIZE);
|
|
iv = tmp3;
|
|
iv2 = out;
|
|
len -= AES_BLOCK_SIZE;
|
|
in += AES_BLOCK_SIZE;
|
|
out += AES_BLOCK_SIZE;
|
|
}
|
|
}
|
|
}
|