mirror of
https://github.com/openssl/openssl.git
synced 2024-12-09 05:51:54 +08:00
1339 lines
36 KiB
C
1339 lines
36 KiB
C
/*
|
|
* Contributed to the OpenSSL Project by the American Registry for
|
|
* Internet Numbers ("ARIN").
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*/
|
|
|
|
/*
|
|
* Implementation of RFC 3779 section 2.2.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "cryptlib.h"
|
|
#include <openssl/conf.h>
|
|
#include <openssl/asn1.h>
|
|
#include <openssl/asn1t.h>
|
|
#include <openssl/buffer.h>
|
|
#include <openssl/x509v3.h>
|
|
|
|
#ifndef OPENSSL_NO_RFC3779
|
|
|
|
/*
|
|
* OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
|
|
*/
|
|
|
|
ASN1_SEQUENCE(IPAddressRange) = {
|
|
ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
|
|
ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
|
|
} ASN1_SEQUENCE_END(IPAddressRange)
|
|
|
|
ASN1_CHOICE(IPAddressOrRange) = {
|
|
ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
|
|
ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
|
|
} ASN1_CHOICE_END(IPAddressOrRange)
|
|
|
|
ASN1_CHOICE(IPAddressChoice) = {
|
|
ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
|
|
ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
|
|
} ASN1_CHOICE_END(IPAddressChoice)
|
|
|
|
ASN1_SEQUENCE(IPAddressFamily) = {
|
|
ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
|
|
ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
|
|
} ASN1_SEQUENCE_END(IPAddressFamily)
|
|
|
|
ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
|
|
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
|
|
IPAddrBlocks, IPAddressFamily)
|
|
ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
|
|
|
|
IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
|
|
IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
|
|
IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
|
|
IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
|
|
|
|
/*
|
|
* How much buffer space do we need for a raw address?
|
|
*/
|
|
#define ADDR_RAW_BUF_LEN 16
|
|
|
|
/*
|
|
* What's the address length associated with this AFI?
|
|
*/
|
|
static int length_from_afi(const unsigned afi)
|
|
{
|
|
switch (afi) {
|
|
case IANA_AFI_IPV4:
|
|
return 4;
|
|
case IANA_AFI_IPV6:
|
|
return 16;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Extract the AFI from an IPAddressFamily.
|
|
*/
|
|
unsigned int v3_addr_get_afi(const IPAddressFamily *f)
|
|
{
|
|
return ((f != NULL &&
|
|
f->addressFamily != NULL &&
|
|
f->addressFamily->data != NULL)
|
|
? ((f->addressFamily->data[0] << 8) |
|
|
(f->addressFamily->data[1]))
|
|
: 0);
|
|
}
|
|
|
|
/*
|
|
* Expand the bitstring form of an address into a raw byte array.
|
|
* At the moment this is coded for simplicity, not speed.
|
|
*/
|
|
static int addr_expand(unsigned char *addr,
|
|
const ASN1_BIT_STRING *bs,
|
|
const int length,
|
|
const unsigned char fill)
|
|
{
|
|
if (bs->length < 0 || bs->length > length)
|
|
return 0;
|
|
if (bs->length > 0) {
|
|
memcpy(addr, bs->data, bs->length);
|
|
if ((bs->flags & 7) != 0) {
|
|
unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
|
|
if (fill == 0)
|
|
addr[bs->length - 1] &= ~mask;
|
|
else
|
|
addr[bs->length - 1] |= mask;
|
|
}
|
|
}
|
|
memset(addr + bs->length, fill, length - bs->length);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Extract the prefix length from a bitstring.
|
|
*/
|
|
#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
|
|
|
|
/*
|
|
* i2r handler for one address bitstring.
|
|
*/
|
|
static int i2r_address(BIO *out,
|
|
const unsigned afi,
|
|
const unsigned char fill,
|
|
const ASN1_BIT_STRING *bs)
|
|
{
|
|
unsigned char addr[ADDR_RAW_BUF_LEN];
|
|
int i, n;
|
|
|
|
if (bs->length < 0)
|
|
return 0;
|
|
switch (afi) {
|
|
case IANA_AFI_IPV4:
|
|
if (!addr_expand(addr, bs, 4, fill))
|
|
return 0;
|
|
BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
|
|
break;
|
|
case IANA_AFI_IPV6:
|
|
if (!addr_expand(addr, bs, 16, fill))
|
|
return 0;
|
|
for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)
|
|
;
|
|
for (i = 0; i < n; i += 2)
|
|
BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
|
|
if (i < 16)
|
|
BIO_puts(out, ":");
|
|
if (i == 0)
|
|
BIO_puts(out, ":");
|
|
break;
|
|
default:
|
|
for (i = 0; i < bs->length; i++)
|
|
BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
|
|
BIO_printf(out, "[%d]", (int) (bs->flags & 7));
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* i2r handler for a sequence of addresses and ranges.
|
|
*/
|
|
static int i2r_IPAddressOrRanges(BIO *out,
|
|
const int indent,
|
|
const IPAddressOrRanges *aors,
|
|
const unsigned afi)
|
|
{
|
|
int i;
|
|
for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
|
|
const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
|
|
BIO_printf(out, "%*s", indent, "");
|
|
switch (aor->type) {
|
|
case IPAddressOrRange_addressPrefix:
|
|
if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
|
|
return 0;
|
|
BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
|
|
continue;
|
|
case IPAddressOrRange_addressRange:
|
|
if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
|
|
return 0;
|
|
BIO_puts(out, "-");
|
|
if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
|
|
return 0;
|
|
BIO_puts(out, "\n");
|
|
continue;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* i2r handler for an IPAddrBlocks extension.
|
|
*/
|
|
static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
|
|
void *ext,
|
|
BIO *out,
|
|
int indent)
|
|
{
|
|
const IPAddrBlocks *addr = ext;
|
|
int i;
|
|
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
|
IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
|
|
const unsigned int afi = v3_addr_get_afi(f);
|
|
switch (afi) {
|
|
case IANA_AFI_IPV4:
|
|
BIO_printf(out, "%*sIPv4", indent, "");
|
|
break;
|
|
case IANA_AFI_IPV6:
|
|
BIO_printf(out, "%*sIPv6", indent, "");
|
|
break;
|
|
default:
|
|
BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
|
|
break;
|
|
}
|
|
if (f->addressFamily->length > 2) {
|
|
switch (f->addressFamily->data[2]) {
|
|
case 1:
|
|
BIO_puts(out, " (Unicast)");
|
|
break;
|
|
case 2:
|
|
BIO_puts(out, " (Multicast)");
|
|
break;
|
|
case 3:
|
|
BIO_puts(out, " (Unicast/Multicast)");
|
|
break;
|
|
case 4:
|
|
BIO_puts(out, " (MPLS)");
|
|
break;
|
|
case 64:
|
|
BIO_puts(out, " (Tunnel)");
|
|
break;
|
|
case 65:
|
|
BIO_puts(out, " (VPLS)");
|
|
break;
|
|
case 66:
|
|
BIO_puts(out, " (BGP MDT)");
|
|
break;
|
|
case 128:
|
|
BIO_puts(out, " (MPLS-labeled VPN)");
|
|
break;
|
|
default:
|
|
BIO_printf(out, " (Unknown SAFI %u)",
|
|
(unsigned) f->addressFamily->data[2]);
|
|
break;
|
|
}
|
|
}
|
|
switch (f->ipAddressChoice->type) {
|
|
case IPAddressChoice_inherit:
|
|
BIO_puts(out, ": inherit\n");
|
|
break;
|
|
case IPAddressChoice_addressesOrRanges:
|
|
BIO_puts(out, ":\n");
|
|
if (!i2r_IPAddressOrRanges(out,
|
|
indent + 2,
|
|
f->ipAddressChoice->u.addressesOrRanges,
|
|
afi))
|
|
return 0;
|
|
break;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Sort comparison function for a sequence of IPAddressOrRange
|
|
* elements.
|
|
*
|
|
* There's no sane answer we can give if addr_expand() fails, and an
|
|
* assertion failure on externally supplied data is seriously uncool,
|
|
* so we just arbitrarily declare that if given invalid inputs this
|
|
* function returns -1. If this messes up your preferred sort order
|
|
* for garbage input, tough noogies.
|
|
*/
|
|
static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
|
|
const IPAddressOrRange *b,
|
|
const int length)
|
|
{
|
|
unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
|
|
int prefixlen_a = 0, prefixlen_b = 0;
|
|
int r;
|
|
|
|
switch (a->type) {
|
|
case IPAddressOrRange_addressPrefix:
|
|
if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
|
|
return -1;
|
|
prefixlen_a = addr_prefixlen(a->u.addressPrefix);
|
|
break;
|
|
case IPAddressOrRange_addressRange:
|
|
if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
|
|
return -1;
|
|
prefixlen_a = length * 8;
|
|
break;
|
|
}
|
|
|
|
switch (b->type) {
|
|
case IPAddressOrRange_addressPrefix:
|
|
if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
|
|
return -1;
|
|
prefixlen_b = addr_prefixlen(b->u.addressPrefix);
|
|
break;
|
|
case IPAddressOrRange_addressRange:
|
|
if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
|
|
return -1;
|
|
prefixlen_b = length * 8;
|
|
break;
|
|
}
|
|
|
|
if ((r = memcmp(addr_a, addr_b, length)) != 0)
|
|
return r;
|
|
else
|
|
return prefixlen_a - prefixlen_b;
|
|
}
|
|
|
|
/*
|
|
* IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
|
|
* comparision routines are only allowed two arguments.
|
|
*/
|
|
static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
|
|
const IPAddressOrRange * const *b)
|
|
{
|
|
return IPAddressOrRange_cmp(*a, *b, 4);
|
|
}
|
|
|
|
/*
|
|
* IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
|
|
* comparision routines are only allowed two arguments.
|
|
*/
|
|
static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
|
|
const IPAddressOrRange * const *b)
|
|
{
|
|
return IPAddressOrRange_cmp(*a, *b, 16);
|
|
}
|
|
|
|
/*
|
|
* Calculate whether a range collapses to a prefix.
|
|
* See last paragraph of RFC 3779 2.2.3.7.
|
|
*/
|
|
static int range_should_be_prefix(const unsigned char *min,
|
|
const unsigned char *max,
|
|
const int length)
|
|
{
|
|
unsigned char mask;
|
|
int i, j;
|
|
|
|
OPENSSL_assert(memcmp(min, max, length) <= 0);
|
|
for (i = 0; i < length && min[i] == max[i]; i++)
|
|
;
|
|
for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
|
|
;
|
|
if (i < j)
|
|
return -1;
|
|
if (i > j)
|
|
return i * 8;
|
|
mask = min[i] ^ max[i];
|
|
switch (mask) {
|
|
case 0x01: j = 7; break;
|
|
case 0x03: j = 6; break;
|
|
case 0x07: j = 5; break;
|
|
case 0x0F: j = 4; break;
|
|
case 0x1F: j = 3; break;
|
|
case 0x3F: j = 2; break;
|
|
case 0x7F: j = 1; break;
|
|
default: return -1;
|
|
}
|
|
if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
|
|
return -1;
|
|
else
|
|
return i * 8 + j;
|
|
}
|
|
|
|
/*
|
|
* Construct a prefix.
|
|
*/
|
|
static int make_addressPrefix(IPAddressOrRange **result,
|
|
unsigned char *addr,
|
|
const int prefixlen)
|
|
{
|
|
int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
|
|
IPAddressOrRange *aor = IPAddressOrRange_new();
|
|
|
|
if (aor == NULL)
|
|
return 0;
|
|
aor->type = IPAddressOrRange_addressPrefix;
|
|
if (aor->u.addressPrefix == NULL &&
|
|
(aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
|
|
goto err;
|
|
if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
|
|
goto err;
|
|
aor->u.addressPrefix->flags &= ~7;
|
|
aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
|
|
if (bitlen > 0) {
|
|
aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
|
|
aor->u.addressPrefix->flags |= 8 - bitlen;
|
|
}
|
|
|
|
*result = aor;
|
|
return 1;
|
|
|
|
err:
|
|
IPAddressOrRange_free(aor);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Construct a range. If it can be expressed as a prefix,
|
|
* return a prefix instead. Doing this here simplifies
|
|
* the rest of the code considerably.
|
|
*/
|
|
static int make_addressRange(IPAddressOrRange **result,
|
|
unsigned char *min,
|
|
unsigned char *max,
|
|
const int length)
|
|
{
|
|
IPAddressOrRange *aor;
|
|
int i, prefixlen;
|
|
|
|
if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
|
|
return make_addressPrefix(result, min, prefixlen);
|
|
|
|
if ((aor = IPAddressOrRange_new()) == NULL)
|
|
return 0;
|
|
aor->type = IPAddressOrRange_addressRange;
|
|
OPENSSL_assert(aor->u.addressRange == NULL);
|
|
if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
|
|
goto err;
|
|
if (aor->u.addressRange->min == NULL &&
|
|
(aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
|
|
goto err;
|
|
if (aor->u.addressRange->max == NULL &&
|
|
(aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
|
|
goto err;
|
|
|
|
for (i = length; i > 0 && min[i - 1] == 0x00; --i)
|
|
;
|
|
if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
|
|
goto err;
|
|
aor->u.addressRange->min->flags &= ~7;
|
|
aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
|
|
if (i > 0) {
|
|
unsigned char b = min[i - 1];
|
|
int j = 1;
|
|
while ((b & (0xFFU >> j)) != 0)
|
|
++j;
|
|
aor->u.addressRange->min->flags |= 8 - j;
|
|
}
|
|
|
|
for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
|
|
;
|
|
if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
|
|
goto err;
|
|
aor->u.addressRange->max->flags &= ~7;
|
|
aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
|
|
if (i > 0) {
|
|
unsigned char b = max[i - 1];
|
|
int j = 1;
|
|
while ((b & (0xFFU >> j)) != (0xFFU >> j))
|
|
++j;
|
|
aor->u.addressRange->max->flags |= 8 - j;
|
|
}
|
|
|
|
*result = aor;
|
|
return 1;
|
|
|
|
err:
|
|
IPAddressOrRange_free(aor);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Construct a new address family or find an existing one.
|
|
*/
|
|
static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
|
|
const unsigned afi,
|
|
const unsigned *safi)
|
|
{
|
|
IPAddressFamily *f;
|
|
unsigned char key[3];
|
|
unsigned keylen;
|
|
int i;
|
|
|
|
key[0] = (afi >> 8) & 0xFF;
|
|
key[1] = afi & 0xFF;
|
|
if (safi != NULL) {
|
|
key[2] = *safi & 0xFF;
|
|
keylen = 3;
|
|
} else {
|
|
keylen = 2;
|
|
}
|
|
|
|
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
|
f = sk_IPAddressFamily_value(addr, i);
|
|
OPENSSL_assert(f->addressFamily->data != NULL);
|
|
if (f->addressFamily->length == keylen &&
|
|
!memcmp(f->addressFamily->data, key, keylen))
|
|
return f;
|
|
}
|
|
|
|
if ((f = IPAddressFamily_new()) == NULL)
|
|
goto err;
|
|
if (f->ipAddressChoice == NULL &&
|
|
(f->ipAddressChoice = IPAddressChoice_new()) == NULL)
|
|
goto err;
|
|
if (f->addressFamily == NULL &&
|
|
(f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
|
|
goto err;
|
|
if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
|
|
goto err;
|
|
if (!sk_IPAddressFamily_push(addr, f))
|
|
goto err;
|
|
|
|
return f;
|
|
|
|
err:
|
|
IPAddressFamily_free(f);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Add an inheritance element.
|
|
*/
|
|
int v3_addr_add_inherit(IPAddrBlocks *addr,
|
|
const unsigned afi,
|
|
const unsigned *safi)
|
|
{
|
|
IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
|
|
if (f == NULL ||
|
|
f->ipAddressChoice == NULL ||
|
|
(f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
|
|
f->ipAddressChoice->u.addressesOrRanges != NULL))
|
|
return 0;
|
|
if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
|
|
f->ipAddressChoice->u.inherit != NULL)
|
|
return 1;
|
|
if (f->ipAddressChoice->u.inherit == NULL &&
|
|
(f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
|
|
return 0;
|
|
f->ipAddressChoice->type = IPAddressChoice_inherit;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Construct an IPAddressOrRange sequence, or return an existing one.
|
|
*/
|
|
static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
|
|
const unsigned afi,
|
|
const unsigned *safi)
|
|
{
|
|
IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
|
|
IPAddressOrRanges *aors = NULL;
|
|
|
|
if (f == NULL ||
|
|
f->ipAddressChoice == NULL ||
|
|
(f->ipAddressChoice->type == IPAddressChoice_inherit &&
|
|
f->ipAddressChoice->u.inherit != NULL))
|
|
return NULL;
|
|
if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
|
|
aors = f->ipAddressChoice->u.addressesOrRanges;
|
|
if (aors != NULL)
|
|
return aors;
|
|
if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
|
|
return NULL;
|
|
switch (afi) {
|
|
case IANA_AFI_IPV4:
|
|
(void) sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
|
|
break;
|
|
case IANA_AFI_IPV6:
|
|
(void) sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
|
|
break;
|
|
}
|
|
f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
|
|
f->ipAddressChoice->u.addressesOrRanges = aors;
|
|
return aors;
|
|
}
|
|
|
|
/*
|
|
* Add a prefix.
|
|
*/
|
|
int v3_addr_add_prefix(IPAddrBlocks *addr,
|
|
const unsigned afi,
|
|
const unsigned *safi,
|
|
unsigned char *a,
|
|
const int prefixlen)
|
|
{
|
|
IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
|
|
IPAddressOrRange *aor;
|
|
if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
|
|
return 0;
|
|
if (sk_IPAddressOrRange_push(aors, aor))
|
|
return 1;
|
|
IPAddressOrRange_free(aor);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add a range.
|
|
*/
|
|
int v3_addr_add_range(IPAddrBlocks *addr,
|
|
const unsigned afi,
|
|
const unsigned *safi,
|
|
unsigned char *min,
|
|
unsigned char *max)
|
|
{
|
|
IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
|
|
IPAddressOrRange *aor;
|
|
int length = length_from_afi(afi);
|
|
if (aors == NULL)
|
|
return 0;
|
|
if (!make_addressRange(&aor, min, max, length))
|
|
return 0;
|
|
if (sk_IPAddressOrRange_push(aors, aor))
|
|
return 1;
|
|
IPAddressOrRange_free(aor);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Extract min and max values from an IPAddressOrRange.
|
|
*/
|
|
static int extract_min_max(IPAddressOrRange *aor,
|
|
unsigned char *min,
|
|
unsigned char *max,
|
|
int length)
|
|
{
|
|
if (aor == NULL || min == NULL || max == NULL)
|
|
return 0;
|
|
switch (aor->type) {
|
|
case IPAddressOrRange_addressPrefix:
|
|
return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
|
|
addr_expand(max, aor->u.addressPrefix, length, 0xFF));
|
|
case IPAddressOrRange_addressRange:
|
|
return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
|
|
addr_expand(max, aor->u.addressRange->max, length, 0xFF));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Public wrapper for extract_min_max().
|
|
*/
|
|
int v3_addr_get_range(IPAddressOrRange *aor,
|
|
const unsigned afi,
|
|
unsigned char *min,
|
|
unsigned char *max,
|
|
const int length)
|
|
{
|
|
int afi_length = length_from_afi(afi);
|
|
if (aor == NULL || min == NULL || max == NULL ||
|
|
afi_length == 0 || length < afi_length ||
|
|
(aor->type != IPAddressOrRange_addressPrefix &&
|
|
aor->type != IPAddressOrRange_addressRange) ||
|
|
!extract_min_max(aor, min, max, afi_length))
|
|
return 0;
|
|
|
|
return afi_length;
|
|
}
|
|
|
|
/*
|
|
* Sort comparision function for a sequence of IPAddressFamily.
|
|
*
|
|
* The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
|
|
* the ordering: I can read it as meaning that IPv6 without a SAFI
|
|
* comes before IPv4 with a SAFI, which seems pretty weird. The
|
|
* examples in appendix B suggest that the author intended the
|
|
* null-SAFI rule to apply only within a single AFI, which is what I
|
|
* would have expected and is what the following code implements.
|
|
*/
|
|
static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
|
|
const IPAddressFamily * const *b_)
|
|
{
|
|
const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
|
|
const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
|
|
int len = ((a->length <= b->length) ? a->length : b->length);
|
|
int cmp = memcmp(a->data, b->data, len);
|
|
return cmp ? cmp : a->length - b->length;
|
|
}
|
|
|
|
/*
|
|
* Check whether an IPAddrBLocks is in canonical form.
|
|
*/
|
|
int v3_addr_is_canonical(IPAddrBlocks *addr)
|
|
{
|
|
unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
|
|
unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
|
|
IPAddressOrRanges *aors;
|
|
int i, j, k;
|
|
|
|
/*
|
|
* Empty extension is cannonical.
|
|
*/
|
|
if (addr == NULL)
|
|
return 1;
|
|
|
|
/*
|
|
* Check whether the top-level list is in order.
|
|
*/
|
|
for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
|
|
const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
|
|
const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
|
|
if (IPAddressFamily_cmp(&a, &b) >= 0)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Top level's ok, now check each address family.
|
|
*/
|
|
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
|
IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
|
|
int length = length_from_afi(v3_addr_get_afi(f));
|
|
|
|
/*
|
|
* Inheritance is canonical. Anything other than inheritance or
|
|
* a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
|
|
*/
|
|
if (f == NULL || f->ipAddressChoice == NULL)
|
|
return 0;
|
|
switch (f->ipAddressChoice->type) {
|
|
case IPAddressChoice_inherit:
|
|
continue;
|
|
case IPAddressChoice_addressesOrRanges:
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It's an IPAddressOrRanges sequence, check it.
|
|
*/
|
|
aors = f->ipAddressChoice->u.addressesOrRanges;
|
|
if (sk_IPAddressOrRange_num(aors) == 0)
|
|
return 0;
|
|
for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
|
|
IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
|
|
IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
|
|
|
|
if (!extract_min_max(a, a_min, a_max, length) ||
|
|
!extract_min_max(b, b_min, b_max, length))
|
|
return 0;
|
|
|
|
/*
|
|
* Punt misordered list, overlapping start, or inverted range.
|
|
*/
|
|
if (memcmp(a_min, b_min, length) >= 0 ||
|
|
memcmp(a_min, a_max, length) > 0 ||
|
|
memcmp(b_min, b_max, length) > 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Punt if adjacent or overlapping. Check for adjacency by
|
|
* subtracting one from b_min first.
|
|
*/
|
|
for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
|
|
;
|
|
if (memcmp(a_max, b_min, length) >= 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Check for range that should be expressed as a prefix.
|
|
*/
|
|
if (a->type == IPAddressOrRange_addressRange &&
|
|
range_should_be_prefix(a_min, a_max, length) >= 0)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check range to see if it's inverted or should be a
|
|
* prefix.
|
|
*/
|
|
j = sk_IPAddressOrRange_num(aors) - 1;
|
|
{
|
|
IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
|
|
if (a != NULL && a->type == IPAddressOrRange_addressRange) {
|
|
if (!extract_min_max(a, a_min, a_max, length))
|
|
return 0;
|
|
if (memcmp(a_min, a_max, length) > 0 ||
|
|
range_should_be_prefix(a_min, a_max, length) >= 0)
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we made it through all that, we're happy.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Whack an IPAddressOrRanges into canonical form.
|
|
*/
|
|
static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
|
|
const unsigned afi)
|
|
{
|
|
int i, j, length = length_from_afi(afi);
|
|
|
|
/*
|
|
* Sort the IPAddressOrRanges sequence.
|
|
*/
|
|
sk_IPAddressOrRange_sort(aors);
|
|
|
|
/*
|
|
* Clean up representation issues, punt on duplicates or overlaps.
|
|
*/
|
|
for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
|
|
IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
|
|
IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
|
|
unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
|
|
unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
|
|
|
|
if (!extract_min_max(a, a_min, a_max, length) ||
|
|
!extract_min_max(b, b_min, b_max, length))
|
|
return 0;
|
|
|
|
/*
|
|
* Punt inverted ranges.
|
|
*/
|
|
if (memcmp(a_min, a_max, length) > 0 ||
|
|
memcmp(b_min, b_max, length) > 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Punt overlaps.
|
|
*/
|
|
if (memcmp(a_max, b_min, length) >= 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Merge if a and b are adjacent. We check for
|
|
* adjacency by subtracting one from b_min first.
|
|
*/
|
|
for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
|
|
;
|
|
if (memcmp(a_max, b_min, length) == 0) {
|
|
IPAddressOrRange *merged;
|
|
if (!make_addressRange(&merged, a_min, b_max, length))
|
|
return 0;
|
|
(void) sk_IPAddressOrRange_set(aors, i, merged);
|
|
(void) sk_IPAddressOrRange_delete(aors, i + 1);
|
|
IPAddressOrRange_free(a);
|
|
IPAddressOrRange_free(b);
|
|
--i;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for inverted final range.
|
|
*/
|
|
j = sk_IPAddressOrRange_num(aors) - 1;
|
|
{
|
|
IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
|
|
if (a != NULL && a->type == IPAddressOrRange_addressRange) {
|
|
unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
|
|
extract_min_max(a, a_min, a_max, length);
|
|
if (memcmp(a_min, a_max, length) > 0)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Whack an IPAddrBlocks extension into canonical form.
|
|
*/
|
|
int v3_addr_canonize(IPAddrBlocks *addr)
|
|
{
|
|
int i;
|
|
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
|
IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
|
|
if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
|
|
!IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
|
|
v3_addr_get_afi(f)))
|
|
return 0;
|
|
}
|
|
(void) sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
|
|
sk_IPAddressFamily_sort(addr);
|
|
OPENSSL_assert(v3_addr_is_canonical(addr));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* v2i handler for the IPAddrBlocks extension.
|
|
*/
|
|
static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
|
|
struct v3_ext_ctx *ctx,
|
|
STACK_OF(CONF_VALUE) *values)
|
|
{
|
|
static const char v4addr_chars[] = "0123456789.";
|
|
static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
|
|
IPAddrBlocks *addr = NULL;
|
|
char *s = NULL, *t;
|
|
int i;
|
|
|
|
if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
|
|
CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
|
|
unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
|
|
unsigned afi, *safi = NULL, safi_;
|
|
const char *addr_chars;
|
|
int prefixlen, i1, i2, delim, length;
|
|
|
|
if ( !name_cmp(val->name, "IPv4")) {
|
|
afi = IANA_AFI_IPV4;
|
|
} else if (!name_cmp(val->name, "IPv6")) {
|
|
afi = IANA_AFI_IPV6;
|
|
} else if (!name_cmp(val->name, "IPv4-SAFI")) {
|
|
afi = IANA_AFI_IPV4;
|
|
safi = &safi_;
|
|
} else if (!name_cmp(val->name, "IPv6-SAFI")) {
|
|
afi = IANA_AFI_IPV6;
|
|
safi = &safi_;
|
|
} else {
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
|
|
X509V3_conf_err(val);
|
|
goto err;
|
|
}
|
|
|
|
switch (afi) {
|
|
case IANA_AFI_IPV4:
|
|
addr_chars = v4addr_chars;
|
|
break;
|
|
case IANA_AFI_IPV6:
|
|
addr_chars = v6addr_chars;
|
|
break;
|
|
}
|
|
|
|
length = length_from_afi(afi);
|
|
|
|
/*
|
|
* Handle SAFI, if any, and BUF_strdup() so we can null-terminate
|
|
* the other input values.
|
|
*/
|
|
if (safi != NULL) {
|
|
*safi = strtoul(val->value, &t, 0);
|
|
t += strspn(t, " \t");
|
|
if (*safi > 0xFF || *t++ != ':') {
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
|
|
X509V3_conf_err(val);
|
|
goto err;
|
|
}
|
|
t += strspn(t, " \t");
|
|
s = BUF_strdup(t);
|
|
} else {
|
|
s = BUF_strdup(val->value);
|
|
}
|
|
if (s == NULL) {
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Check for inheritance. Not worth additional complexity to
|
|
* optimize this (seldom-used) case.
|
|
*/
|
|
if (!strcmp(s, "inherit")) {
|
|
if (!v3_addr_add_inherit(addr, afi, safi)) {
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
|
|
X509V3_conf_err(val);
|
|
goto err;
|
|
}
|
|
OPENSSL_free(s);
|
|
s = NULL;
|
|
continue;
|
|
}
|
|
|
|
i1 = strspn(s, addr_chars);
|
|
i2 = i1 + strspn(s + i1, " \t");
|
|
delim = s[i2++];
|
|
s[i1] = '\0';
|
|
|
|
if (a2i_ipadd(min, s) != length) {
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
|
|
X509V3_conf_err(val);
|
|
goto err;
|
|
}
|
|
|
|
switch (delim) {
|
|
case '/':
|
|
prefixlen = (int) strtoul(s + i2, &t, 10);
|
|
if (t == s + i2 || *t != '\0') {
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
|
|
X509V3_conf_err(val);
|
|
goto err;
|
|
}
|
|
if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
break;
|
|
case '-':
|
|
i1 = i2 + strspn(s + i2, " \t");
|
|
i2 = i1 + strspn(s + i1, addr_chars);
|
|
if (i1 == i2 || s[i2] != '\0') {
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
|
|
X509V3_conf_err(val);
|
|
goto err;
|
|
}
|
|
if (a2i_ipadd(max, s + i1) != length) {
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
|
|
X509V3_conf_err(val);
|
|
goto err;
|
|
}
|
|
if (memcmp(min, max, length_from_afi(afi)) > 0) {
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
|
|
X509V3_conf_err(val);
|
|
goto err;
|
|
}
|
|
if (!v3_addr_add_range(addr, afi, safi, min, max)) {
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
break;
|
|
case '\0':
|
|
if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
break;
|
|
default:
|
|
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
|
|
X509V3_conf_err(val);
|
|
goto err;
|
|
}
|
|
|
|
OPENSSL_free(s);
|
|
s = NULL;
|
|
}
|
|
|
|
/*
|
|
* Canonize the result, then we're done.
|
|
*/
|
|
if (!v3_addr_canonize(addr))
|
|
goto err;
|
|
return addr;
|
|
|
|
err:
|
|
OPENSSL_free(s);
|
|
sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* OpenSSL dispatch
|
|
*/
|
|
const X509V3_EXT_METHOD v3_addr = {
|
|
NID_sbgp_ipAddrBlock, /* nid */
|
|
0, /* flags */
|
|
ASN1_ITEM_ref(IPAddrBlocks), /* template */
|
|
0, 0, 0, 0, /* old functions, ignored */
|
|
0, /* i2s */
|
|
0, /* s2i */
|
|
0, /* i2v */
|
|
v2i_IPAddrBlocks, /* v2i */
|
|
i2r_IPAddrBlocks, /* i2r */
|
|
0, /* r2i */
|
|
NULL /* extension-specific data */
|
|
};
|
|
|
|
/*
|
|
* Figure out whether extension sues inheritance.
|
|
*/
|
|
int v3_addr_inherits(IPAddrBlocks *addr)
|
|
{
|
|
int i;
|
|
if (addr == NULL)
|
|
return 0;
|
|
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
|
IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
|
|
if (f->ipAddressChoice->type == IPAddressChoice_inherit)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Figure out whether parent contains child.
|
|
*/
|
|
static int addr_contains(IPAddressOrRanges *parent,
|
|
IPAddressOrRanges *child,
|
|
int length)
|
|
{
|
|
unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
|
|
unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
|
|
int p, c;
|
|
|
|
if (child == NULL || parent == child)
|
|
return 1;
|
|
if (parent == NULL)
|
|
return 0;
|
|
|
|
p = 0;
|
|
for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
|
|
if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
|
|
c_min, c_max, length))
|
|
return -1;
|
|
for (;; p++) {
|
|
if (p >= sk_IPAddressOrRange_num(parent))
|
|
return 0;
|
|
if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
|
|
p_min, p_max, length))
|
|
return 0;
|
|
if (memcmp(p_max, c_max, length) < 0)
|
|
continue;
|
|
if (memcmp(p_min, c_min, length) > 0)
|
|
return 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Test whether a is a subset of b.
|
|
*/
|
|
int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
|
|
{
|
|
int i;
|
|
if (a == NULL || a == b)
|
|
return 1;
|
|
if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
|
|
return 0;
|
|
(void) sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
|
|
for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
|
|
IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
|
|
int j = sk_IPAddressFamily_find(b, fa);
|
|
IPAddressFamily *fb;
|
|
fb = sk_IPAddressFamily_value(b, j);
|
|
if (fb == NULL)
|
|
return 0;
|
|
if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
|
|
fa->ipAddressChoice->u.addressesOrRanges,
|
|
length_from_afi(v3_addr_get_afi(fb))))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Validation error handling via callback.
|
|
*/
|
|
#define validation_err(_err_) \
|
|
do { \
|
|
if (ctx != NULL) { \
|
|
ctx->error = _err_; \
|
|
ctx->error_depth = i; \
|
|
ctx->current_cert = x; \
|
|
ret = ctx->verify_cb(0, ctx); \
|
|
} else { \
|
|
ret = 0; \
|
|
} \
|
|
if (!ret) \
|
|
goto done; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Core code for RFC 3779 2.3 path validation.
|
|
*/
|
|
static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
|
|
STACK_OF(X509) *chain,
|
|
IPAddrBlocks *ext)
|
|
{
|
|
IPAddrBlocks *child = NULL;
|
|
int i, j, ret = 1;
|
|
X509 *x;
|
|
|
|
OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
|
|
OPENSSL_assert(ctx != NULL || ext != NULL);
|
|
OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
|
|
|
|
/*
|
|
* Figure out where to start. If we don't have an extension to
|
|
* check, we're done. Otherwise, check canonical form and
|
|
* set up for walking up the chain.
|
|
*/
|
|
if (ext != NULL) {
|
|
i = -1;
|
|
x = NULL;
|
|
} else {
|
|
i = 0;
|
|
x = sk_X509_value(chain, i);
|
|
OPENSSL_assert(x != NULL);
|
|
if ((ext = x->rfc3779_addr) == NULL)
|
|
goto done;
|
|
}
|
|
if (!v3_addr_is_canonical(ext))
|
|
validation_err(X509_V_ERR_INVALID_EXTENSION);
|
|
(void) sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
|
|
if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
|
|
X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
|
|
ret = 0;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Now walk up the chain. No cert may list resources that its
|
|
* parent doesn't list.
|
|
*/
|
|
for (i++; i < sk_X509_num(chain); i++) {
|
|
x = sk_X509_value(chain, i);
|
|
OPENSSL_assert(x != NULL);
|
|
if (!v3_addr_is_canonical(x->rfc3779_addr))
|
|
validation_err(X509_V_ERR_INVALID_EXTENSION);
|
|
if (x->rfc3779_addr == NULL) {
|
|
for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
|
|
IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
|
|
if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
|
|
validation_err(X509_V_ERR_UNNESTED_RESOURCE);
|
|
break;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
(void) sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp);
|
|
for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
|
|
IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
|
|
int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
|
|
IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
|
|
if (fp == NULL) {
|
|
if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
|
|
validation_err(X509_V_ERR_UNNESTED_RESOURCE);
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
|
|
if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
|
|
addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
|
|
fc->ipAddressChoice->u.addressesOrRanges,
|
|
length_from_afi(v3_addr_get_afi(fc))))
|
|
sk_IPAddressFamily_set(child, j, fp);
|
|
else
|
|
validation_err(X509_V_ERR_UNNESTED_RESOURCE);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Trust anchor can't inherit.
|
|
*/
|
|
OPENSSL_assert(x != NULL);
|
|
if (x->rfc3779_addr != NULL) {
|
|
for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
|
|
IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
|
|
if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
|
|
sk_IPAddressFamily_find(child, fp) >= 0)
|
|
validation_err(X509_V_ERR_UNNESTED_RESOURCE);
|
|
}
|
|
}
|
|
|
|
done:
|
|
sk_IPAddressFamily_free(child);
|
|
return ret;
|
|
}
|
|
|
|
#undef validation_err
|
|
|
|
/*
|
|
* RFC 3779 2.3 path validation -- called from X509_verify_cert().
|
|
*/
|
|
int v3_addr_validate_path(X509_STORE_CTX *ctx)
|
|
{
|
|
return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
|
|
}
|
|
|
|
/*
|
|
* RFC 3779 2.3 path validation of an extension.
|
|
* Test whether chain covers extension.
|
|
*/
|
|
int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
|
|
IPAddrBlocks *ext,
|
|
int allow_inheritance)
|
|
{
|
|
if (ext == NULL)
|
|
return 1;
|
|
if (chain == NULL || sk_X509_num(chain) == 0)
|
|
return 0;
|
|
if (!allow_inheritance && v3_addr_inherits(ext))
|
|
return 0;
|
|
return v3_addr_validate_path_internal(NULL, chain, ext);
|
|
}
|
|
|
|
#endif /* OPENSSL_NO_RFC3779 */
|